Traps for Capturing Insects T 3887 Transmission Threshold Trap Crop
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. -
Bisdesmosidic Saponins from Securidaca Longepedunculata Roots: Evaluation of Deterrency and Toxicity to Coleopteran Storage Pests
8860 J. Agric. Food Chem. 2009, 57, 8860–8867 DOI:10.1021/jf901599j Bisdesmosidic Saponins from Securidaca longepedunculata Roots: Evaluation of Deterrency and Toxicity to Coleopteran Storage Pests ,†,‡ †,§ † PHILIP C. STEVENSON,* THAMARA K. DAYARATHNA, STEVEN R. BELMAIN, AND ‡ NIGEL C. VEITCH †Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom, and ‡Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, United Kingdom. § Current address: Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada. Powdered dry root bark of Securidaca longepedunculata was mixed with maize and cowpea and effectively reduced the numbers of Sitophilus zeamais and Callosobruchus maculatus emerging from these commodities, respectively, more than 9 months after treatment. This effect was reciprocated in grain treated with a methanol extract of the root bark, indicating that compounds were present that were oviposition deterrents or directly toxic to the adults or larvae. Two new bisdesmosidic saponins, 3-O-β-D- glucopyranosyl-28-O-(R-L-arabinopyranosyl-(1 f 3)-β-D-xylopyranosyl-(1 f 4)[β-D-apiofuranosyl-(1 f 3)]- R-L-rhamnopyranosyl-(1 f 2)-[4-O-(4-methoxycinnamoyl-β-D-fucopyranosyl)])-medicagenic acid (securi- dacaside A) and 3-O-β-D-glucopyranosyl-28-O-(R-L-arabinopyranosyl-(1 f 3)-β-D-xylopyranosyl-(1 f 4)- [β-D-apiofuranosyl-(1f3)]-R-L-rhamnopyranosyl-(1 f 2)-[4-O-(3,4,5-trimethoxy-(E )-cinnamoyl-β-D-fucopy- ranosyl)])-medicagenic acid (securidacaside B), were isolated from the methanol extract of the roots of S. -
Wooden and Bamboo Commodities Intended for Indoor and Outdoor Use
NAPPO Discussion Document DD 04: Wooden and Bamboo Commodities Intended for Indoor and Outdoor Use Prepared by members of the Pest Risk Analysis Panel of the North American Plant Protection Organization (NAPPO) December 2011 Contents Introduction ...........................................................................................................................3 Purpose ................................................................................................................................4 Scope ...................................................................................................................................4 1. Background ....................................................................................................................4 2. Description of the Commodity ........................................................................................6 3. Assessment of Pest Risks Associated with Wooden Articles Intended for Indoor and Outdoor Use ...................................................................................................................6 Probability of Entry of Pests into the NAPPO Region ...........................................................6 3.1 Probability of Pests Occurring in or on the Commodity at Origin ................................6 3.2 Survival during Transport .......................................................................................... 10 3.3 Probability of Pest Surviving Existing Pest Management Practices .......................... 10 3.4 Probability -
Data Sheet on Helicoverpa
EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Helicoverpa zea IDENTITY Name: Helicoverpa zea (Boddie) Synonyms: Heliothis zea (Boddie) Bombyx obsoleta Fab. Phalaena zea (Boddie) Heliothis umbrosus Grote Taxonomic position: Insecta: Lepidoptera: Noctuidae Common names: American bollworm, corn earworm, tomato fruitworm, New World bollworm (English) Chenille des épis du maïs (French) Amerikanischer Baumwollkapselwurm (German) Notes on taxonomy and nomenclature: The taxonomic situation is complicated and presents several problems. Hardwick (1965) reviewed the New World corn earworm species complex and the Old World African bollworm (Noctuidae), most of which had previously been referred to as a single species (Heliothis armigera or H. obsoleta), and pointed out that there was a complex of species and subspecies involved. Specifically he proposed that the New World H. zea (first used in 1955) was distinct from the Old World H. armigera on the basis of male and female genitalia. And he described the new genus Helicoverpa to include these important pest species, Some 80 or more species were formerly placed in Heliothis (sensu lato) and Hardwick referred 17 species (including 11 new species) to Helicoverpa on the basis of differences in both male and female genitalia. Within this new genus the zea group contains eight species, and the armigera group two species with three subspecies. See also Hardwick (1970). Because the old name of Heliothis for the pest species (four major pest species and three minor) is so well established in the literature, and since dissection of genitalia is required for identification, there has been resistance to the name change (e.g. -
Public Attitudes Toward and Awareness of Trapping Issues In
ATTITUDES TOWARD AND AWARENESS OF TRAPPING ISSUES IN CONNECTICUT, INDIANA AND WISCONSIN Conducted for the International Association of Fish and Wildlife Agencies And the Furbearer Resources Technical Work Group Conducted by Responsive Management May 2001 ATTITUDES TOWARD AND AWARENESS OF TRAPPING ISSUES IN CONNECTICUT, INDIANA AND WISCONSIN May 2001 CONDUCTED BY RESPONSIVE MANAGEMENT NATIONAL OFFICE Mark Damian Duda, Executive Director Peter E. De Michele, Ph.D., Director of Research Steven J. Bissell, Ph.D., Qualitative Research Director Ping Wang, Ph.D., Quantitative Research Associate Jim Herrick, Ph. D., Research Associate Alison Lanier, Business Manager William Testerman, Survey Center Manager Joy Yoder, Research Associate 130 Franklin Street, PO Box 389 Harrisonburg, VA 22801 Phone: 540/432-1888 Fax: 540/432-1892 E-mail to: [email protected] www.responsivemanagement.com EXECUTIVE OVERVIEW Executive Overview of Findings, Implications and Conclusions The purpose of this project was to assist the International Association of Fish and Wildlife Agencies (IAFWA) and the Furbearer Resources Technical Work Group in better understanding public awareness of, opinions on, and attitudes toward trapping. There were five phases to this project. Phase I was a series of focus groups with members of the general population in Connecticut, Wisconsin, and Indiana (Chapter 1). Phase II consisted of focus groups with two important stakeholder groups: Wildlife professionals (Chapter III), and Veterinarians (Chapter 1). Phase III consisted of utilizing the focus group results to develop a comprehensive group of questions regarding the most salient issues related to public opinion on, and attitudes toward trapping. These survey questions formed the basis of the development of three separate survey instruments that can be used by wildlife agencies to periodically assess attitudes toward trapping on a local, state or national level (Chapter IV). -
Open Access Author Fund Annual Report FY19
The KU Open Access Author Fund Annual Report (July 2018 - June 2019) The KU One University Open Access Author Fund (OAAF) had an active year receiving many applications and publishing more articles in open access journals for which the OAAF provided at least partial funding. The number of applications received remained stable for several years but declined slightly in FY19. However, competition for the awards has increased due to rising article processing charges making the criteria and point system even more important. All the articles paid for and published so far have been placed in the KU ScholarWorks institutional repository under “Open Access.” Included in this report are the statistics for FY 2019 in the following tables: Table 1. Numbers of applications and awards Table 2. Total amount spent and a break down by campus We’ve also included appendices covering the fund from Inception (Oct. 2012) through June 2019: Appendix A A Short History of the First Six Years of the Open Access Author Fund Appendix B Cumulative Statistics Appendix C Highlights of Article-Level Metrics for Selected Papers Funded by the OAAF Appendix D Full List of Published Papers Funded by the OAAF Appendix E Applications Received by Unit 1 KU Open Access Author Fund Annual Report, FY 19 Table 1. Statistics for FY 2019 When compared to the figures from the previous fiscal year (July 2017-June 2018), there was a 17% decrease in the number of applications received and therefore a smaller number of applications that were rejected. The number of awards that were offered and paid were similar. -
Diccionario Campesino Hondureño Jeffery W. Bentley1 Prólogo Como
Diccionario campesino hondureño Jeffery W. Bentley1 Prólogo Los campesinos tienen un vocabulario enorme, del cual este diccionario documenta una parte. Los campesinos llevan una vida verbal, con poca influencia de medios visuales como el periódico, el cine y la televisión. Tienen un vocabulario grande, a pesar de que muchos de ellos no saben leer ni escribir. El conversar y escuchar la radio son fuentes importantes de información y diversión. En el campo se estima mucho una conversación con gracia. Mucha gente de la ciudad cree que los campesinos usan palabras inventadas por ellos mismos. Sin embargo, la mayoría son palabras antiguas, con raíces en idiomas viejos, como latín o náhuat. Los campesinos saben muchas palabras que los capitalinos no saben, pero que sí se encuentran en el Diccionario de la Lengua Española de la Real Academia. Sin embargo, el español rural hondureño es un idioma moderno, actualizado, que sigue cambiando para servir los intereses de un pueblo en cambio. Pretendemos aquí lograr tres metas. La primera es ayudar a la comunicación con el pueblo rural. En segundo, esperamos documentar en parte el mundo conceptual de la gente de las aldeas, mostrando que sus palabras son claves para conceptos complicados, profundos, con definiciones concretas. Las palabras muestran las categorías conceptuales de la gente. La tercera meta es que por medio de una presentación formal, brindar el prestigio y respeto que merece el hablar del pueblo rural de Honduras. Empecé a escribir el diccionario con un enfoque de dialecto: pensaba que los campesinos por ser un grupo social tenían su propio hablar. -
Papaya Fruit Fly, Toxotrypana Curvicauda Gerstaecker
EENY-021 Papaya Fruit Fly (suggested common name), Toxotrypana curvicauda Gerstaecker (Insecta: Diptera: Tephritidae)1 H. L. Selman, J. B. Heppner, and T. R. Fasulo2 Introduction Venezuela). In the United States, the fly is found in south- ern Texas and southern Florida. The papaya fruit fly, Toxotrypana curvicauda Gerstaecker, is the principal insect pest of papaya (Carica papaya L.) throughout the tropical and subtropical areas of the New World. The insect was introduced into Florida in 1905, most likely from the West Indies on papaya shipments. It first became established in the Florida Keys and Miami, then spread throughout the state wherever papayas are grown. Papaya fruit fly larvae and adults have been found in Florida in every month of the year. Although originally considered to be monophagous, infesting only wild and cultivated papaya, the insect has also been reported on mango and milkweed in Florida, and other plant species in Mexico. Figure 1. Adult female papaya fruit fly, Toxotrypana curvicauda Synonymy Gerstaecker. Credits: Doug Caldwell, UF/IFAS Mikimyia furcifera Bigot. Description Distribution Adult The papaya fruit fly is distributed throughout the Carib- Commonly mistaken for a vespid wasp due to its size, form, bean, particularly in Puerto Rico, the Dominican Republic, coloration, and behavior, the papaya fruit fly is predomi- Trinidad, Cuba, and the Bahamas. It is also found in nantly yellow marked with black. The female has a very Central America (Belize, Costa Rica, Guatemala, Hon- long, slender abdomen with a greatly elongated, curved duras, Mexico, Panama) and South America (Columbia, ovipositor which exceeds the length of its body (body length: 8.5–12.5 mm; ovipositor length: 9–14 mm). -
Genetically Modified Baculoviruses for Pest
INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS This page intentionally left blank INSECT CONTROL BIOLOGICAL AND SYNTHETIC AGENTS EDITED BY LAWRENCE I. GILBERT SARJEET S. GILL Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo Academic Press is an imprint of Elsevier Academic Press, 32 Jamestown Road, London, NW1 7BU, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA ª 2010 Elsevier B.V. All rights reserved The chapters first appeared in Comprehensive Molecular Insect Science, edited by Lawrence I. Gilbert, Kostas Iatrou, and Sarjeet S. Gill (Elsevier, B.V. 2005). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publishers. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail [email protected]. Requests may also be completed on-line via the homepage (http://www.elsevier.com/locate/permissions). Library of Congress Cataloging-in-Publication Data Insect control : biological and synthetic agents / editors-in-chief: Lawrence I. Gilbert, Sarjeet S. Gill. – 1st ed. p. cm. Includes bibliographical references and index. ISBN 978-0-12-381449-4 (alk. paper) 1. Insect pests–Control. 2. Insecticides. I. Gilbert, Lawrence I. (Lawrence Irwin), 1929- II. Gill, Sarjeet S. SB931.I42 2010 632’.7–dc22 2010010547 A catalogue record for this book is available from the British Library ISBN 978-0-12-381449-4 Cover Images: (Top Left) Important pest insect targeted by neonicotinoid insecticides: Sweet-potato whitefly, Bemisia tabaci; (Top Right) Control (bottom) and tebufenozide intoxicated by ingestion (top) larvae of the white tussock moth, from Chapter 4; (Bottom) Mode of action of Cry1A toxins, from Addendum A7. -
Effect of Pheromone Trap Density on Mass Trapping Of
SCIENTIFIC NOTE 281 EFFECT OF PHEROMONE TRAP DENSITY ON MASS TRAPPING OF MALE POTATO TUBER MOTH Phthorimaea operculella (ZELLER) (LEPIDOPTERA: GELECHIIDAE), AND LEVEL OF DAMAGE ON POTATO TUBERS Patricia Larraín S.1*, Michel Guillon2, Julio Kalazich3, Fernando Graña1, and Claudia Vásquez1 ABSTRACT Potato tuber moth (PTM), Phthorimaea operculella (Zeller), is one of the pests that cause the most damage to potatoes (Solanum tuberosum L.) in both field crops and storage, especially in regions where summers are hot and dry. Larvae develop in the foliage and tubers of potatoes and cause direct losses of edible product. The use of synthetic pheromones that interfere with insect mating for pest control has been widely demonstrated in numerous Lepidoptera and other insect species. An experiment was carried out during the 2004-2005 season in Valle del Elqui, Coquimbo Region, Chile, to evaluate the effectiveness of different pheromone trap densities to capture P. operculella males for future development of a mass trapping technique, and a subsequent decrease in insect reproduction. The study evaluated densities of 10, 20, and 40 traps ha-1, baited with 0.2 mg of PTM sexual pheromone, and water- detergent for captures. Results indicated that larger numbers of male PTM were captured per trap with densities of 20 and 40 traps per hectare, resulting in a significant reduction (P < 0.05) of tuber damage in these treatments compared with the control which used conventional chemical insecticide sprays. Key words: potato tuber moth, Phthorimaea operculella, mass trapping, pheromone. INTRODUCTION researched (El-Sayed et al., 2006). It interferes with insect mating, reducing the future larvae population and The potato tuber moth is a pest which economically subsequent damage. -
Podgwaite, J.D
STRATEGIES FOR FIELD USE OF BACULOVIRUSES J. D. PODGWAITE U.S. Department of Agriculture, Forest Service Center for Biological Control of Northeastern Forest Insects and Diseases Harnden, Connecticut I. INTRODUCTION In recent years, there has been increased awareness in maintaining the quality of the environment. This has led to the development and use of microbial agents as alternatives to chemicals for controlling noxious insect populations. The insect pathogens in the family Baculoviridae, by virtue of their specificity, virulence, and safety for nontarget species, have become logical candidates in this regard, and several have been registered with the United States Environ mental Protection Agency (EPA) for use in the United States (Martignoni, 1978; Lewis et al., 1979; Ignoffo and Couch, 1981). In fact, these viruses, as well as members of the Reoviridae, have been in general use for some time, in one form or another, throughout the world (Bedford, 1981; Cunningham and Entwistle, 1981; Katagiri, 1981; Falcon, 1982; Huber, 1982). Of the baculovirus products registered for use in the United States, only one, Elcar, Heliothis nucleopolyhedrosis virus (NPV) , is in commercial production and in general use .. The others, Gypchek, the gypsy moth, Lymantria dispar, NPV product, and TM-Biocontrol-1, the Douglas-fir tussock moth, Orgyia pseudotsugata, NPV product, are registered for use under the auspices of the USDA Forest Service (FS), although VIRAL INSECTICIDES Copyright© 1985 by Academic Press, Inc. FOR BIOLOGICAL CONTROL 775 All rights of reproduction in any form reserved. 776 J. D. PODGWAITE at present nelther is in commercial p:ioduction nor in general use. Another FS product, Neochek-S, the truropean pine sawfly, Neodiprion sevtifer (NPV), has only recently been registered for use in the United States (eodgwaite et al., 1983)" This virus is commercially produced and has been used in Europe for some tjme (Cunningham and Entwistle, 1981). -
A New Helicoverpa Armigera Nucleopolyhedrovirus Isolate from Heliothis Peltigera (Denis & Schiffermuller) (Lepidoptera: Noctuidae) in Turkey
Turkish Journal of Biology Turk J Biol (2019) 43: 340-348 http://journals.tubitak.gov.tr/biology/ © TÜBİTAK Research Article doi:10.3906/biy-1902-64 A new Helicoverpa armigera Nucleopolyhedrovirus isolate from Heliothis peltigera (Denis & Schiffermuller) (Lepidoptera: Noctuidae) in Turkey Gözde Büşra EROĞLU, Remziye NALÇACIOĞLU, Zihni DEMİRBAĞ* Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey Received: 20.02.2019 Accepted/Published Online: 17.09.2019 Final Version: 14.10.2019 Abstract: This study reports a new Helicoverpa armigera nucleopolyhedrovirus (NPV) isolated from Heliothis peltigera (Denis & Schiffermuller), collected in the vicinity of Adana, Turkey. Infection was confirmed by tissue polymerase chain reaction and sequence analysis. Results showed that dead H. peltigera larvae contain Helicoverpa armigera nucleopolyhedrovirus. Thus, the isolate was named as HearNPV-TR. Microscopy studies indicated that occlusion bodies were 0.73 to 1.66 μm in diameter. The nucleocapsids are approximately 184 × 41 nm in size. The genome of HearNPV-TR was digested with KpnI and XhoI enzymes and calculated as 130.5 kb. Phylogenetic analysis showed that HearNPV-TR has close relation with the H. armigera SNPV-1073 China isolate. The Kimura analysis confirmed that the isolate is a variant of H. armigera NPV. Bioassays were performed using six different concentrations (1 × 310 to 1 × 8 10 occlusion bodies (OBs)/mL)on 2nd instar larvae of H. peltigera, H. armigera, Heliothis viriplaca, Heliothis nubigera. LC50 values were calculated to be 9.5 × 103, 1.9 × 104, 8.6 × 104 and 9.2 × 104 OBs/mL within 14 days, respectively. Results showed that it is a promising biocontrol agent against Heliothinae species.