Shallow Burial Dolomitization of an Eocene Carbonate Platform, Southeast Zagros Basin, Iran

Total Page:16

File Type:pdf, Size:1020Kb

Shallow Burial Dolomitization of an Eocene Carbonate Platform, Southeast Zagros Basin, Iran GeoArabia, 2014, v. 19, no. 4, p. 17-54 Gulf PetroLink, Bahrain Shallow burial dolomitization of an Eocene carbonate platform, southeast Zagros Basin, Iran Afshin Zohdi, Seyed Ali Moallemi, Reza Moussavi-Harami, Asadollah Mahboubi, Detlev K. Richter, Anna Geske, Abbas A. Nickandish and Adrian Immenhauser ABSTRACT Here, a case example of a dolomitized Eocene ramp setting from the southeastern Zagros Basin is documented and discussed in the context of published work. This is of significance as well-documented case examples of Eocene dolomitized inner platforms are comparably rare. The same is true for detailed diagenetic studies from the Zagros Basin in general. Three measured field sections were combined with detailed petrographic and geochemical analyses and four main dolomite types were defined. The most significant dolomite type is present in the form of a volumetrically significant occurrence of meter-thick beds of strata-bound dolostones. These dolomites are characterized by near-stoichiometric composition, fabric-retentive and fabric-destructive textures, subhedral to anhedral in shape and most being in the tens-of-microns range. Dolomite 18O (averaging -2.6‰) values are depleted relative to that expected for precipitation from Eocene seawater (averaging 0‰), while 13C (averaging -0.1‰) valuesδ are within the range of Eocene seawater values (averaging 0.5‰). Dolomite Type II and III 87Sr/86S values from 0.7079 to 0.7086δ are somewhat elevated with respect to Eocene seawater (0.7077 and 0.7078). Based on these data, it is suggested that moderately evaporated seawater, via shallow seepage reflux, acted as agent for the initial dolomitization process. Subsequently, early diagenetic dolomites were recrystallized during shallow burial to variable degrees. The absence of volumetrically significant evaporitic deposits indicates that the salinity of porewater during dolomitization was beneath the threshold limit for gypsum precipitation. In addition, ascending saline fluids from deep-seated salt diapirs might have affected dolomitizing fluids. INTRODUCTION Dolostone-capped shallow-water carbonate successions have been reported throughout the geologic record (Bosence et al., 2000; Jones, 2007; Rameil, 2008; Geske et al., 2012; Zhao and Jones, 2012; Meister et al., 2013; Corbella et al., 2014). Amongst these, pervasive secondary dolomitization of shallow-water carbonates is the most abundant dolostone type, but also one that is genetically the least understood (Budd, 1997; Coniglio et al., 2003; Frazer et al., 2014). This is because many dolostone bodies, formed under different depositional and diagenetic environments worldwide, are characterized by similar fabrics and geochemical features (Sass and Katz, 1982; Machel and Mountjoy, 1986). The ongoing interest in the topic of pervasive dolomitization is due to the fact that many hydrocarbon reservoirs worldwide are located in dolomitized successions (Purser et al., 1994; Braithwaite et al., 2004; Ronchi et al., 2011; Rott and Qing, 2013; Wen et al., 2014). Current understanding is that massive dolostones can be produced by fluids of various origin in different diagenetic environments. These include evaporitic marine brines in sabkha depositional settings (e.g., Geske et al., 2012; Bontognali et al., 2012; Wen et al., 2014), evaporated seawater in seepage reflux environments (e.g., Melim and Scholle, 2002; Al-Helal et al., 2012; Vandeginste et al., 2013), normal seawater in subtidal environments (e.g., Rameil, 2008; Maliva et al., 2011; Zhao and Jones, 2012), freshwater/seawater in mixing zones (e.g., Searl, 1988; Gaswirth et al., 2007; Azmy et al., 2009; Goldstein et al., 2012; El Ayyat, 2013; Li et al., 2013) and deep basinal fluids (e.g., Green and Mountjoy, 2005; Lonnee and Machel, 2006; Ronchi et al., 2011; Frazer et al., 2014). 17 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/19/4/17/4566022/zohdi.pdf by guest on 30 September 2021 Zohdi et al. One of the more often cited dolomitization models suggest that admixtures of evaporative brines with seawater acted as parent fluids for massive dolomite bodies in numerous shallow carbonate platforms (Mriheel and Anketell, 1995, 2000; Holail et al., 2005; Kirmaci, 2008; Salad-Hersi, 2011; Conliffe et al., 2012; Wen et al., 2014). This model, however, cannot be applied directly to extensive dolomitization of limestones that are not associated with important gypsum/anhydrite deposits. Simms (1984) has shown that the reflux of fluids of slightly elevated salinity on ancient shallow platforms during periods of hydrographic restriction and climatic aridity is favorable for dolomitization of thick carbonate sequences. According to Sibley (1991) and Vahrenkamp et al. (1991), the formation of massive dolomite requires a long residence time for the dolomitized body in a near sea-level position. Essentially, the most favorable setting for dolomitization is perhaps that of prolonged sea-level highstand under slow subsidence rates. On the other hand, Sun (1994) concluded that hydrographic restriction related to frequent pulses of sea-level fall under arid climate seem to be critical factors responsible for the massive dolomitization of Paleogene dolostones in several basins worldwide. Massive replacive dolostones have been reported from the Zagros Basin of Iran, the basin under study here, and several of these dolostone bodies are important regional hydrocarbon reservoirs (Sun, 1995; Warren, 2000; Zohdi et al., 2011). Understanding the genesis of dolomitized limestone might aid the prediction of the distribution of dolostone bodies and shed light on geochemical fluxes of fluids in the subsurface. Here, we document and discuss a case example of an Eocene, pervasively dolomitized ramp (Jahrum Formation) from the Zagros Basin in Iran. Published data on dolomitized ramp carbonates from this region are rather limited (Zohdi et al., 2013), in comparison to the better studied Permian and Triassic dolomitized ramps in the Zagros Basin (Moradpour et al., 2008; Rahimpour-Bonab et al., 2009, 2010; Tavakoli et al., 2011; Esrafili-Dizaji and Rahimpour-Bonab, 2013; Mohammadi Dehcheshmehi et al., 2013). In general and particularly so in Iran, dolomitization of Permian–Triassic platforms has been mainly ascribed to seepage-reflux and/or evaporative mechanisms (e.g., Moradpour et al., 2008; Rahimpour-Bonab et al., 2009, 2010; Geske et al., 2012; Meister et al., 2013; Jiang et al., 2013). In this paper we aim (1) to provide a comprehensive characterization of the petrography, geochemistry and spatial architecture of Jahrum Formation dolostones; and (2) to discuss the origin of this dolostone facies in its basin-wide context. GEOTECTONIC SETTING The Iranian plateau extends over a number of continental terranes welded together along suture zones of oceanic character (Berberian and King, 1981; Alavi, 2007). These terranes include the following provinces: (1) Zagros; (2) Alborz; (3) Central Iran; (4) Kopeh-Dagh; and (5) Makran sedimentary basin. The study area is located in the southeastern Zagros Basin (Figure 1). This basin constitutes a major structural feature within the Alpine-Himalayan Orogen, marking the transition between the Zagros Collision Belt to the west and the Makran and Oman Mountains to the east. Numerous salt diapirs characterize the southeastern Zagros Basin (Edgell, 1996; Jahani et al., 2009). These diapirs are composed principally of Upper Precambrian–Lower Cambrian Hormuz Salt. Where undeformed, the salt is overlain by more than four km of sedimentary rocks (Edgell, 1996; Jahani et al., 2009). The emergent diapirs provide an opportunity to study the diagenetic history of the affected units in association with the Hormuz Salt (Ghazban and Al-Aasm, 2010). The Hormuz Salt started to mobilize as early as Jurassic to Early Cretaceous based on geological evidence, but most diapirs did not reach the surface until the folding of the Zagros Mountains during the Paleogene (Ala, 1974; Jahani et al., 2009). At the initiation of the folding, diapirs had already been re-activated by earlier tectonic events and salt movement along faults resulting in evaporitic facies reaching the surface (Jahani et al., 2009). The overall geotectonic setting clearly affected the evolution of the Paleogene carbonate platforms in the southeast Zagros Basin (Zohdi et al., 2013). Hormuz salt diapirs are potentially of significance in the context of dolomitization processes as a source of saline ascending fluids (Ghazban and Al-Aasm, 2007, 2010). In the study area, anticlines are built most often by competent limestone rocks of the Eocene Jahrum and the Lower-Middle Miocene Gurpi formations (Figure 1). Here, large-scale anticlines and synclines 18 Downloaded from http://pubs.geoscienceworld.org/geoarabia/article-pdf/19/4/17/4566022/zohdi.pdf by guest on 30 September 2021 Dolomitization of Eocene platform, southeast Zagros Basin, Iran Faraghun Finu Khush Genow IRAN Anguru Strait of Hormuz Cenozoic Paleozoic to Mesozoic Aghajari Formation Jahrum Formation Bangestan Group Dalan Formation Mishan Formation Guri Member Pabdeh Formation Khami Group Faraghun Formation Razak Formation Jahrum Formation Neyriz-Khaneh Siahou and Sarchahan Gachsaran Formation Section Kat formations formations Asmari-Jahrum formations Road Khaneh kat Formation Hormuz Formation Figure 1: Geological map of the southeastern Zagros Basin, showing location of measured sections (blue stars). Modified after Fakhari (1994). mostly have an E-W trending orientation that differs from other regions
Recommended publications
  • Hymenoptera: Braconidae) from Iran
    European Journal of Taxonomy 571: 1–25 ISSN 2118-9773 https://doi.org/10.5852/ejt.2019.571 www.europeanjournaloftaxonomy.eu 2019 · Zargar M. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:89B1D35C-8162-403C-BF95-7853C62D27D1 Three new species and two new records of the genus Cotesia Cameron (Hymenoptera: Braconidae) from Iran Mohammad ZARGAR 1, Ankita GUPTA 2, Ali Asghar TALEBI 3,* & Samira FARAHANI 4 1,3 Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran. 2 ICAR-National Bureau of Agricultural Insects Resources, P.B. No. 2491, H.A. Farm Post, Bellary Road, Hebbal, 560 024 Bangalore, India. 4 Research Institute of Forests and Rangelands, Agricultural Research Education and Extension Organization (AREEO), P.O. Box 13185-116, Tehran, Iran. * Corresponding author: [email protected] 1 Email: [email protected] 2 Email: [email protected] 4 Email: [email protected] 1 urn:lsid:zoobank.org:author:6F685437-6655-4D8B-9DD5-C66A0824B987 2 urn:lsid:zoobank.org:author:AC7B7E50-D525-4630-B1E9-365ED5511B79 3 urn:lsid:zoobank.org:author:71CB13A9-F9BD-4DDE-8CB1-A495036975FE 4 urn:lsid:zoobank.org:author:423DEB84-81C3-4179-BDE2-88A827CD4865 Abstract. The present study is based on the genus Cotesia Cameron,1891 collected from Khuzestan Province in the Southwestern part of Iran during 2016–2017. Nine species (+200 specimens) of the genus Cotesia were collected and identified. We recognised three new species, which we describe and illustrate here: Cotesia elongata Zargar & Gupta sp.
    [Show full text]
  • Late Dolomitization in Basinal Limestones of the Southern Apennines Fold and Thrust Belt (Italy)
    Late Dolomitization in Basinal Limestones of the Southern Apennines Fold and Thrust Belt (Italy). A. Iannace, M. Gasparrini, T. Gabellone, S. Mazzoli To cite this version: A. Iannace, M. Gasparrini, T. Gabellone, S. Mazzoli. Late Dolomitization in Basinal Limestones of the Southern Apennines Fold and Thrust Belt (Italy).. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2012, 67 (1), pp.59-75. 10.2516/ogst/2011166. hal-00702860 HAL Id: hal-00702860 https://hal-ifp.archives-ouvertes.fr/hal-00702860 Submitted on 31 May 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ogst100136_Iannace 16/03/12 11:45 Page 59 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 67 (2012), No. 1, pp. 59-75 Copyright © 2012, IFP Energies nouvelles DOI: 10.2516/ogst/2011166 Dossier Diagenesis - Fluid-Rocks Interactions Diagenèse minérale - Équilibres fluides-roches Late Dolomitization in Basinal Limestones of the Southern Apennines Fold and Thrust Belt (Italy) A. Iannace1, M. Gasparrini2, T. Gabellone1
    [Show full text]
  • Upper Permian.Trias Sic Facies Zones in the Transdanubian Range
    Rivista Italiana di Paleontologia e Stratigra{ia volume I u I numero 3 pagine 249-266 Dicembre 1995 UPPER PERMIAN.TRIAS SIC FACIES ZONES IN THE TRANSDANUBIAN RANGE JANOS HAAS* & TAMAS BUDAI** Key-'utords: Upper Permian-Triassic, facies pattern, paleogeo- Alpine relationship of the Mesozoic section of the graphic reconstruction, Transdanubian Range, Hungary. Transdanubian Range was noticed as early as the second Riassunto. Yiene analizzata in quesro anicolo la distribuzione half of the last century (Peters, 1859; Hauer, 1862;Hof- delle facies del Permiano superiore e de1 Triassico nell'ambito della mann, 1871.; Bóckh, 1873). Later on, at rhe beginning of Catena Transdanubiana. Sono state compilate cane di {acies per sei this century others (Taeger, 1912, 1913; Lóczy, 1916) interualli di tempo, sulla base di dati di superficie e sottosuolo, che confirmed these sono state uti\jzzate per le ricostruzioni paleogeografiche. Conside- statements. In accordance with generai rando l'intervallo Permiano superiore-Triassico, le unità della Catena contemponneous concepts, the plausible relationship Transdanubiana mostrano una precisa polarità: la porzione a nordest was explained by assuming narrow seaways between the rappresenta il lato verso il mare aperto, mentre la porzione a sudovest Alpine sedimentary basins and the areas the island costituisce il lato in direzione della terraferma. IJna pane imponante of delle facies può essere correlata con facies coeve del Sudalpino e delle mountains within the Pannonian Basin (I-nczy, 1.91.6; falde dello Austroalpino superiore, fornendo un significativo stru- TelegdiRóth, 1.929 ; Yadlsz, 19 6Q). mento per la ricostruzione della posizione originale delle unità della General acceptance of the mobilistic plate rectonic Catena Transdanubiana.
    [Show full text]
  • The Magnesium Isotope (Оґ26mg) Signature of Dolomites
    Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 149 (2015) 131–151 www.elsevier.com/locate/gca The magnesium isotope (d26Mg) signature of dolomites A. Geske a, R.H. Goldstein b, V. Mavromatis c, D.K. Richter a, D. Buhl a, T. Kluge d, C.M. John d, A. Immenhauser a,⇑ a Ruhr-University Bochum, Institute for Geology, Mineralogy and Geophysics, Universita¨tsstraße 150, D-44801 Bochum, Germany b University of Kansas, Department of Geology, 1475 Jayhawk Blvd., Lawrence, KS 66045, USA c Institute of Applied Geosciences, Graz University of Technology, 8010 Graz, Austria d Imperial College London, Department of Earth Science and Engineering, Prince Consort Road, SW7 2BP London, United Kingdom Received 1 August 2014; accepted in revised form 1 November 2014; available online 13 November 2014 Abstract Dolomite precipitation models and kinetics are debated and complicated due to the complex and temporally fluctuating fluid chemistry and different diagenetic environments. Using well-established isotope systems (d18O, d13C, 87Sr/86Sr), fluid inclusions and elemental data, as well as a detailed sedimentological and petrographic data set, we established the precipita- tion environment and subsequent diagenetic pathways of a series of Proterozoic to Pleistocene syn-depositional marine evap- orative (sabkha) dolomites, syn-depositional non-marine evaporative (lacustrine and palustrine) dolomites, altered marine (“mixing zone”) dolomites and late diagenetic hydrothermal dolomites. These data form the prerequisite for a systematic 26 26 investigation of dolomite magnesium isotope ratios (d Mgdol). Dolomite d Mg ratios documented here range, from 26 À2.49& to À0.45& (d Mgmean = À1.75 ± 1.08&, n = 42).
    [Show full text]
  • Improving Princeton Forcing Dataset Over Iran Using the Delta-Ratio Method
    Supplemental Material Improving Princeton Forcing Dataset over Iran Using the Delta-Ratio Method Qinghuan Zhang1, Qiuhong Tang1,2*, Xingcai Liu1, Seyed-Mohammad Hosseini-Moghari1 and Pedram Attarod3 1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China 2 University of Chinese Academy of Sciences, Beijing, 100101, China 3 Forestry and Forest Economics Department, Faculty of Natural Resources, College of Agriculture and Natural Resources, University of Tehran, Karaj, 77871-31587, Iran *Correspondence to: Qiuhong Tang ([email protected]) Table S1. Information about the climate stations. Station Long Lat Elev. Data Province Station Name Adjust Validate Code (° E) (° N) (m) Availability Alborz Karaj 40752 50.57 35.48 1292.9 1985–2017 Yes Ardebil 40708 48.17 38.15 1332 1977–2017 Yes Ardebil Khalkhal 40717 48.31 37.38 1796 1987–2017 Yes Pars Abad Moghan 40700 47.55 39.39 31.9 1985–2017 Yes Bushehr 40858 50.49 28.58 9 1986–2017 Yes Bushehr Bushehr Coastal 40857 50.49 28.54 8.4 1951–2017 Yes Yes Boroojen 99459 51.18 31.59 2260 1988–2017 Yes Chaharmahal Koohrang 40797 50.7 32.26 2285 1987–2017 Yes and Bakhtiari Shahre Kord 40798 50.51 32.17 2048.9 1956–2017 Yes Yes Ahar 40704 47.4 38.26 1390.5 1986–2017 Yes Jolfa 40702 45.40 38.45 736.2 1986–2017 Yes Maragheh 40713 46.16 37.24 1477.7 1984–2017 Yes East Azarbaijan Mianeh 40716 47.42 37.27 1110 1987–2017 Yes Sarab 40710 47.32 37.56 1682 1987–2017 Yes Tabriz 40706 46.17
    [Show full text]
  • Oligocene-Miocene Ramp System (Asmari Formation) in the NW of the Zagros Basin, Iran: Microfacies, Paleoenvironment and Depositional Sequence
    56 Vaziri-MoghaddamRevista Mexicana et al. de Ciencias Geológicas, v. 27, núm. 1, 2010, p. 56-71 Oligocene-Miocene ramp system (Asmari Formation) in the NW of the Zagros basin, Iran: Microfacies, paleoenvironment and depositional sequence Hossein Vaziri-Moghaddam1,*, Ali Seyrafian1, Azizolah Taheri2, and Homayoon Motiei3 1 Department of Geology, Faculty of Sciences, University of Isfahan, Isfahan, Iran, 81746-73441. 2 Geology Department, Faculty of Earth Science, Shahrood University of Technology, Shahroud, Iran. 3 National Iranian Oil Company Research and Development Division, Tehran, Iran. * [email protected] ABSTRACT The Asmari Formation deposited in the Zagros foreland basin during the Oligocene-Miocene. Four different measured sections were studied in this area in order to interpret the facies, depositional environment and sequence stratigraphy of the Asmari Formation. In this study, thirteen different microfacies types have been recognized, which can be grouped into six depositional environments: tidal flat, restricted lagoon, open lagoon, shoal, slope and basin. The Asmari Formation represents sedimentation on a carbonate ramp. Four third-order sequences are identified, on the basis of deepening and shallowing patterns in the microfacies and the distribution of the Oligocene-Miocene foraminifers. The depositional sequences 1, 2 and 3 were observed in Dehluran and Kabirkuh-Darrehshahr areas, and are synchronous with a period of either erosion or non-deposition represented by unconformities in Mamulan and Sepid Dasht areas. Key words: microfacies, paleoenvironment, ramp, Asmari Formation, Zagros basin, Iran. RESUMEN La Formación Asmari se depositó en el antepaís de la cuenca Zagros durante el Oligoceno-Mioceno. Se estudiaron y midieron cuatro secciones diferentes en esta área para interpretar las facies, ambiente de depósito y la secuencia estratigráfica de la Formación Asmari.
    [Show full text]
  • 1590-1601 Issn 2322-5149 ©2014 Jnas
    Journal of Novel Applied Sciences Available online at www.jnasci.org ©2014 JNAS Journal-2014-3-S2/1590-1601 ISSN 2322-5149 ©2014 JNAS Trend analysis of the changes in urban hierarchy of Khuzestan: a sustainable development perspective Mohammad Ajza Shokouhi1* and Jawad Bawi2 1- Associate Professor of Geography and Urban Planning at Ferdowsi University of Mashhad 2- PhD student in Geography and Urban Planning, International Branch of Ferdowsi University of Mashhad Corresponding author: Mohammad Ajza Shokouhi ABSTRACT: This paper deals with the changes in the urban hierarchy of Khuzestan during a period of 50 years (1956-2006) determining the extent of changes in urbanization and the potential spatial differences between the cities in this province from the perspective of sustainable development. Adopting a descriptive-analytic approach and employing various models such as tensile modulus, primate city indicators, urban concentration index (three-city and four-city), the rank-size rule, the present paper analyzes the factors influencing the urban networks in Khuzestan. It follows from the results of the study that the urban networks of the province, have been heavily affected by developments so that Abadan which used to have the first rank in Khuzestan has lost its rank to Ahwaz due to the administrative, political, and commercial centrality of Ahwaz. The imposed war (of Iraq against Iran) has also caused abrupt changes in the population and urban hierarchy. Therefore, urban networks of Khuzestan influenced by factors such as immigration do not have a spatial balance (and hence stability) currently. Interestingly, the results suggest that the spatial distance between the first city Ahwaz with other cities is growing exponentially.
    [Show full text]
  • Research Article
    kj8 z Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 11, Issue, 05, pp.3546-3552, May, 2019 DOI: https://doi.org/10.24941/ijcr.34579.05.2019 ISSN: 0975-833X RESEARCH ARTICLE THE CAVE OPENING TYPES OF THE BAKONY REGION (TRANSDANUBIAN MOUNTAINS, HUNGARY) *Márton Veress and Szilárd Vetési-Foith Department of Physical and Geography, University of Pécs, Pécs, Hungary ARTICLE INFO ABSTRACT Article History: The genetic classification of the cave openings in the Bakony Region is described. The applied Received 09th February, 2019 methods are the following: studying the relation between the distribution of phreatic caves and the Received in revised form quality of the host rock and in case of antecedent valley sections, making theoretical geological 12th March, 2019 longitudinal profiles. The phreatic caves developed at the margins of the buried karst terrains of the th Accepted 15 April, 2019 mountains. The streams of these terrains created epigenetic valleys, while their seeping waters created th Published online 30 May, 2019 karst water storeys over the local impermeable beds. Cavity formation took place in the karst water storeys. Phreatic cavities also developed in the main karst water of the mountains. The caves are Key Words: primarily of valley side position, but they may occur on the roof or in the side of blocks. The cavities Gorge, Phreatic Cave, of valley side position were opened up by the streams downcutting the carboniferous rocks (these are Development of Cave openings. the present caves of the gorges). While cavities of block roof position developed at the karst water storey at the mound of the block.
    [Show full text]
  • Razianus Zarudnyi
    AMERICAN MUSEUM NOVITATES Number 3806, 26 pp. June 24, 2014 First reports of Razianus (Scorpiones: Buthidae) from Iraq and Pakistan, descriptions of two new species, and redescription of Razianus zarudnyi H. MUHAMMAD TAHIR,1, 2 SHAHROKH NAVIDPOUR,3 AND LORENZO PRENDINI1 AbstraCT The scorpion fauna of Pakistan, like that of the rest of the Indian subcontinent, is poorly known and many new species may await discovery. We describe two new species of the buthid genus Razianus Farzanpay, 1987, i.e., Razianus birulai, sp. nov., and Razianus farzanpayi, sp. nov., the first records of this genus from Pakistan, raising the number of species in the genus to four and extending its distribution southeast. In addition, we redescribe the type species, Razianus zarudnyi (Birula, 1903), report the first record from Iraq, extending the distribution of Razianus further west, plot the known locality records of the three species occurring in Iraq, Iran, and Pakistan, and provide a key to their identification. KEYWORDS: Palearctic, biodiversity, systematics, taxonomy 1 Scorpion Systematics Research Group, Division of Invertebrate Zoology, American Museum of Natural History 2 Department of Biological Sciences, University of Sargodha, Punjab, Pakistan. 3 Razi Reference Laboratory of Scorpion Research, Razi Vaccine and Serum Research Institute, Khuzestan, Iran. Copyright © American Museum of Natural History 2014 ISSN 0003-0082 2 AMERICAN Museum Novitates NO. 3806 IntroduCtion Little attention has been paid to the scorpion fauna of Pakistan since Pocock’s (1900) mono- graph in the Fauna of British India series. Most works covering the systematics of Pakistani scorpions since 1900 did so in passing. For example, some of the species occurring within Paki- stan were treated in Tikader and Bastawade’s (1983) volume in the Fauna of India series.
    [Show full text]
  • Research in Traffic Injuries Data with Emphasis on Motorcycle in Dezful, Iran
    Research in Traffic Injuries Data With Emphasis on Motorcycle in Dezful, Iran Mazaheri M1, Keshavarzmohammadi N2*, Soori H3, Ramezankhani A4 1 Ph.D. in health education & promotion, Dezful University of Medical Sciences, Dezful, Iran. 2 Ph.D. in health promotion, Department of Public Health, School of Public health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.3 Professor of Epidemiology, Safety Promotion, and Injury Prevention Research Center, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 4 Ph.D. in Health Education, Department of Public Health, Faculty of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Correspondence: Nastaran Keshavarz Mohammadi, Ph.D. in Health Promotion, Department of Public Health, School of Public health, ShahidBeheshti University of Medical Sciences, Tehran, Iran. Email: n_keshavars @ yahoo.com. ABSTRACT Background and Aim: Traffic injuries are a big problem in the world. Because Dezful has many motorcyclists, the decision was made to plan a comprehensive study on motorcycle-related injuries in which this study was part of this extensive research. Material and Methods: The purpose of this study was to identify existing information resources for planning about motorcycle events. To gather initial information, a participatory meeting was set up and asked the relevant organizations to provide information about the traffic injuries. In the following, referring to the relevant organizations, the data were collected and analysed. Results: One of the main findings of the study, a serious problem was with the management of information systems related to road traffic injuries, which revealed conflicting information. The results also showed that deaths from traffic accidents decreased but injuries were increasing.
    [Show full text]
  • Data Collection Survey on Tourism and Cultural Heritage in the Islamic Republic of Iran Final Report
    THE ISLAMIC REPUBLIC OF IRAN IRANIAN CULTURAL HERITAGE, HANDICRAFTS AND TOURISM ORGANIZATION (ICHTO) DATA COLLECTION SURVEY ON TOURISM AND CULTURAL HERITAGE IN THE ISLAMIC REPUBLIC OF IRAN FINAL REPORT FEBRUARY 2018 JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) HOKKAIDO UNIVERSITY JTB CORPORATE SALES INC. INGÉROSEC CORPORATION RECS INTERNATIONAL INC. 7R JR 18-006 JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) DATA COLLECTION SURVEY ON TOURISM AND CULTURAL HERITAGE IN THE ISLAMIC REPUBLIC OF IRAN FINAL REPORT TABLE OF CONTENTS Abbreviations ............................................................................................................................ v Maps ........................................................................................................................................ vi Photos (The 1st Field Survey) ................................................................................................. vii Photos (The 2nd Field Survey) ............................................................................................... viii Photos (The 3rd Field Survey) .................................................................................................. ix List of Figures and Tables ........................................................................................................ x 1. Outline of the Survey ....................................................................................................... 1 (1) Background and Objectives .....................................................................................
    [Show full text]
  • Critical Tectonic Limits for Geothermal Aquifer Use: Case Study from the East Slovakian Basin Rim
    resources Article Critical Tectonic Limits for Geothermal Aquifer Use: Case Study from the East Slovakian Basin Rim Stanislav Jacko *, Roman Farkašovský, Igor Duriška,ˇ Barbora Šˇcerbáková and Kristína Bátorová Institute of Geosciences, Faculty BERG, Technical University of Košice, 04001 Košice, Slovakia; [email protected] (R.F.); [email protected] (I.D.);ˇ [email protected] (B.Š.); [email protected] (K.B.) * Correspondence: [email protected]; Tel.: +42-155-602-31-35 Abstract: The Pannonian basin is a major geothermal heat system in Central Europe. Its peripheral basin, the East Slovakian basin, is an example of a geothermal structure with a linear, directed heat flow ranging from 90 to 100 mW/m2 from west to east. However, the use of the geothermal source is limited by several critical tectono-geologic factors: (a) Tectonics, and the associated disintegration of the aquifer block by multiple deformations during the pre-Paleogene, mainly Miocene, period. The main discontinuities of NW-SE and N-S direction negatively affect the permeability of the aquifer environment. For utilization, minor NE-SW dilatation open fractures are important, which have been developed by sinistral transtension on N–S faults and accelerated normal movements to the southeast. (b) Hydrogeologically, the geothermal structure is accommodated by three water types, −1 −1 namely, Na-HCO3 with 10.9 g·L mineralization (in the north), the Ca-Mg-HCO3 with 0.5–4.5 g·L mineralization (in the west), and Na-Cl water type containing 26.8–33.4 g·L−1 mineralization (in the southwest). The chemical composition of the water is influenced by the Middle Triassic dolomite aquifer, as well as by infiltration of saline solutions and meteoric waters along with open frac- ◦ Citation: Jacko, S.; Farkašovský, R.; tures/faults.
    [Show full text]