5. Polynomial Rings Let R Be a Commutative Ring. a Polynomial of Degree N in an Indeterminate (Or Variable) X with Coefficients

Total Page:16

File Type:pdf, Size:1020Kb

5. Polynomial Rings Let R Be a Commutative Ring. a Polynomial of Degree N in an Indeterminate (Or Variable) X with Coefficients 5. polynomial rings Let R be a commutative ring. A polynomial of degree n in an indeterminate (or variable) x with coefficients in R is an expression of the form f = f(x)=a + a x + + a xn, 0 1 ··· n where a0, ,an R and an =0.Wesaythata0, ,an are the coefficients of f and n ··· ∈ ̸ ··· that anx is the highest degree term of f. A polynomial is determined by its coeffiecients. m i n i Two polynomials f = i=0 aix and g = i=1 bix are equal if m = n and ai = bi for i =0, 1, ,n. ! ! Degree··· of a polynomial is a non-negative integer. The polynomials of degree zero are just the elements of R, these are called constant polynomials, or simply constants. Let R[x] denote the set of all polynomials in the variable x with coefficients in R. The addition and 2 multiplication of polynomials are defined in the usual manner: If f(x)=a0 + a1x + a2x + a x3 + and g(x)=b + b x + b x2 + b x3 + are two elements of R[x], then their sum is 3 ··· 0 1 2 3 ··· f(x)+g(x)=(a + b )+(a + b )x +(a + b )x2 +(a + b )x3 + 0 0 1 1 2 2 3 3 ··· and their product is defined by f(x) g(x)=a b +(a b + a b )x +(a b + a b + a b )x2 +(a b + a b + a b + a b )x3 + · 0 0 0 1 1 0 0 2 1 1 2 0 0 3 1 2 2 1 3 0 ··· Let 1 denote the constant polynomial 1 and 0 denote the constant polynomial zero. Then (R[x], +, , 0, 1) is a commutative ring. The ring axioms are easily verified. · 5.1. Lemma. Let R be a domain. Then deg(fg)=deg(f)+deg(g). m j Proof. Suppose deg(f)=m and deg(g)=n.Thenf and g has the form f = j=1 ajx and n k g = k=0 bkx where am =0andbn = 0. From the definition of polynomial multiplication,! ̸ ̸ m+n one notices! that the highest degree term of fg is ambnx . Since R is a domain, ambn =0, so fg has degree m + n. ̸ ! 5.2. Corollary. Let R be a domain. (a) Then R[x] is a domain. (b) The units in R[x] are precisely the constant polynomials that are also units in R. Proof. (a) Let f,g R[x]suchthatfg =0.thendeg(f)+deg(g) = deg(0) = 0 (since the zero polynomial∈ is a constant, so it has degree zero). Since degree is a nonzero integer, it follows that deg(f)=0anddeg(g)=0,sof and g are constants, i.e, f and g are just elements of R. Now, since R is a domain, it follows that f =0org =0. (b) Let u be an unit of R[x]. Then there exists v R[x]suchthatuv =1,sodeg(u)+ deg(v)=deg(1)=0,sodeg(u)=deg(v) = 0, that is,∈u and v are constants, that is, u and v are elements of R.Nowuv =1saysthatu is an unit of R. ! n 5.3. Definition (evaluation at a point). Let f(x)=a0 + a1x + + anx R[x]bea ···n ∈ polynomial and r R. Then we let f(r)=a0 + a1r + + anr .Wesaythatf(r) is the value of the polynomial∈ f(x)atr.Wesaythata ···R is a root of the polynomial f if f(a) = 0. This way each polynomial f(x) determines∈ a function f : R R that takes r R to f(r). Notice that if f = g,thenf(r)=g(r) for all r R. Define→ a function ev∈: R[x] R given by ev (f)=f(r). One verifies that ev is a ring∈ homomorphism from r → r r R[x]toR; it is called the evaluation homomorphism. We also say that evr(f)=f(r) is the element of R obtained by evaluating f at r. 13 For the rest of this section, we let F be a field and we consider polynomial ring in one variable over the field F .Ifp Z is a prime number, then Z/pZ is a field with p elements. ∈ We write Fp = Z/pZ. 5.4. Theorem (Euclidean algorithm). Let f(x),g(x) F [x] with g(x) =0.Thenthere exists unique polynomials q(x) and r(x) such that f(x)=∈ g(x)q(x)+r(x)̸ and deg(r(x)) < deg(q(x)). Sketch of proof. Follows from the Euclidean algorithm for division of polynomials. See the book for details. ! 5.5.ExampleExamples of polynomial division in Q[X]: (2x2 x +1)(x3 1 x + 1 )+(x + 1 )=2x5 x4 + 3 x2 +1 − − 2 2 2 − 2 2 3 1 1 Divide the right hand side by 2x x +1andcheckthat(x 2 x + 2 ) is the quotient and 1 − − (x + 2 ) is the remainder. 5.6. Corollary. F [x] is a PID. sketch of proof. Given an ideal I find the polynomial of least degree in I and show that it generates I. ! 5.7. Corollary. Let F be a field. A polynomial f F [x] has a root a F if and only if (x a) divides f in F [x]. ∈ ∈ − Proof. If (x a) divides f in F [x], then f(x)=(x a)g(x)forsomeg F [x], so f(a)= (a a)g(a)=0,so− a is a root of f. Conversely, suppose− a is a root of∈f. By Euclidean algorithm,− we can divide f by (x a) and write f(x)=(x a)g(x)+r where g,r F [x] and deg(r) < deg(x a)=1,sodeg(− r) = 0, that is r F −is a constant. Evaluating∈ both sides at a we obtain 0− = f(a)=(a a)g(a)+r = r,sor∈=0,hencef(x)=(x a)g(x). ! − − 5.8.Reducingcoefficients modulo an ideal: Let φ : R S be a ring homomorphism. → Then verify that φ determines a ring homomorphism Φ : R[x] S[x] given by Φ(a0 + a1x + n n → +anx )=φ(a0)+φ(a1)x+ +φ(an)x . In particular, if I is an ideal in R,thenwehave the··· natural quotient homomorphism··· π : R R/I and hence we have a ring homomorphsim R[x] R/I[x] obtained by taking a polynomial→ and reducing its coefficients modulo I. This → n homomorphism takes f = a0 + a1x + + anx R[x]tof mod I,wheref mod I is defined ··· ∈ n to be f mod I =(a0 mod I)+(a1 mod I)x+ +(an mod I)x .Ifa is a root of f in R,then reducing coefficients modulo I,wefindthat···a mod I is a root of f mod I. In particular, if f has a root in R,thenf mod I has a root in R/I. Recall that an element f is a PID R is called irreducible, if f = uv with u, v R implies that either u or v is an unit. An element is called reducible if it is not irreducible.∈ The units in F [x] are just the nonzero constants (since F is a field). Given any f F [x]anda constant u F 0 , we can always write f = u(u−1f); this is called a trivial factorization.∈ So a non-trivial∈ \{ factorization} of f F [x] is a factorization f = gh where both g and h has degree at least 1. The irredicible polynomials∈ in F [x] are the polynomials that “cannot be non-trivially factored”. 5.9.Exercise:(a) Show that f(x)=x3 3x + 3 is irreducible in Q[x]. 3 − (b) Show that f(x)=x 3x + 3 is reducible in F5[x] − 14 sketch of proof. Suppose f is reducible. If f = gh is a nontrivial factorization of f,then deg(g)+deg(h) = 3, so either g has degree 1 and h has degree 2 or vice versa (since g and h are not constants). So f has a factor of the form (ax+b)wherea, b Q and a = 0. It follows that b/a is a root of f,sof has a root in Q. Write the root of f∈in the form̸ m/n where m, n − Z with gcd(m, n)=1.Thenf(m/n) = 0 implies m3 3mn2 + n3 =0.Son divides 3mn2∈ n3 = m3 but gcd(m, n)=1,son = 1. It follows that f−has an integer root. Now since f Z−[x], we can reduce coefficients modulo 2 and obtain a polynomial f mod 2 F [x]. ∈ ∈ 2 Note that f mod 2 does not have a solution in F2, since f(0) 1mod2andf(1) 1mod2. It follows that f does not have an integer root, which is a contradiction.≡ So f is≡ irreducible in Q[x]. On the other hand, note that f(2) 0 mod 5. so 2 is a solution of f in F5. Divide f by (x 2) in F [x], to find the factorization≡ f(x) (x +1)2(x 2) mod 5. ! − 5 ≡ − 15.
Recommended publications
  • Subset Semirings
    University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2013 Subset Semirings Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy [email protected] Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebraic Geometry Commons, Analysis Commons, and the Other Mathematics Commons Recommended Citation W.B. Vasantha Kandasamy & F. Smarandache. Subset Semirings. Ohio: Educational Publishing, 2013. This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Subset Semirings W. B. Vasantha Kandasamy Florentin Smarandache Educational Publisher Inc. Ohio 2013 This book can be ordered from: Education Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: 1-866-880-5373 Copyright 2013 by Educational Publisher Inc. and the Authors Peer reviewers: Marius Coman, researcher, Bucharest, Romania. Dr. Arsham Borumand Saeid, University of Kerman, Iran. Said Broumi, University of Hassan II Mohammedia, Casablanca, Morocco. Dr. Stefan Vladutescu, University of Craiova, Romania. Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/eBooks-otherformats.htm ISBN-13: 978-1-59973-234-3 EAN: 9781599732343 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One INTRODUCTION 7 Chapter Two SUBSET SEMIRINGS OF TYPE I 9 Chapter Three SUBSET SEMIRINGS OF TYPE II 107 Chapter Four NEW SUBSET SPECIAL TYPE OF TOPOLOGICAL SPACES 189 3 FURTHER READING 255 INDEX 258 ABOUT THE AUTHORS 260 4 PREFACE In this book authors study the new notion of the algebraic structure of the subset semirings using the subsets of rings or semirings.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • SEMIFIELDS from SKEW POLYNOMIAL RINGS 1. INTRODUCTION a Semifield Is a Division Algebra, Where Multiplication Is Not Necessarily
    SEMIFIELDS FROM SKEW POLYNOMIAL RINGS MICHEL LAVRAUW AND JOHN SHEEKEY Abstract. Skew polynomial rings were used to construct finite semifields by Petit in [20], following from a construction of Ore and Jacobson of associative division algebras. Johnson and Jha [10] later constructed the so-called cyclic semifields, obtained using irreducible semilinear transformations. In this work we show that these two constructions in fact lead to isotopic semifields, show how the skew polynomial construction can be used to calculate the nuclei more easily, and provide an upper bound for the number of isotopism classes, improving the bounds obtained by Kantor and Liebler in [13] and implicitly by Dempwolff in [2]. 1. INTRODUCTION A semifield is a division algebra, where multiplication is not necessarily associative. Finite nonassociative semifields of order q are known to exist for each prime power q = pn > 8, p prime, with n > 2. The study of semifields was initiated by Dickson in [4] and by now many constructions of semifields are known. We refer to the next section for more details. In 1933, Ore [19] introduced the concept of skew-polynomial rings R = K[t; σ], where K is a field, t an indeterminate, and σ an automorphism of K. These rings are associative, non-commutative, and are left- and right-Euclidean. Ore ([18], see also Jacobson [6]) noted that multiplication in R, modulo right division by an irreducible f contained in the centre of R, yields associative algebras without zero divisors. These algebras were called cyclic algebras. We show that the requirement of obtaining an associative algebra can be dropped, and this construction leads to nonassociative division algebras, i.e.
    [Show full text]
  • Notes on Ring Theory
    Notes on Ring Theory by Avinash Sathaye, Professor of Mathematics February 1, 2007 Contents 1 1 Ring axioms and definitions. Definition: Ring We define a ring to be a non empty set R together with two binary operations f,g : R × R ⇒ R such that: 1. R is an abelian group under the operation f. 2. The operation g is associative, i.e. g(g(x, y),z)=g(x, g(y,z)) for all x, y, z ∈ R. 3. The operation g is distributive over f. This means: g(f(x, y),z)=f(g(x, z),g(y,z)) and g(x, f(y,z)) = f(g(x, y),g(x, z)) for all x, y, z ∈ R. Further we define the following natural concepts. 1. Definition: Commutative ring. If the operation g is also commu- tative, then we say that R is a commutative ring. 2. Definition: Ring with identity. If the operation g has a two sided identity then we call it the identity of the ring. If it exists, the ring is said to have an identity. 3. The zero ring. A trivial example of a ring consists of a single element x with both operations trivial. Such a ring leads to pathologies in many of the concepts discussed below and it is prudent to assume that our ring is not such a singleton ring. It is called the “zero ring”, since the unique element is denoted by 0 as per convention below. Warning: We shall always assume that our ring under discussion is not a zero ring.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • Formal Power Series Rings, Inverse Limits, and I-Adic Completions of Rings
    Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely many variables over a ring R, and show that it is Noetherian when R is. But we begin with a definition in much greater generality. Let S be a commutative semigroup (which will have identity 1S = 1) written multi- plicatively. The semigroup ring of S with coefficients in R may be thought of as the free R-module with basis S, with multiplication defined by the rule h k X X 0 0 X X 0 ( risi)( rjsj) = ( rirj)s: i=1 j=1 s2S 0 sisj =s We next want to construct a much larger ring in which infinite sums of multiples of elements of S are allowed. In order to insure that multiplication is well-defined, from now on we assume that S has the following additional property: (#) For all s 2 S, f(s1; s2) 2 S × S : s1s2 = sg is finite. Thus, each element of S has only finitely many factorizations as a product of two k1 kn elements. For example, we may take S to be the set of all monomials fx1 ··· xn : n (k1; : : : ; kn) 2 N g in n variables. For this chocie of S, the usual semigroup ring R[S] may be identified with the polynomial ring R[x1; : : : ; xn] in n indeterminates over R. We next construct a formal semigroup ring denoted R[[S]]: we may think of this ring formally as consisting of all functions from S to R, but we shall indicate elements of the P ring notationally as (possibly infinite) formal sums s2S rss, where the function corre- sponding to this formal sum maps s to rs for all s 2 S.
    [Show full text]
  • The Method of Coalgebra: Exercises in Coinduction
    The Method of Coalgebra: exercises in coinduction Jan Rutten CWI & RU [email protected] Draft d.d. 8 July 2018 (comments are welcome) 2 Draft d.d. 8 July 2018 Contents 1 Introduction 7 1.1 The method of coalgebra . .7 1.2 History, roughly and briefly . .7 1.3 Exercises in coinduction . .8 1.4 Enhanced coinduction: algebra and coalgebra combined . .8 1.5 Universal coalgebra . .8 1.6 How to read this book . .8 1.7 Acknowledgements . .9 2 Categories { where coalgebra comes from 11 2.1 The basic definitions . 11 2.2 Category theory in slogans . 12 2.3 Discussion . 16 3 Algebras and coalgebras 19 3.1 Algebras . 19 3.2 Coalgebras . 21 3.3 Discussion . 23 4 Induction and coinduction 25 4.1 Inductive and coinductive definitions . 25 4.2 Proofs by induction and coinduction . 28 4.3 Discussion . 32 5 The method of coalgebra 33 5.1 Basic types of coalgebras . 34 5.2 Coalgebras, systems, automata ::: ....................... 34 6 Dynamical systems 37 6.1 Homomorphisms of dynamical systems . 38 6.2 On the behaviour of dynamical systems . 41 6.3 Discussion . 44 3 4 Draft d.d. 8 July 2018 7 Stream systems 45 7.1 Homomorphisms and bisimulations of stream systems . 46 7.2 The final system of streams . 52 7.3 Defining streams by coinduction . 54 7.4 Coinduction: the bisimulation proof method . 59 7.5 Moessner's Theorem . 66 7.6 The heart of the matter: circularity . 72 7.7 Discussion . 76 8 Deterministic automata 77 8.1 Basic definitions . 78 8.2 Homomorphisms and bisimulations of automata .
    [Show full text]
  • Invertible Ideals and Gaussian Semirings
    ARCHIVUM MATHEMATICUM (BRNO) Tomus 53 (2017), 179–192 INVERTIBLE IDEALS AND GAUSSIAN SEMIRINGS Shaban Ghalandarzadeh, Peyman Nasehpour, and Rafieh Razavi Abstract. In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as (I + J)(I ∩J) = IJ for all ideals I, J of S. In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family of semirings, the concepts of Prüfer and Gaussian semirings are equivalent. At last, we end this paper by giving a plenty of examples for proper Gaussian and Prüfer semirings. 0. Introduction Vandiver introduced the term “semi-ring” and its structure in 1934 [27], though the early examples of semirings had appeared in the works of Dedekind in 1894, when he had been working on the algebra of the ideals of commutative rings [5]. Despite the great efforts of some mathematicians on semiring theory in 1940s, 1950s, and early 1960s, they were apparently not successful to draw the attention of mathematical society to consider the semiring theory as a serious line of ma- thematical research. Actually, it was in the late 1960s that semiring theory was considered a more important topic for research when real applications were found for semirings. Eilenberg and a couple of other mathematicians started developing formal languages and automata theory systematically [6], which have strong connec- tions to semirings.
    [Show full text]
  • Ideal Membership in Polynomial Rings Over the Integers
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 17, Number 2, Pages 407{441 S 0894-0347(04)00451-5 Article electronically published on January 15, 2004 IDEAL MEMBERSHIP IN POLYNOMIAL RINGS OVER THE INTEGERS MATTHIAS ASCHENBRENNER Introduction The following well-known theorem, due to Grete Hermann [20], 1926, gives an upper bound on the complexity of the ideal membership problem for polynomial rings over fields: Theorem. Consider polynomials f0;:::;fn 2 F [X]=F [X1;:::;XN ] of (total) degree ≤ d over a field F .Iff0 2 (f1;:::;fn),then f0 = g1f1 + ···+ gnfn for certain g1;:::;gn 2 F [X] whose degrees are bounded by β,whereβ = β(N;d) depends only on N and d (and not on the field F or the particular polynomials f0;:::;fn). This theorem was a first step in Hermann's project, initiated by work of Hentzelt and Noether [19], to construct bounds for some of the central operations of com- mutative algebra in polynomial rings over fields. A simplified and corrected proof was published by Seidenberg [35] in the 1970s, with an explicit but incorrect bound β(N;d). In [31, p. 92], it was shown that one may take N β(N;d)=(2d)2 : We will reproduce a proof, using Hermann's classical method, in Section 3 below. Note that the computable character of this bound reduces the question of whether f0 2 (f1;:::;fn) for given fj 2 F [X] to solving an (enormous) system of linear equations over F . Hence, in this way one obtains a (naive) algorithm for solving the ideal membership problem for F [X](providedF is given in some explicitly computable manner).
    [Show full text]
  • RING THEORY 1. Ring Theory a Ring Is a Set a with Two Binary Operations
    CHAPTER IV RING THEORY 1. Ring Theory A ring is a set A with two binary operations satisfying the rules given below. Usually one binary operation is denoted `+' and called \addition," and the other is denoted by juxtaposition and is called \multiplication." The rules required of these operations are: 1) A is an abelian group under the operation + (identity denoted 0 and inverse of x denoted x); 2) A is a monoid under the operation of multiplication (i.e., multiplication is associative and there− is a two-sided identity usually denoted 1); 3) the distributive laws (x + y)z = xy + xz x(y + z)=xy + xz hold for all x, y,andz A. Sometimes one does∈ not require that a ring have a multiplicative identity. The word ring may also be used for a system satisfying just conditions (1) and (3) (i.e., where the associative law for multiplication may fail and for which there is no multiplicative identity.) Lie rings are examples of non-associative rings without identities. Almost all interesting associative rings do have identities. If 1 = 0, then the ring consists of one element 0; otherwise 1 = 0. In many theorems, it is necessary to specify that rings under consideration are not trivial, i.e. that 1 6= 0, but often that hypothesis will not be stated explicitly. 6 If the multiplicative operation is commutative, we call the ring commutative. Commutative Algebra is the study of commutative rings and related structures. It is closely related to algebraic number theory and algebraic geometry. If A is a ring, an element x A is called a unit if it has a two-sided inverse y, i.e.
    [Show full text]
  • NEW TRENDS in SYZYGIES: 18W5133
    NEW TRENDS IN SYZYGIES: 18w5133 Giulio Caviglia (Purdue University, Jason McCullough (Iowa State University) June 24, 2018 – June 29, 2018 1 Overview of the Field Since the pioneering work of David Hilbert in the 1890s, syzygies have been a central area of research in commutative algebra. The idea is to approximate arbitrary modules by free modules. Let R be a Noetherian, commutative ring and let M be a finitely generated R-module. A free resolution is an exact sequence of free ∼ R-modules ···! Fi+1 ! Fi !··· F0 such that H0(F•) = M. Elements of Fi are called ith syzygies of M. When R is local or graded, we can choose a minimal free resolution of M, meaning that a basis for Fi is mapped onto a minimal set of generators of Ker(Fi−1 ! Fi−2). In this case, we get uniqueness of minimal free resolutions up to isomorphism of complexes. Therefore, invariants defined by minimal free resolutions yield invariants of the module being resolved. In most cases, minimal resolutions are infinite, but over regular rings, like polynomial and power series rings, all finitely generated modules have finite minimal free resolutions. Beyond the study of invariants of modules, syzygies have connections to algebraic geometry, algebraic topology, and combinatorics. Statements like the Total Rank Conjecture connect algebraic topology with free resolutions. Bounds on Castelnuovo-Mumford regularity and projective dimension, as with the Eisenbud- Goto Conjecture and Stillman’s Conjecture, have implications for the computational complexity of Grobner¨ bases and computational algebra systems. Green’s Conjecture provides a link between graded free resolutions and the geometry of canonical curves.
    [Show full text]
  • Coalgebras from Formulas
    Coalgebras from Formulas Serban Raianu California State University Dominguez Hills Department of Mathematics 1000 E Victoria St Carson, CA 90747 e-mail:[email protected] Abstract Nichols and Sweedler showed in [5] that generic formulas for sums may be used for producing examples of coalgebras. We adopt a slightly different point of view, and show that the reason why all these constructions work is the presence of certain representative functions on some (semi)group. In particular, the indeterminate in a polynomial ring is a primitive element because the identity function is representative. Introduction The title of this note is borrowed from the title of the second section of [5]. There it is explained how each generic addition formula naturally gives a formula for the action of the comultiplication in a coalgebra. Among the examples chosen in [5], this situation is probably best illus- trated by the following two: Let C be a k-space with basis {s, c}. We define ∆ : C −→ C ⊗ C and ε : C −→ k by ∆(s) = s ⊗ c + c ⊗ s ∆(c) = c ⊗ c − s ⊗ s ε(s) = 0 ε(c) = 1. 1 Then (C, ∆, ε) is a coalgebra called the trigonometric coalgebra. Now let H be a k-vector space with basis {cm | m ∈ N}. Then H is a coalgebra with comultiplication ∆ and counit ε defined by X ∆(cm) = ci ⊗ cm−i, ε(cm) = δ0,m. i=0,m This coalgebra is called the divided power coalgebra. Identifying the “formulas” in the above examples is not hard: the for- mulas for sin and cos applied to a sum in the first example, and the binomial formula in the second one.
    [Show full text]