Europäisches Patentamt *EP000842199B1* (19) European Patent Office

Office européen des brevets (11) EP 0 842 199 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention (51) Int Cl.7: C08F 4/46, C08F 4/72, of the grant of the patent: C08F 36/04, C08F 12/06, 03.04.2002 Bulletin 2002/14 C08C 19/44, C08F 8/00 (21) Application number: 96926745.9 (86) International application number: PCT/US96/11970 (22) Date of filing: 19.07.1996 (87) International publication number: WO 97/05174 (13.02.1997 Gazette 1997/08)

(54) HETERO-TELECHELIC AND PROCESSES FOR MAKING SAME HETERO-TELECHELE POLYMERE UND VERFAHREN ZU DEREN HERSTELLUNG POLYMERES HETERO-TELECHELIQUES ET LEURS PROCEDES DE FABRICATION

(84) Designated Contracting States: • LETCHFORD, Robert, J. AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC Cherryville, NC 28021 (US) NL PT SE • KAMIENSKI, Conrad, W. Gastonia, NC 28054 (US) (30) Priority: 31.07.1995 US 1693 P • QUIRK, Roderic, P. 18.07.1996 US 687111 Akron, OH 44313 (US)

(43) Date of publication of application: (74) Representative: Horner, Martin Grenville 20.05.1998 Bulletin 1998/21 Cruikshank & Fairweather 19 Royal Exchange Square (73) Proprietor: FMC CORPORATION Glasgow G1 3AE, Scotland (GB) Philadelphia, PA 19103 (US) (56) References cited: (72) Inventors: WO-A-95/22566 GB-A- 2 241 239 • SCHWINDEMAN, James, S. US-A- 5 416 168 US-A- 5 527 753 Lincolnton, NC 28092 (US)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 0 842 199 B1

Printed by Jouve, 75001 PARIS (FR) EP 0 842 199 B1

Description

Cross-Reference to Related Applications

5 [0001] This application is related to commonly owned copending Provisional Application Serial No. 60/001,693, filed July 31, 1995, and claims the benefit of its earlier filing date under 35 U.S.C. 119(e).

Field of the Invention

10 [0002] This invention relates to novel polymers and processes for producing the same. More particularly, the invention relates novel hetero-telechelic polymers, and to processes for the anionic of olefinic-containing mono- mers to produce the same.

Background of the Invention 15 [0003] Telechelic polymers are polymers that contain two functional groups per molecule at the termini of the . Such polymers have found wide utility in many applications. For instance, telechelic polymers have been employed as rocket fuel binders, in coatings and sealants and in adhesives. In addition, polymers that contain two hydroxyl groups per molecule can be co-polymerized with appropriate materials to form , polycarbonates, and polyamides 20 (see U.S. Patent No. 4,994,526). [0004] A variety of polymerization techniques, such as cationic and free radical , have been employed to prepare telechelic polymers. However, functionality can be best controlled with anionic polymerization. An early approach to the preparation of telechelic polymers is described in D.N. Schulz, et al, J. Polym. Sci., Polym. Chem.Ed. 12, 153 (1974), which describes the reaction of a protected hydroxy initiator with butadiene. The resultant living anion 25 was quenched with ethylene oxide to afford mono-protected di-hydroxy polybutadiene. While excellent functionality (f = 1.87-2.02) was achieved by this process, the protected initiator was insoluble in hydrocarbon solution. Therefore, the reaction was conducted in diethyl ether, and as a result, relatively high 1,2 microstructure (31-54%) was obtained. [0005] Another approach that has been employed to prepare telechelic polymers is the generation and subsequent functionalization of a "dilithium initiator". A dilithium initiator is prepared by the addition of two equivalents of secondary 30 butyllithium to meta-diisopropenylbenzene. The dilithium initiator is then reacted with a conjugated diene, such as butadiene or isoprene, to form a polymer chain with two anionic sites. The resultant polymer chain is then reacted with two equivalents of a functionalizing agent, such as ethylene oxide. While useful, gelation is frequently observed during the functionalization step. This leads to lower capping efficiency (see, for example, U.S. Patent No. 5,393,843, Example 1, wherein the capping efficiency was only 82%). Additional details of this gelation phenomenon are described in U.S. 35 Patent No. 5,478,899. Further, this dilithium approach can only afford telechelic polymers with the same functional group on each end of the polymer chain. [0006] Great Britain published patent application 2,241,239, published August 28, 1991, describes a novel approach for producing telechelic polymers in hydrocarbon solution. Telechelic polymers were prepared using monofunctional silyl ether initiators containing alkali metal end groups that were soluble in hydrocarbon solutions. These monofunctional 40 silyl ether initiators were demonstrated to be useful in producing dihydroxy (telechelic) polybutadienes having desirable characteristics, such as a molecular weight of typically 1,000 to 10,000, a 1,4 microstructure content of typically 90%, and the like. U.S. Patent No. 5,416,168 is directed also to monofunctional silyl ether initiators similar to that described by the Shepherd patent, in which the hydrocarbon bridging group includes a cyclohexyl group or a branched alkyl group.

45 Summary of the Invention

[0007] The present invention provides novel hetero-telechelic polymers and processes for preparing the same. The novel hetero-telechelic polymers of the invention can be generally described as having different functionalities at op- posite ends of the polymer chain. The presence of different functionalities can provide unique properties to the polymers. 50 Further, the hetero-telechelic polymers of the invention can be copolymerized with other monomers to provide novel possessing a wide range of useful physical properties. [0008] Preferred hetero-telechelic polymers have the formula:

1 2 3 55 FG-(Q)d-Z-J-[A(R R R )]x (I)

wherein FG is a protected or non-protected functional group; Q is a saturated or unsaturated hydrocarbyl group derived

2 EP 0 842 199 B1

by incorporation of a compound selected from the group consisting of conjugated diene hydrocarbons, alkenylsubsti- tuted aromatic hydrocarbons, and mixtures thereof; d is an integer from 10 to 200; Z is a branched or straight chain hydrocarbon group which contains 3-25 carbon atoms, optionally containing aryl or substituted aryl groups; J is oxygen, 1 2 3 sulfur, or nitrogen; [A(R R R )]x is a protecting group, in which A is an element selected from Group IVa of the Periodic 5 Table of Elements; R1,R2, and R3 are each independently selected from the group consisting of hydrogen, alkyl, substituted alkyl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, aryl or substituted aryl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, and cycloalkyl and substituted cycloalkyl containing 5 to 12 carbon atoms; and x is dependent on the valence of J and varies from one when J is oxygen or sulfur to two when J is nitrogen, with the proviso J and FG are not the same. 10 [0009] The present invention also provides for the preparation of the novel hetero-telechelic polymers described above. The process of the invention includes polymerizing a monomer, including conjugated diene hydrocarbons, alkenylsubstituted aromatic hydrocarbons, and mixtures thereof, with a protected functional organometallic initiator of the formula

15 1 2 3 M-Qn-Z-J- [A(R R R )]x (II)

wherein M is an alkali metal, preferably lithium, n is an integer from 0 to 5, and Q, Z, J, A, R1,R2,R3and x are the same as defined above, to form a mono-protected, mono-functionalized living polymer. The resultant living polymer is 20 then functionalized by reaction with a reactive or functionalizing group capable of terminating or end-capping a living polymer to provide a mono-protected or di-protected, di-functional polymer, with the proviso that the initiator and the reactive group contain different functional groups. The resultant hetero-telechelic polymer can be further reacted with other comonomers.

25 Detailed Description of the Invention

[0010] The novel hetero-telechelic polymers of the invention can be generally described as having different function- alities at opposite ends of the polymer chain. This is represented schematically by the formula A------B, wherein A and B are different functional groups. 30 [0011] Preferred hetero-telechelic polymers of the present invention have the following formula:

1 2 3 FG-(Q)d-Z-J- [A(R R R )]x (I)

35 wherein FG is a protected or non-protected functional group; Q is a saturated or unsaturated hydrocarbyl group derived by incorporation of a compound selected from the group consisting of conjugated diene hydrocarbons, alkenylsubsti- tuted aromatic hydrocarbons, and mixtures thereof; d is an integer from 10 to 200; Z is a branched or straight chain hydrocarbon group which contains 3-25 carbon atoms, optionally containing aryl or substituted aryl groups; J is oxygen, 1 2 3 sulfur, or nitrogen; [A(R R R )]x is a protecting group, in which A is an element selected from Group IVa of the Periodic 40 Table of Elements; R1,R2, and R3 are each independently selected from the group consisting of hydrogen, alkyl, substituted alkyl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, aryl or substituted aryl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, and cycloalkyl and substituted cycloalkyl containing 5 to 12 carbon atoms; and x is dependent on the valence of J and varies from one when J is oxygen or sulfur to two when J is nitrogen, with the proviso J and FG are not the same. 45 [0012] Removal of the protecting group (deprotection) produces polymers with oxygen, sulfur or nitrogen functional groups on the ends of the polymers. The residual aliphatic unsaturation can be optionally removed by hydrogenation before or after removal of the protecting groups. These functional groups can then participate in various copolymeri- zation reactions by reaction of the functional groups on the ends of the polymer with selected difunctional or polyfunc- tional comonomers, as described in more detail below. 50 [0013] The olefinic monomer to be anionically polymerized is preferably an alkenylsubstituted aromatic hydrocarbon or a 1,3-diene. The alkenylsubstituted aromatic hydrocarbon or 1,3-diene can be chosen from the group of unsaturated organic compounds that can be polymerized anionically (i.e. in a reaction initiated by an organo-alkali metal). Examples of suitable conjugated diene hydrocarbons include, but are not limited to, 1,3-butadiene, isoprene, 2,3-dimethyl- 1,3-butadiene, 1,3-pentadiene, myrcene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-pentadiene, 1,3-hexa- 55 diene, 2-methyl-1,3-hexadiene, 1,3-heptadiene, 3-methyl-1,3-heptadiene, 1,3-octadiene, 3-butyl-1,3-octadiene, 3,4-dimethyl-1,3-hexadiene, 3-n-propyl-1,3-pentadiene, 4,5-diethyl-1,3-octadiene, 2,4-diethyl-1,3-butadiene, 2,3-di-n- propyl-1,3-butadiene, and 2-methyl-3-isopropyl-1,3-butadiene. Examples of polymerizable alkenylsubstituted aromatic

3 EP 0 842 199 B1

hydrocarbons include, but are not limited to, styrene, alpha-methylstyrene, vinyltoluene, 2-vinylpyridine, 4-vinylpyridine, 1-vinylnaphthalene, 2-vinylnaphthalene, 1-alpha-methylvinylnaphthalene, 2-alphamethylvinylnaphthalene, 1,2-diphe- nyl-4-methyl-1-hexene and mixtures of these, as well as alkyl, cycloalkyl, aryl, alkylaryl and arylalkyl derivatives thereof in which the total number of carbon atoms in the combined hydrocarbon constituents is generally not greater than 18. 5 Examples of these latter compounds include 3-methylstyrene, 3,5-diethylstyrene, 4-tert-butylstyrene, 2-ethyl-4-ben- zylstyrene, 4-phenylstyrene, 4-p-tolylstyrene, 2,4-divinyltoluene and 4,5-dimethyl-1-vinylnaphthalene. U.S. Patent No. 3,377,404, incorporated herein by reference in its entirety, discloses suitable additional alkenylsubstituted aromatic hydrocarbons. [0014] The dienes or alkenylsubstituted aromatic hydrocarbons may be polymerized singly, or in admixture with each 10 other or with other dienes or alkenylsubstituted aromatic hydrocarbons to form random or tapered copolymers, or by charging the compounds to the reaction mixture sequentially, either with each other or with other dienes or alkenyl- substituted aromatic hydrocarbons, to form block copolymers. [0015] The hetero-telechelic polymers of the present invention are prepared by the reaction of protected functional organolithium initiators with conjugated alkadienes or alkenylsubstituted aromatic hydrocarbons, as described above, 15 either singly, sequentially, or as mixtures thereof, to form a mono-protected monofunctional living polymer. This reaction can be in a hydrocarbon or mixed hydrocarbon-polar solvent medium, preferably at a temperature of -30°C to 150°C. [0016] Polymerization is followed by functionalization of the resultant living polymer with a suitable functionalizing compound or electrophile or other material as known in the art to be useful for terminating or end capping living polymers to provide a mono-protected, or di-protected, di-functional polymer. The mono-protected, or di-protected, di-functional 20 polymer is then recovered by standard techniques. Optionally the protecting group or groups are removed to provide a di-functional polymer. The polymer is optionally hydrogenated, either before or after removing the protecting group, or before or after functionalization. [0017] Exemplary organolithium initiators useful in the present invention include initiators selected from the group consisting of omega-(tert-alkoxy)-1-alkyllithiums, omega-(tert-alkoxy)-1-alkyllithiums chain extended with conjugated 25 alkadienes, alkenylsubstituted aromatic hydrocarbons, and mixtures thereof, omega-(tert-alkylthio) -1-alkyllithiums, omega-(tert-alkylthio)-1-alkyllithiums chain extended with conjugated alkadienes, alkenylsubstituted aromatic hydro- carbons, and mixtures thereof, omega-(tert-butyldimethylsilyloxy)-1-alkyllithiums, omega-(tert-butyldimethylsilylthio)- 1-alkyllithiums, omega-(dialkylamino)-1-alkyllithiums, omega-(dialkylamino)-1-alkyllithiums chain-extended with con- jugated alkadienes, alkenylsubstituted aromatic hydrocarbons, and mixtures thereof, and omega-(bis-tert-alkylsilylami- 30 no)-1-alkyllithiums. [0018] Initiators useful in the preparation of telechelic polymers of the present invention are also represented by the following formula:

1 2 3 35 M-Qn-Z-J-[A(R R R )]x (II)

wherein M is an alkali metal; Q is a saturated or unsaturated hydrocarbyl group derived by incorporation of a compound selected from the group consisting of conjugated diene hydrocarbons, alkenylsubstituted aromatic hydrocarbons, and mixtures thereof; n is an integer from 0 to 5; Z is a branched or straight chain hydrocarbon group which contains 3-25 40 carbon atoms, optionally containing aryl or substituted aryl groups; J is a hetero atom, e.g., oxygen, sulfur, or nitrogen; A is an element selected from Group IVa of the Periodic Table of Elements; R1,R2, and R3 are independently selected from hydrogen, alkyl, substituted alkyl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, aryl or substituted aryl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, and cycloalkyl and substituted cycloalkyl containing 5 to 12 carbon atoms; and x is dependent on the valence of J and varies from 45 one when J is oxygen or sulfur to two when J is nitrogen. [0019] These initiators (II) can be prepared by reaction of protected organolithium compounds of the following for- mula:

1 2 3 50 M-Z-J-[A(R R R )]x (III)

wherein each of M, Z, J, A, R1,R2,R3, and x are the same as defined above, with conjugated alkadienes (such as butadiene or isoprene), alkenylsubstituted aromatic hydrocarbons (such as styrene or alpha-methylstyrene), and mix- tures thereof, to form an extended hydrocarbon chain between M and Z in Formula (III), which extended chain is 55 denoted as Qn in Formula (II). [0020] The compounds of Formula (III) are prepared by first reacting in an inert solvent a selected tertiary amino- 1-haloalkane, omega-hydroxy-protected-1-haloalkane or omega-thio-protected-1-haloalkane, depending on whether

4 EP 0 842 199 B1

J is to be N, O or S, (the alkyl portions of the haloalkyl groups contain 3 to 25 carbon atoms) with an alkali metal, preferably lithium, at a temperature between about 35°C and about 130°C, preferably at the solvent reflux temperature, to form a protected monofunctional lithium initiator (of Formula III), which is then optionally reacted with a one or more conjugated diene hydrocarbons, one or more alkenylsubstituted aromatic hydrocarbons, or mixtures of one or more 5 dienes with one or more alkenylsubstituted aromatic hydrocarbons, in a predominantly alkane, cycloalkane, or aromatic reaction solvent, which solvent contains 5 to 10 carbon atoms, and mixtures of such solvents to produce a monofunc- tional initiator with an extended chain or tether between the metal atom (M) and element (J) in Formula (II) above and mixtures thereof with compounds of Formula (III). Q in Formula (II) is preferably derived from conjugated 1,3-dienes. While A in the protecting group [A(R1R2R3)] of the formulae above can be any of the elements in Group IVa of the 10 Periodic Table of the Elements, carbon and silicon currently appear the most useful, especially when polymerizing conjugated dienes. [0021] Incorporation of Q groups into the M-Z linkage to form the compounds of Formula (II) above involves addition of compounds of the Formula

15 1 2 3 M-Z-J-[A-(R R R )]x

where the symbols have the meanings ascribed above, across the carbon to carbon double bonds in compounds selected from the consisting of one or more conjugated diene hydrocarbons, one or more alkenylsubstituted aromatic 20 hydrocarbons, or mixtures of one or more dienes with one or more alkenylsubstituted aromatic hydrocarbons, to pro- duce new carbon-lithium bonds of an allylic or benzylic nature, much like those found in a propagating polyalkadiene or polyarylethylene polymer chain derived by anionic initiation of the polymerization of conjugated dienes or aryleth- ylenes. These new carbon-lithium bonds are now activated toward polymerization and so are much more efficient in promoting polymerization than the precursor M-Z (M=Li) bonds, themselves. 25 [0022] The tertiary amino-1-haloalkanes useful in practicing this invention include compounds of the following general structures:

1 2 3 X-Z-N[A(R R R )]2 30 and

35

40

wherein X is halogen, preferably chlorine or bromine; Z is a branched or straight chain hydrocarbon tether or 45 connecting group which contains 3-25 carbon atoms, which tether may also contain aryl or substituted aryl groups; A is an element selected from Group IVa of the Periodic Table of the Elements; R1,R2, and R3 are independently defined as hydrogen, alkyl, substituted alkyl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, aryl or substituted aryl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, or cycloalkyl and substituted cycloalkyl groups containing 5 to 12 carbon atoms; and m is an integer from 1 to 7, and their employment 50 as initiators in the anionic polymerization of olefin containing monomers in an inert, hydrocarbon solvent optionally containing a Lewis base. The process reacts selected tertiary amino-1-haloalkanes whose alkyl groups contain 3 to 25 carbon atoms, with alkali metal, preferably lithium, at a temperature between about 35°C and about 130°C, pref- erably at the reflux temperature of an alkane, cycloalkane or aromatic reaction solvent containing 5 to 10 carbon atoms and mixtures of such solvents. 55 [0023] Anionic polymerizations employing the tertiary amine initiators can be conducted in an inert solvent, preferably a non-polar solvent, optionally containing an ethereal modifier, using an olefinic monomer which is an alkenylsubstituted aromatic hydrocarbon or a 1,3-diene at a temperature of about-30°C to about 150°C. The polymerization reaction proceeds from initiation to propagation and is finally terminated with appropriate reagents so that the polymer is mono-

5 EP 0 842 199 B1

functionally or di-functionally terminated. The polymers may have a molecular weight range of about 1000 to 10,000 but the molecular weight can be higher. Typically 5 to 50 milli-moles of initiator is used per mole of monomer. [0024] Tertiary amino-1-haloalkanes useful in the practice of this invention include, but are not limited to, 3-(N,N- dimethylamino)-1-propyl halide, 3-(N,N-dimethylamino)-2-methyl-1-propyl halide, 3-(N,N-dimethylamino)-2,2-dime- 5 thyl-1-propyl halide, 4-(N,N-dimethylamino)-1-butyl halide, 5-(N,N-dimethylamino)-1-pentyl halide, 6-(N,N-dimethyl- amino)-1-hexyl halide, 3-(N,N-diethylamino)-1-propyl halide, 3-(N,N-diethylamino)-2-methyl-1-propyl halide, 3-(N,N- diethylamino)-2,2-dimethyl-1-propyl halide, 4-(N,N-diethylamino)-1-butyl halide, 5-(N,N-diethylamino)-1-pentyl halide, 6-(N,N-diethylamino)-1-hexyl halide, 3-(N-ethyl-N-methylamino)-1-propyl halide, 3-(N-ethyl-N-methylamino)-2-methyl- 1-propyl halide, 3-(N-ethyl-N-methylamino)-2,2-dimethyl-1-propyl halide, 4-(N-ethyl-N-methylamino)-1-butyl halide, 10 5-(N-ethyl-N-methylamino)-1-pentyl halide, 6-(N-ethyl-N-methylamino)-1-hexyl halide, 3-(piperidino)-1-propyl halide, 3-(piperidino)-2-methyl-1-propylhalide,3-(piperidino)-2,2-dimethyl-1-propylhalide,4-(piperidino)-1-butylhalide,5-(pip- eridino)-1-pentyl halide, 6-(piperidino)-1-hexyl halide, 3-(pyrrolidino)-1-propyl halide, 3-(pyrrolidino)-2-methyl-1-propyl halide, 3-(pyrrolidino)-2,2-dimethyl-1-propyl halide, 4-(pyrrolidino)-1-butyl halide, 5-(pyrrolidino)-1-pentyl halide, 6-(pyr- rolidino)-1-hexyl halide, 3-(hexamethyleneimino)-1-propyl halide, 3-(hexamethyleneimino)-2-methyl-1-propyl halide, 15 3-(hexamethyleneimino)-2,2-dimethyl-1-propyl halide, 4-(hexamethyleneimino)-1-butyl halide, 5-(hexamethyleneimi- no)-1-pentyl halide, 6-(hexamethyleneimino)-1-hexyl halide, 3-(N-isopropyl-N-methyl)-1-propyl halide, 2-(N-isopro- pyl-N-methyl)-2-methyl-1-propyl halide, 3-(N-isopropyl-N-methyl)-2,2-dimethyl-1-propyl halide, and 4-(N-isopropyl-N- methyl)-1-butyl halide. The halo- or halide group is preferably selected from chlorine and bromine. [0025] Omega-hydroxy-protected-1-haloalkanes useful in producing monofunctional ether initiators useful in prac- 20 ticing this invention can have the following general structure:

1 2 3 X-Z-O-[C(R R R )]

25 wherein X is halogen, preferably chlorine or bromine; Z is a branched or straight chain hydrocarbon group which con- tains 3-25 carbon atoms, optionally containing aryl or substituted aryl groups; and R1,R2, and R3 are independently defined as hydrogen, alkyl, substituted alkyl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, aryl or substituted aryl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, or cy- cloalkyl and substituted cycloalkyl groups containing 5 to 12 carbon atoms, and their employment as initiators in the 30 anionic polymerization of olefin containing monomers in an inert, hydrocarbon solvent optionally containing a Lewis base. The process reacts selected omega-hydroxy-protected-1-haloalkanes whose alkyl groups contain 3 to 25 carbon atoms, with lithium metal at a temperature between about 35°C and about 130°C, preferably at the reflux temperature of an alkane, cycloalkane or aromatic reaction solvent containing 5 to 10 carbon atoms and mixtures of such solvents. [0026] Anionic polymerizations employing the monofunctional ether initiators can be conducted in an inert solvent, 35 preferably a non-polar solvent, optionally containing an ethereal modifier, using an olefinic monomer which is an alke- nylsubstituted aromatic hydrocarbon cor a 1,3-diene at a temperature of about -30°C to about 150°C. The polymeri- zation reaction proceeds from initiation to propagation and is finally terminated with appropriate reagents so that the polymer is mono-functionally or di-functionally terminated. The polymers may have a molecular weight range of about 1000 to 10,000 but the molecular weight can be higher. Typically 5 to 50 milli-moles of initiator is used per mole of 40 monomer. [0027] The precursor omega-protected-1-haloalkanes (halides) can be prepared from the corresponding haloalcohol by standard literature methods. For example, 3-(1,1-dimethylethoxy)-1-chloropropane can be synthesized by the re- action of 3-chloro-1-propanol with 2-methylpropene according to the method of A. Alexakis, M. Gardette, and S. Colin, Tetrahedron Letters, 29, 1988, 2951. The method of B. Figadere, X. Franck and A. Cave, Tetrahedron Letters, 34, 45 1993, 5893, which involves the reaction of the appropriate alcohol with 2-methyl-2-butene catalyzed by boron trifluoride etherate, can be employed for the preparation of the t-amyl ethers. The alkoxy, alkylthio or dialkylamino substituted ethers, for example 6-[3-(methylthio)-1-propyloxy]-1-chlorohexane, can be synthesized by reaction of the correspond- ing substituted alcohol, for instance 3-methylthio-1-propanol, with an alpha-bromo-omega-chloroalkane, for instance 1-bromo-6-hexane, according to the method of J. Almena, F. Foubelo and M. Yus, Tetrahedron, 51, 1995, 11883. The 50 compound 4-(methoxy)-1-chlorobutane, and the higher analogs, can be synthesized by the ring opening reaction of tetrahydrofuran with thionyl chloride and methanol, according to the procedure of T. Ferrari and P. Vogel, SYNLETT, 1991, 233. The triphenylmethyl protected compounds, for example 3-(triphenylmethoxy)-1-chloropropane, can be pre- pared by the reaction of the haloalcohol with triphenylmethylchloride, according to the method of S. K. Chaudhary and O. Hernandez, Tetrahedron Letters, 1979, 95. 55 [0028] Omega-hydroxy-protected-1-haloalkanes prepared in accordance with this earlier process useful in practicing this invention include, but are not limited to, 3-(1,1-dimethylethoxy)-1-propyl halide, 3-(1,1-dimethylethoxy)-2-methyl- 1-propyl halide, 3-(1,1-dimethylethoxy)-2,2-dimethyl-1-propyl halide, 4-(1,1-dimethylethoxy)-1-butyl halide, 5-(1,1-dimethylethoxy)-1-pentyl halide, 6-(1,1-dimethylethoxy)-1-hexyl halide, 8-(1,1-dimethylethoxy)-1-octyl halide,

6 EP 0 842 199 B1

3-(1,1-dimethylpropoxy)-1-propyl halide, 3-(1,1-dimethylpropoxy)-2-methyl-1-propyl halide, 3-(1,1-dimethylpropoxy)- 2,2-dimethyl-1-propyl halide, 4-(1,1-dimethylpropoxy)-1-butyl halide, 5-(1,1-dimethylpropoxy)-1-pentyl halide, 6-(1,1-dimethylpropoxy)-1-hexyl halide, 8-(1,1-dimethylpropoxy)-1-octyl halide, 4-(methoxy)-1-butyl halide, 4-(ethoxy)- 1-butyl halide, 4-(propyloxy)-1-butyl halide, 4-(1-methylethoxy)-1-butyl halide, 3-(triphenylmethoxy)-2,2-dimethyl- 5 1-propyl halide, 4-(triphenylmethoxy)-1-butyl halide, 3-[3-(dimethylamino)-1-propyloxy]-1-propyl halide, 3-[2-(dimethyl- amino)-1-ethoxy]-1-propyl halide, 3-[2-(diethylamino)-1-ethoxy]-1-propyl halide, 3-[2-(diisopropyl)amino)-1-ethoxy]- 1-propyl halide, 3-[2-(1-piperidino)-1-ethoxy]-1-propyl halide, 3-[2-(1-pyrrolidino)-1-ethoxy]-1-propyl halide, 4-[3-(dimethylamino)-1-propyloxy]-1-butyl halide, 6-[2-(1-piperidino)-1-ethoxy]-1-hexyl halide, 3-[2-(methoxy)- 1-ethoxy]-1-propyl halide, 3-[2-(ethoxy)-1-ethoxy]-1-propyl halide, 4-[2-(methoxy)-1-ethoxy]-1-butyl halide, 10 5-[2-(ethoxy)-1-ethoxy]-1-pentyl halide, 3- [3-(methylthio)-1-propyloxy]-1-propyl halide, 3-[4-(methylthio)-1-butyloxy]- 1-propyl halide, 3-(methylthiomethoxy)-1-propyl halide, 6-[3-(methylthio)-1-propyloxy]-1-hexyl halide, 3-[4-(methoxy)- benzyloxy]-1-propyl halide, 3-[4-(1,1-dimethylethoxy)-benzyloxy]-1-propyl halide, 3-[2,4-(dimethoxy)-benzyloxy]- 1-propyl halide, 8-[4-(methoxy)-benzyloxy]-1-octyl halide, 4- [4-(methylthio)-benzyloxy]-1-butyl halide, 3-[4-(dimethyl- amino)-benzyloxy]-1-propyl halide, 6-[4-(dimethylamino)-benzyloxy]-1-hexyl halide, 5-(triphenylmethoxy)-1-pentyl hal- 15 ide, 6-(triphenylmethoxy)-1-hexyl halide, and 8-(triphenylmethoxy)-1-octyl halide. The halo- or halide group is prefer- ably selected from chlorine and bromine. [0029] U.S. Patent 5,362,699 discloses a process for the preparation of hydrocarbon solutions of monofunctional ether initiators derived from omega-hydroxy-silyl-protected-1-haloalkanes of the following general structure:

20 1 2 3 X-Z-O-[Si (R R R )]

wherein X is halogen, preferably chlorine or bromine; Z is a branched or straight chain hydrocarbon group which con- tains 3-25 carbon atoms, optionally containing aryl or substituted aryl groups; and R1,R2, and R3 are independently 25 defined as saturated and unsaturated aliphatic and aromatic radicals, and their employment as initiators in the anionic polymerization of olefin containing monomers in an inert, hydrocarbon solvent optionally containing a Lewis base. The process reacts selected omega-hydroxy-protected-1-haloalkanes whose alkyl groups contain 3 to 25 carbon atoms, with lithium metal at a temperature between about 25°C and about 40°C, in an alkane or cycloalkane reaction solvent containing 5 to 10 carbon atoms and mixtures of such solvents. 30 [0030] Anionic polymerizations employing the monofunctional siloxy ether initiators can be conducted in an inert solvent, preferably a non-polar solvent, optionally containing an ethereal modifier, using an olefinic monomer which is an alkenylsubstituted aromatic hydrocarbon or a 1,3-diene at a temperature of about -30°C to about 150°C. The po- lymerization reaction proceeds from initiation to propagation and is finally terminated with appropriate reagents so that the polymer is mono-functionally or di-functionally terminated. The polymers may have a molecular weight range of 35 about 1000 to 10,000 but the molecular weight can be higher. Typically 5 to 50 milli-moles of initiator is used per mole of monomer. [0031] Omega-silyl-protected-1-haloalkanes prepared in accordance with this earlier process useful in practicing this invention include, but are not limited to, 3-(t-butyldimethylsilyloxy)-1-propyl halide, 3-(t-butyldimethyl-silyloxy)-2-me- thyl-1-propyl halide, 3-(t-butyldimethylsilyloxy)-2,2-dimethyl-1-propyl halide; 4-(t-butyldimethylsilyloxy)-1-butyl halide, 40 5-(t-butyldimethyl-silyloxy)-1-pentyl halide, 6-(t-butyldimethylsilyloxy)-1-hexyl halide, 8-(t-butyldimethylsilyloxy)-1-octyl halide, 3-(t-butyldiphenylylsilyloxy)-1-propyl halide, 3 -(t-butyldiphenylylsilyloxy)-2-methyl-1-propyl halide, 3-(t-butyld- iphenylylsilyloxy)-2,2-dimethyl-1-propyl halide, 4 -(t-butyldiphenylylsilyloxy)-1-butyl halide, 6-(t-butyldiphenylsilyloxy)- 1-hexyl halide and 3-(trimethylsilyloxy)-2,2-dimethyl-1-propyl halide. The halo- or halide group is preferably selected from chlorine and bromine. 45 [0032] Monofunctional thioether initiators useful in the practice of this invention can be derived from omega-thio- protected-1-haloalkanes of the following general structure:

1 2 3 X-Z-S-[A(R R R )] 50 wherein X is halogen, preferably chlorine or bromine; Z is a branched or straight chain hydrocarbon group which con- tains 3-25 carbon atoms, optionally containing aryl or substituted aryl groups; [A(R1R2R3)] is a protecting group in which A is an element selected from Group IVa of the Periodic Table of the Elements, and R1,R2, and R3 are inde- pendently defined as hydrogen, alkyl, substituted alkyl groups containing lower alkyl, lower alkylthio, and lower di- 55 alkylamino groups, aryl or substituted aryl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, or cycloalkyl and substituted cycloalkyl groups containing 5 to 12 carbon atoms, and their employment as initiators in the anionic polymerization of olefin containing monomers in an inert, hydrocarbon solvent optionally containing a Lewis base. The process reacts selected omega-thioprotected-1-haloalkyls whose alkyl groups contain 3 to 25 carbon atoms,

7 EP 0 842 199 B1

with alkali metal, preferably lithium, at a temperature between about 35°C and about 130°C, preferably at the reflux temperature of an alkane, cycloalkane or aromatic reaction solvent containing 5 to 10 carbon atoms and mixtures of such solvents. [0033] Anionic polymerizations employing the monofunctional thioether initiators can be conducted in an inert solvent, 5 preferably a non-polar solvent, optionally containing an ethereal modifier, using an olefinic monomer which is an alke- nylsubstituted aromatic hydrocarbon or a 1,3-diene at a temperature of about -30°C to about 150°C. The polymerization reaction proceeds from initiation to propagation and is finally terminated with appropriate reagents so that the polymer is mono-functionally or di-functionally terminated. The polymers may have a molecular weight range of about 1000 to 10,000 but the molecular weight can be higher. Typically 5 to 50 milli-moles of initiator is used per mole of monomer. 10 [0034] The initiator precursor, omega-thioprotected-1-haloalkanes (halides), can be prepared from the corresponding halothiol by standard literature methods. For example, 3-(1,1-dimethylethylthio)-1-propylchloride can be synthesized by the reaction of 3-chloro-1-propanthiol with 2-methylpropene according to the method of A. Alexakis, M. Gardette, and S. Colin, Tetrahedron Letters, 29, 1988, 2951. Alternatively, reaction of 1,1-dimethylethylthiol with 1-bromo-3-chlo- ropropane and a base affords 3-(1,1-dimethylethylthio)-1-propylchloride. The method of B. Figadere, X. Franck and 15 A. Cave, Tetrahedron Letters, 34, 1993, 5893, which involves the reaction of the appropriate thiol with 2-methyl- 2-butene catalyzed by boron trifluoride etherate, can be employed for the preparation of the t-amyl ethers. Additionally, 5-(cyclohexylthio)-1-pentylhalide and the like, can be prepared by the method of J. Almena, F. Foubelo, and M. Yus, Tetrahedron, 51, 1995, 11883. This synthesis involves the reaction of the appropriate thiol with an alkyllithium, then reaction of the lithium salt with the corresponding alpha, omega dihalide. 3-(Methylthio)-1-propylchloride can be pre- 20 pared by chlorination of the corresponding alcohol with thionyl chloride, as taught by D. F. Taber and Y. Wang, J. Org, Chem., 58, 1993, 6470. Methoxymethylthio compounds, such as 6-(methoxymethylthio)-1-hexylchloride, can be pre- pared by the reaction of the omega-chloro-thiol with bromochloromethane, methanol, and potassium hydroxide, by the method of F. D. Toste and I. W. J. Still, Synlett, 1995, 159. T-Butyldimethylsilyl protected compounds, for example 4-(t- butyldimethylsilylthio)-1-butylhalide, can be prepared from t-butyldimethylchlorosilane, and the corresponding thiol, 25 according to the method described in U.S. Patent No. 5,493,044. [0035] Omega-thio-protected 1-haloalkanes prepared in accordance with this earlier process useful in practicing this invention include, but are not limited to, 3-(methylthio)-1-propylhalide, 3-(methylthio)-2-methyl-1-propylhalide, 3-(meth- ylthio)-2,2-dimethyl-1-propylhalide, 4-(methylthio)-1-butylhalide, 5-(methylthio)-1-pentylhalide, 6-(methylthio)-1-hexy- lhalide, 8-(methylthio)-1-octylhalide, 3-(methoxymethylthio)-1-propylhalide, 3-(methoxymethylthio)-2-methyl-1-propyl- 30 halide, 3-(methoxymethylthio)-2,2-dimethyl-1-propylhalide, 4-(methoxymethylthio)-1-butylhalide, 5-(methoxymethylth- io)-1-pentylhalide, 6-(methoxymethylthio)-1-hexylhalide, 8-(methoxymethylthio)-1-octylhalide, 3-(1,1-dimethylethylth- io)-1-propylhalide, 3-(1,1-dimethylethylthio)-2-methyl-1-propylhalide, 3-(1,1-dimethylethylthio)-2,2-dimethyl-1-propyl- halide, 4-(1,1-dimethylethylthio)-1-butylhalide, 5-(1,1-dimethylethylthio)-1-pentylhalide, 6-(1,1-dimethylethylthio)- 1-hexylhalide, 8-(1,1-dimethylethylthio)-1-octylhalide, 3- (1,1-dimethylpropylthio)-1-propylhalide, 3-(1,1-dimethylpro- 35 pylthio)-2-methyl-1-propylhalide, 3-(1,1-dimethylpropylthio) -2,2-dimethyl-1-propylhalide, 4-(1,1-dimethylpropylthio)- 1-butylhalide, 5-(1,1-dimethylpropylthio) -1-pentylhalide, 6- (1,1-dimethylpropylthio)-1-hexylhalide, 8-(1,1-dimethylpro- pylthio)-1-octylhalide,3-(cyclopentylthio)-1-propylhalide,3-(cyclopentylthio)-2-methyl-1-propylhalide,3-(cyclopentylth- io)-2,2-dimethyl-1-propylhalide, 4-(cyclopentylthio)-1-butylhalide, 5-(cyclopentylthio)-1-pentylhalide, 6-(cyclopentylth- io)-1-hexylhalide, 8-(cyclopentylthio)-1-octylhalide, 3-(cyclohexylthio)-1-propylhalide, 3-(cyclohexylthio)-2-methyl- 40 1-propylhalide, 3-(cyclohexylthio)-2,2-dimethyl-1-propylhalide, 4-(cyclohexylthio)-1-butylhalide, 5-(cyclohexylthio)- 1-pentylhalide, 6-(cyclohexylthio)-1-hexylhalide, 8-(cyclohexylthio)-1-octylhalide, 3-(t-butyldimethylsilylthio)-1-propyl- halide, 3- (t-butyldimethylsilylthio)-2-methyl-1-propylhalide, 3-(t-butyldimethylsilylthio)-2,2-dimethyl-1-propylhalide, 3-(t-butyldimethylsilylthio)-2-methyl-1-propylhalide, 4-(t-butyldimethylsilylthio)-1-butylhalide, 6-(t-butyldimethylsilylth- io)-1-hexylhalide and 3-(trimethylsilylthio)-2,2-dimethyl-1-propylhalide. The halo- or halide group is preferably selected 45 from chlorine and bromine. [0036] Examples of functionalized organolithium initiators (II) include, but are not limited to, tert-alkoxy-alkyllithiums such as 3-(1,1-dimethylethoxy)-1-propyllithium and its more hydrocarbon-soluble isoprene chain-extended oligomeric analog (n=2), 3-(tert-butyldimethylsilyloxy)-1-propyllithium (n=0), tert-alkylthio-alkyllithiums such as 3-(1,1-dimethyl- ethylthio)-1-propyllithium and its more hydrocarbon-soluble isoprene chain-extended oligomeric analog (n=2), 50 3-(dimethylamino)-1-propyllithium and its more hydrocarbon-soluble isoprene chain-extended oligomeric analog (n=2) and 3-(di-tert-butyldimethylsilylamino)-1-propyllithium, and mixtures thereof. Further examples of protected function- alized initiators that may be employed in this invention include, but are not limited to, 3-(1,1-dimethylethoxy)-1-propyl- lithium, 3- (1,1-dimethylethoxy)-2-methyl-1-propyllithium, 3-(1,1-dimethylethoxy)-2,2-dimethyl-1-propyllithium, 4-(1,1-dimethylethoxy)-1-butyllithium, 5-(1,1-dimethylethoxy)-1-pentyllithium, 6-(1,1-dimethylethoxy)-1-hexyllithium, 55 8-(1,1-dimethylethoxy)-1-octyllithium, 3-(1,1-dimethylpropoxy)-1-propyllithium, 3- (1,1-dimethylpropoxy)-2-methyl- 1-propyllithium, 3-(1,1-dimethylpropoxy)-2,2-dimethyl-1-propyllithium, 4-(1,1-dimethylpropoxy)-1-butyllithium, 5-(1,1-dimethylpropoxy)-1-pentyllithium, 6-(1,1-dimethylpropoxy)-1-hexyllithium, 8-(1,1-dimethylpropoxy)-1-octyllithi- um, 3-(t-butyldimethylsilyloxy)-1-propyllithium, 3-(t-butyldimethylsilyloxy)-2-methyl-1-propyllithium, 3-(t-butyldimethyl-

8 EP 0 842 199 B1

silyloxy)-2,2-dimethyl-1-propyllithium, 4-(t-butyldimethylsilyloxy)-1-butyllithium, 5-(t-butyldimethylsilyloxy)-1-pentyllith- ium, 6-(t-butyldimethylsilyloxy)-1-hexyllithium, 8-(t-butyldimethylsilyloxy)-1-octyllithium and 3-(trimethylsilyloxy)- 2,2-dimethyl-1-propyllithium, 3-(dimethylamino)-1-propyllithium, 3-(dimethylamino)-2-methyl-1-propyllithium, 3-(dimethylamino)-2,2-dimethyl-1-propyllithium, 4-(dimethylamino)-1-butyllithium, 5-(dimethylamino)-1-pentyllithium, 5 6-(dimethylamino)-1-hexyllithium, 8-(dimethylamino)-1-propyllithium, 4-(ethoxy)-1-butyllithium, 4-(propyloxy)-1-butyl- lithium, 4-(1-methylethoxy)-1-butyllithium, 3-(triphenylmethoxy)-2,2-dimethyl-1-propyllithium, 4-(triphenylmethoxy)- 1-butyllithium, 3-[3-(dimethylamino)-1-propyloxy] -1-propyllithium, 3- [2-(dimethylamino)-1-ethoxy]-1-propyllithium, 3- [2-(diethylamino)-1-ethoxy]-1-propyllithium, 3-[2-(diisopropyl)amino)-1-ethoxy]-1-propyllithium, 3-[2-(1-piperidino)- 1-ethoxy]-1-propyllithium, 3-[2-(1-pyrrolidino)-1-ethoxy]-1-propyllithium, 4-[3-(dimethylamino)-1-propyloxy]-1-butyllith- 10 ium, 6-[2-(1-piperidino)-1-ethoxy]-1-hexyllithium, 3-[2-(methoxy)-1-ethoxy]-1-propyllithium, 3-[2-(ethoxy)-1-ethoxy]- 1-propyllithium, 4-[2-(methoxy)-1-ethoxy]-1-butyllithium, 5-[2-(ethoxy)-1-ethoxy]-1-pentyllithium, 3-[3-(methylthio)- 1-propyloxy]-1-propyllithium, 3- [4-(methylthio)-1-butyloxy]-1-propyllithium, 3-(methylthiomethoxy)-1-propyllithium, 6-[3-(methylthio)-1-propyloxy]-1-hexyllithium, 3-[4-(methoxy)-benzyloxy]-1-propyllithium, 3-[4-(1,1-dimethylethoxy)- benzyloxy]-1-propyllithium, 3-[2,4-(dimethoxy)-benzyloxy]-1-propyllithium, 8-[4-(methoxy)-benzyloxy]-1-octyllithium, 15 4-[4-(methylthio)-benzyloxy]-1-butyllithium, 3-[4-(dimethylamino)-benzyloxy]-1-propyllithium, 6-[4-(dimethylamino)- benzyloxy]-1-hexyllithium, 5-(triphenylmethoxy)-1-pentyllithium, 6-(triphenylmethoxy)-1-hexyllithium, and 8-(triphenyl- methoxy)-1-octyllithium, 3-(hexamethyleneimino)-1-propyllithium, 4-(hexamethyleneimino)-1-butyllithium, 5-(hexame- thyleneimino)-1-pentyllithium, 6-(hexamethyleneimino)-1-hexyllithium, 8-(hexamethyleneimino)-1-octyllithium, 3-(t- butyldimethylsilylthio)-1-propyllithium, 3-(t-butyldimethylsilylthio)-2-methyl-1-propyllithium, 3-(t-butyldimethylsilylthio)- 20 2,2-dimethyl-1-propyllithium, 4-(t-butyldimethylsilylthio)-1-butyllithium, 6-(t-butyldimethylsilylthio)-1-hexyllithium, 3-(tri- methylsilylthio)-2,2-dimethyl-1-propyllithium, 3-(1,1-dimethylethylthio)-1-propyllithium, 3-(1,1-dimethylethylthio)-2-me- thyl-1-propyllithium, 3-(1,1-dimethylethylthio)-2,2-dimethyl-1-propyllithium, 4-(1,1-dimethylethylthio)-1-butyllithium, 5-(1,1-dimethylethylthio)-1-pentyllithium, 6-(1,1-dimethylethylthio)-1-hexyllithium, 8-(1,1-dimethylethylthio)-1-octyllith- ium, 3-(1,1-dimethylpropylthio)-1-propyllithium, 3-(1,1-dimethylpropylthio)-2-methyl-1-propyllithium, 3-(1,1-dimethyl- 25 propylthio)-2,2-dimethyl-1-propyllithium, 4-(1,1-dimethylpropylthio)-1-butyllithium, 5-(1,1-dimethylpropylthio)-1-pentyl- lithium, 6-(1,1-dimethylpropylthio)-1-hexyllithium, and 8-(1,1-dimethylpropylthio)-1-octyllithium and their more hydro- carbon soluble conjugated alkadiene, alkenylsubstituted aromatic hydrocarbon, and mixtures thereof, chain extended oligomeric analogs (n = 1-5). [0037] The resultant polymer has one or more terminal functional groups having the Formula (I) described above, 30 wherein FG is a functional group derived from reaction of the intermediate polymer with one of the functionalizing compounds described below, and d is the number of units of conjugated diene, alkenylsubstituted aromatic hydrocar- bon, and mixtures thereof (including that employed originally to solubilize the initiator) and may vary from 10 to 200. [0038] The functional polymer of Formula (I) can be further reacted with other comonomers such as di- or polyesters, di- or polyiisocyanates, di-, poly-, or cyclic amides, di- or polycarboxylic acids, and di- and polyols in the presence of 35 a strong acid catalyst to simultaneously deprotect the functional polymer and polymerize both functional ends thereof to produce novel segmented block polymers. Alternatively, the functional polymer of Formula (I) can be reacted with other comonomers in the absence of a strong acid catalyst to yield block copolymers, while maintaining the integrity of the protective group to provide a functional block . Still another alternative is to remove the protective group of the functional polymer of Formula (I) and to polymerize a functional block copolymer of the preceding sentence 40 with the same or other comonomers to produce novel segmented block polymers. [0039] The inert solvent is preferably a non-polar solvent such as a hydrocarbon, since anionic polymerization in the presence of such non-polar solvents is known to produce polyenes with high 1,4-contents from 1,3-dienes. Solvents useful in practicing this invention include, but are not limited to, inert liquid alkanes, cycloalkanes and aromatic solvents such as alkanes and cycloalkanes containing five to ten carbon atoms, such as pentane, hexane, cyclohexane, meth- 45 ylcyclohexane, heptane, methylcycloheptane, octane, decane and the like, and aromatic solvents containing six to ten carbon atoms such as toluene, ethylbenzene, p-xylene, m-xylene, o-xylene, n-propylbenzene, isopropylbenzene, n- butylbenzene, t-butylbenzene, and the like. [0040] Polar solvents (modifiers) can be added to the polymerization reaction to alter the microstructure of the re- sulting polymer, i.e., increase the proportion of 1,2 (vinyl) microstructure or to promote functionalization or randomiza- 50 tion. Examples of polar modifiers include, but are not limited to, diethyl ether, dibutyl ether, tetrahydrofuran, 2-methyl- tetrahydrofuran, methyl tert-butyl ether, diazabicyclo[2.2.2]octane, triethylamine, tributylamine, N,N,N',N'-tetramethyl- ethylene diamine (TMEDA), 1,2-dimethoxyethane (glyme), alkali metal alkoxides, and amino-substituted alkali metal alkoxides. The amount of the polar modifier added depends on the vinyl content desired, the nature of the monomer, the temperature of the polymerization, and the identity of the polar modifier. 55 [0041] Electrophiles that are useful in functionalizing the polymeric living anion include, but are not limited to, alkylene oxides, such as ethylene oxide, propylene oxide, styrene oxide, and oxetane; oxygen; sulfur; carbon dioxide; halogens such as chlorine, bromine and iodine; haloalkyltrialkoxysilanes, alkenylhalosilanes and omega-alkenylarylhalosilanes, such as chlorotrimethylsilane and styrenyldimethyl chlorosilane; sulfonated compounds, such as 1,3-propane sultone;

9 EP 0 842 199 B1

amides, including cyclic amides, such as caprolactam, N-benzylidene trimethylsilylamide, and dimethyl formamide; silicon acetals; 1,5-diazabicyclo[3.1.0]hexane; allyl halides, such as allyl bromide and allyl chloride; methacryloyl chlo- ride; amines, including primary, secondary, tertiary and cyclic amines, such as 3-(dimethylamino)-propyl chloride and N-(benzylidene)trimethylsilylamine; epihalohydrins, such as epichlorohydrin, epibromohydrin, and epiiodohydrin, and 5 other materials as known in the art to be useful for terminating or end capping polymers. These and other useful functionalizing agents are described, for example, in U.S. Patent Nos. 3,786,116 and 4,409,357, the entire disclosure of each of which is incorporated herein by reference. The only proviso is that the initiator and the electrophile contain different functional groups, thus leading to hetero-telechelic polymers. [0042] If desired, the protecting groups can be removed from the polymer. This deprotection can be performed either 10 prior to or after the optional hydrogenation of the residual aliphatic unsaturation. For example, to remove tert-alkyl- protected groups, the protected polymer can be mixed with Amberlyst® 15 ion exchange resin and heated at an elevated temperature, for example 150°C, until deprotection is complete. Ter t-alkyl-protected groups can also be removed by reaction of the polymer with para-toluenesulfonic acid, trifluoroacetic acid, or trimethylsilyliodide. Additional methods of deprotection of the tert-alkyl protecting groups can be found in T.W. Greene and P.G.M. Wuts, Protective Groups in 15 Organic Synthesis, Second Edition, Wiley, New York, 1991, page 41. [0043] Ter t-butyldimethylsilyl protecting groups can be removed by treatment of the polymer with acid, such as hy- drochloric acid, acetic acid, para-toluensulfonic acid, or Dowex® 50W-X8. Alternatively, a source of fluoride ions, for instance, tetra-n-butylammonium fluoride, potassium fluoride and 18-crown-6, or pyridine-hydrofluoric acid complex, can be employed for deprotection of the tert-butyldimethylsilyl protecting groups. Additional methods of deprotection 20 of the tert-butyldimethylsilyl protecting groups can be found in T.W. Greene and P.G.M. Wuts, Protective Groups in Organic Synthesis, Second Edition, Wiley, New York, 1991, pages 80-83. [0044] In addition, protecting groups can be selectively removed from the polymers, i.e., deprotecting conditions can be selected so as to remove at least one protecting group without removing other dissimilar protecting groups by proper selection of deprotecting reagents and conditions. 25 [0045] The following table details representative experimental conditions capable of selectively removing protecting groups (more labile) while maintaining the integrity of other different protecting groups (more stable).

Labile Stable Conditions t-butyldimethylsilyl t-butyl tetrabutylammonium fluoride 30 t-butyldimethylsilyl t-butyl 1 N HCL t-butyldimethylsilyl dialkylamino tetrabutylammonium fluoride t-butyldimethylsilyl dialkylamino 1 N HCL t-butyl dialkylamino Amberlyst® resin 35 t-amyl dialkylamino Amberlyst® resin trimethylsilyl t-butyl tetrabutylammonium fluoride trimethylsilyl t-butyl 1 N HCl trimethylsilyl dialkylamino tetrabutylammonium fluoride trimethylsilyl dialkylamino 1 N HCl 40

[0046] The progress of the deprotection reactions can be monitored by conventional analytical techniques, such as Thin Layer Chromatography (TLC), Nuclear Magnetic Resonance (NMR), or InfraRed (IR) spectroscopy. [0047] Examples of methods to hydrogenate the polymers of this invention are described in U.S. Patent Nos.

45 4,970,254, 5,166,277, 5,393,843 and 5,496,898, the entire disclosure of each of which is incorporated by reference. The hydrogenation of the functionalized polymer is conducted in situ, or in a suitable solvent, such as hexane, cy- clohexane or heptane. This solution is contacted with hydrogen gas in the presence of a catalyst, such as a nickel catalyst. The hydrogenation is typically performed at temperatures from 25°C to 150°C, with a archetypal hydrogen pressure of 15 psig to 1000 psig. The progress of this hydrogenation can be monitored by InfraRed (IR) spectroscopy

50 or Nuclear Magnetic Resonance (NMR) spectroscopy. The hydrogenation reaction is conducted until at least 90% of the aliphatic unsaturation has been saturated. The hydrogenated functional polymer is then recovered by conventional procedures, such as removal of the catalyst with aqueous acid wash, followed by solvent removal or precipitation of the polymer. [0048] For example, a protected functional living polymer of this invention can be generated by polymerizing 1,3-buta-

55 diene with an initiator of Formula (II) above, wherein M is lithium, Z is a trimethylene connecting group, Q is isoprene, J is sulfur, A is carbon, n is 3, and R1,R2, and R3 are methyl groups. A living polymer is produced having the formula

10 EP 0 842 199 B1

Li-(B)m-(Ip)3(CH2)3-S-C(CH3)3 (IV)

where B is a unit derived by polymerizing butadiene, m is an integer from about 10 to 200, and Ip is a unit derived by 5 polymerization of isoprene. The living polymer (IV) may be reacted, for example, with ethylene oxide to yield, after hydrolysis, a hetero-telechelic compound of the formula

HOCH2CH2-(B)m(Ip)3-(CH2)3-S-C(CH3)3 (V) 10 which may optionally be hydrogenated to the corresponding asymmetric polymer. Deprotection of polymer (V), for example with trifluoroacetic acid or para-toluenesulfonic acid, would generate the polymer (VI)

15 HOCH2CH2-(B)m(Ip)3-(CH2)3-SH (VI)

which contains two different functional groups on the termini of the polymer. [0049] Additionally, a wide variety of asymmetrically monofunctional polymers may be produced by reacting the living polymer (IV) above with various functionalizing agents. For example, addition of carbon dioxide (see J.Polym.Sci., 20 Polym.Chem. 30, 2349 (1992)) to polymer (IV) would produce a polymer with one protected thiol and one carboxyl group, or the living polymer (IV) may be reacted with 1,5 diazabicyclo-(3.1.0) hexane as described in U.S. Patent No. 4,753,991 to produce a polymer with one protected thiol and one amino group. A polymer with one protected thiol group and one protected amino group can be prepared by reaction of the living anion (IV) with a protected amino propyl bromide, see Macromolecules, 23, 939 (1990). Reaction of the living polymer anion (IV) with oxetane or substituted 25 oxetanes (see U.S. Patent No. 5,391,637) would afford a polymer which contained one protected thiol and a hydroxyl group. A polymer with a protected thiol and a protected hydroxy group can be prepared by reaction of the living anion (IV) with a silicon derived acetal, see U.S. Patent No. 5,478,899. [0050] Other asymmetrically substituted monofunctional polymers may be produced having or isocyanate groups at one end, for example, by reacting the lithium salt of (V) above (before hydrolysis), with epichlorohydrin or, 30 by reacting (V) itself with an equivalent of a diisocyanate, such as methylene 4,4-diphenyl diisocyanate (2/1 NCO/OH). These unsymmetrically substituted monofunctional polymers could then be further reacted with other comonomers either with or without simultaneous deprotection as described below. [0051] The protected monohydroxy polymers (V) alone and in their hydrogenated forms could be used as base materials to lend flexibility and higher impact strength in a number of formulas to produce coatings, sealants, binders 35 and block copolymers with polyesters, polyamides and polycarbonates as described in UK Patent Application GB 2270317A and in "Polytail" data sheets and brochures (Mitsubishi Kasei America). [0052] In the presence of acidic catalysts used to promote the formation of many of these block copolymer resins, the protective group of the hydrogenated polymer is removed as well, allowing the exposed hydroxyl grouping in the base polymer molecule to simultaneously participate in the block copolymer reaction. 40 [0053] For example, hydrogenated polymers (VI) may be reacted with bisphenol A and phosgene in the presence of appropriate catalysts to yield a polycarbonate alternating block copolymer. The resulting products are useful as molding resins, for example, to prepare interior components for automobiles. [0054] A segmented polyamide-hydrogenated block copolymer is also useful as a molding composition to prepare exterior automotive components and can be prepared, for example, by reacting hydrogenated (VI) polymer with capro- 45 lactam or adipic acid and a diamine in the presence of a suitable catalyst. [0055] A segmented -hydrogenated block copolymer is produced by reaction of hydrogenated (VI) polymer with dimethyl terephthalate and a diol and a suitable acidic catalyst. Again, the products are useful as molding com- pounds for exterior automotive components. [0056] Isocyanate-terminated prepolymers can be produced from hydrogenated (VI) polymers by reaction with suit- 50 able diisocyanates (2/1 NCO/OH) as above and which can be further reacted with diols and additional diisocyanates to form segmented polyurethanes useful for water based, low VOC coatings. Inclusion of acid functional diols, such as dimethylolpropionic acid, in the polyurethane introduces pendant carboxyl groups which can be neutralized with tertiary amines to afford water dispersable polyolefin/polyurethane segmented polymers, useful for water based coat- ings. This same principle could be applied to acrylic polymers made with tertiary amine functional monomers included, 55 which could be made by free radical polymerization following reacting the hydroxyl groups at the terminal ends of the polymer with acryloyl chloride or methacryloyl chloride. Segmented polyurethane prepolymers may be mixed with tackifying resins and used as a moisture-curable sealant, caulk or coating.

11 EP 0 842 199 B1

[0057] Another possible application in coatings would be the use of new dendrimers, based on the use of the polymer with hydroxyl functionality at the termini thereof to form the core for dendritic hybrid macromolecules based on con- densation or addition polymerizations, utilizing the hydroxyl functionality as the initiating site (see, for example Gitsov and Frechet, American Chemical Society PMSE Preprints, Volume 73, August 1995. 5 [0058] Yet another application includes use as toughening polymers for epoxy composites, utilizing the polymer core with the hydroxyl groups converted to half esters by reaction with anhydrides. These epoxy reactive polymers can then be utilized as reactants with epoxy resins and amines in composite systems. Reacting the hydroxyl functional polymers into unsaturated polyesters provides a new polymer toughening system for polyester molding compounds for automo- tive and other uses. For a review of the use of linear polymers for toughening of and polyesters, see "Rubber- 10 Toughened Plastics", Edited By C.Keith Riew, ACS Advances in Chemistry Series ,#222. [0059] Cathodic electrodepositable coatings may be prepared from epoxy functional polymers described above by reacting with epoxy resins in the presence of excess amine or polyamine, to completely react all the epoxy groups, distilling off excess amine, and neutralizing the resulting epoxy-amine adduct with water soluble organic or inorganic acids to form water soluble, quarternary ammonium containing polymer salts (see for reference, U.S. Patent Nos. 15 3,617,458, 3,619,398, 3,682,814, 3,891,527, 3,947,348, and 4,093,594). Alternatively, the above epoxy-amine polymer adducts may be converted to quarternary phosphonium or sulfonium ion containing polymers, as described in U.S. Patent No. 3,935,087. [0060] An acrylate-terminated prepolymer curable by free-radical processes can be prepared from the hydrogenated (VI) polymer by reaction with a diisocyanate (2NCO/OH) followed by further reaction with hydroxyethyl acrylate in the 20 presence of a basic reagent. [0061] Another likely application for hetero-telechelic terminated polymers include use as viscosity index (I.V.) im- provers. Using carboxyl functional monomers, such as acrylic acid and methacrylic acid, and/or amine functional mon- omers such as acrylamide, along with free radical initiators in further polymerizations, can result in the formation of polymer segments at the periphery of each termini with amine or other functionalities which, in addition to the advan- 25 tageous properties of the polymers as V.I. improvers, combines the ability to add functionality to the polymers for dispersant properties (see, for example, U.S. Patent Nos. 5,496,898, 4,575,530, 4,486,573, 5,290,874, 5,290,868, 4,246,374 and 5,272,211). [0062] The versatility of the hydroxyl functional polymers of this invention, and the wide range of different segmented polymers (polyethers, polyesters, polyamides, polycarbonates, polyurethanes, etc.) which can be initiated at the hy- 30 droxyl groups, leads to numerous possible applications as compatibilizers for polymer blends and alloys. In addition to the use of such blends for new applications, much recent interest is generated in the use of compatibilizers to facilitate polymer waste recycling. [0063] The polar functional groups of the polymer chain ends allow the polymers of this invention to alter the surface properties of polymers like polyethylene (including high density polyethylene, low density polyethylene and linear low 35 density polyethylene), polypropylene, polyisobutylene and copolymers and blends thereof. When the polymers of this invention are blended with non-polar polyolefins, the polar functional groups on the chain ends, being incompatible with the non-polar polyolefin, will phase separate and migrate to the surface of the polyolefin. The functional polymers of the invention can be added in amounts ranging from 1 to 25% by weight based on the weight of the polyolefin. Properties such as surface adhesion are thus greatly enhanced, leading to improved adhesion of pigments in printing 40 inks for labels, composite layering, and other adhesive applications. An alternative approach to modification of polymer surfaces to alter properties by introduction of functional groups has been the use of chemical reagents such as alkyl- lithiums (see, for example, A.J. Dias, K-W Lee, and T.J. McCarthy, Rubber & Plastics News, 18-20, October 31, 1988, and A.J. Dias and T.J. McCarthy, Macromolecules, 20, 1437 (1987). [0064] Alternatively, protecting groups may be removed, either before or after optional hydrogenation of the aliphatic 45 unsaturation, then the hydroxy terminated polymer may be reacted with functional comonomers to produce novel co- polymers using these and other processes. Thus, for example, a hydroxy terminated polymer may be hydrogenated, and then reacted with ethylene oxide in the presence of potassium tert-butoxide to produce a poly(ethylene oxide)- hydrogenated block copolymer. This reaction sequence affords a hydrogel. [0065] Alternatively, the protected monohydroxy terminated polymer (V) may be reacted with functional comonomers, 50 without simultaneously removing the protective group. These copolymers then may be deprotected and then further reacted with the same or different comonomers to form yet other novel copolymers. Thus, for example, the hydroxy- terminated polymer of Formula (V) may be hydrogenated, and then reacted with ethylene oxide in the presence of potassium tert-butoxide to produce a poly(ethylene oxide)-hydrogenated polybutadiene copolymer with one protected thiol group on the polybutadiene segment. This thiol can then be deprotected and a poly(ethylene oxide) polymer 55 having different chain lengths grown onto both ends of the polybutadiene segment. [0066] In another possible application, the living polymer (IV) may be reacted with an alkenylarylhalosilane, such as styrenyldimethylchlorosilane, to yield the corresponding omega-styrenyl terminated macromonomer according to the teachings of U.S. Patent No. 5,278,244, which may then be further polymerized by a variety of techniques to yield

12 EP 0 842 199 B1

"comb" polymers which, on deprotection and hydrogenation yield branched polymers with hydroxyfunctionality on the branch-ends. Such multi-functionality can be utilized to graft a water-soluble polymer such as polyethylene oxide onto a hydrophobic polyolefinic core to produce hydrogels. [0067] In still another possible application, hydrogenated hydroxyterminated branches of the polymers may be further 5 reacted with acryloyl chloride or methacryloyl chloride, and the resultant acrylate or methacrylate-terminated polymer further polymerized with monomers selected from the group of alkyl acrylates, alkyl methacrylates, and dialkylacryla- mides to produce hydrogels. Further, acrylate or methacrylate-terminated polymers may be polymerized by free-radical processes. [0068] The following examples further illustrate the invention. 10 PREPARATION OF THE INITIATORS

Example A

15 Preparation of 3- (t-Butyldimethylsilyloxy)-1 -Propyllithium Chain Extended with 2 Moles of Isoprene

[0069] A 500 ml, three-necked Morton flask was ; equipped with a mechanical stirrer, a 125 ml pressure-equalizing addition funnel, and a Claisen adapter fitted with a thermocouple, a reflux condenser, and an argon inlet. This apparatus was dried in an oven overnight at 125°C, assembled hot, and allowed to cool to room temperature in a stream of argon. 20 Lithium dispersion was washed free of mineral oil with hexane (2 X 70 ml), and pentane (1 X 70 ml), then dried in a stream of argon. The dry dispersion, 5.20 grams (0.749 mole, 2.80 equivalents) was transferred to the flask with 260 ml cyclohexane. This suspension was stirred at 450 RPMs, and heated to 65°C with a heating mantle. The heat source was removed. 1-(t-Butyldimethylsilyloxy)-3-chloro-propane, 58.82 grams (0.268 mole, 1.00 equivalent) was added dropwise. An exotherm was detected after 31.8% of the feed had been added. A dry ice/hexane cooling bath was 25 applied to maintain the reaction temperature at 60-65°C. The total feed time was one hundred five minutes. An exotherm was noted until the last drop of feed was added, then the temperature fell off rapidly to room temperature. The reaction mixture was stirred at room temperature for forty five minutes, then heated to 65°C with a heating mantle. The heat source was removed. Isoprene, 36.45 grams (0.535 mole, 2.00 equivalents) was then added dropwise. An exotherm was noted after 24.6% of the feed had been added. Hexane cooling was applied to maintain the reaction temperature 30 at 60-65°C. The total isoprene feed time was thirty eight minutes. The reaction mixture was allowed to stir at room temperature for one hour, then transferred to a small pressure filter with argon pressure. Very rapid filtration was ob- served with 2 psi argon. The muds were reslurried with cyclohexane (2 X 50 ml). This afforded an orange solution, yield = 530 ml, 425.34 grams. Total base = 17.1 wt. %; Active C-Li = 15.9 wt %; Yield (based on active C-Li) = 80.8%.

35 Example B

Preparation of 3-(t-Butyldimethylsilylthio)-1 -propyllithium Chain Extended with 2 Moles of Isoprene

[0070] A 500 ml, three-necked Morton flask is equipped with a mechanical stirrer, a 125 ml pressure-equalizing 40 addition funnel, and a Claisen adapter fitted with a thermocouple, a reflux condenser, and an argon inlet. This apparatus is dried in an oven overnight at 125°C, assembled hot, and allowed to cool to room temperature in a stream of argon. Lithium dispersion is washed free of mineral oil with hexane (2 X 70 ml), and pentane (1 X 70 ml), then dried in a stream of argon. The dry dispersion, 5.20 grams (0.749 mole, 2.80 equivalents) is transferred to the flask with 260 ml cyclohex- ane. This suspension is stirred at 450 RPMs, and heated to 65°C with a heating mantle. The heat source is removed. 45 1-(t-Butyldimethylsilylthio)-3-chloro-propane, 60.22 grams (0.268 mole, 1.00 equivalent) is added dropwise. An exo- therm is detected after 21.8% of the feed has been added. A dry ice/hexane cooling bath is applied to maintain the reaction temperature at 60-65°C. The total feed time is one hundred minutes. An exotherm is noted until the last drop of feed is added, then the temperature falls off rapidly to room temperature. The reaction mixture is stirred at room temperature for forty five minutes, then heated to 65°C with a heating mantle. The heat source is removed. Isoprene, 50 36.45 grams (0.535 mole, 2.00 equivalents) is then added dropwise. An exotherm is noted after 24.6% of the feed has been added. Hexane cooling is applied to maintain the reaction temperature at 60-65°C. The total isoprene feed time is thirty eight minutes. The reaction mixture is allowed to stir at room temperature for one hour, then transferred to a small pressure filter with argon pressure. Very rapid filtration is achieved with 2 psi argon. The muds are reslurried with cyclohexane (2 X 50 ml). This affords an orange solution; yield = 530 ml, 435.21 grams. Total base = 17.7 wt. %; Active 55 C-Li = 16.9 wt %; Yield (based on active C-Li) = 82.4%.

13 EP 0 842 199 B1

Example C

Preparation of 3- (N,N-Dimethylamino)-1-propyllithium Chain Extended with 2 Moles of Isoprene

5 [0071] A 500 ml, three-necked Morton flask was equipped with a mechanical stirrer, a 125 ml pressure-equalizing addition funnel, and a Claisen adapter fitted with a thermocouple, a reflux condenser, and an argon inlet. This apparatus was dried in an oven overnight at 125°C, assembled hot, and allowed to cool to room temperature in a stream of argon. Lithium dispersion was washed free of mineral oil with hexane (2 X 70 ml), and pentane (1 X 70 ml), then dried in a stream of argon. The dry dispersion, 10.57 grams (1.520 moles) was transferred to the flask with 250 ml cyclohexane. 10 Coarse sand, 45.3 grams, was added to the reaction mixture. This suspension was stirred at 600-675 RPMs, and heated to 37°C with a heating mantle. The heat source was removed. 1-Chloro-3-(N,N-dimethylamino)propane, 19.64 grams (0.1615 mole) dissolved in 120 ml. Cyclohexane was added dropwise. An exotherm (up to 52°C) was detected after 7% of the feed had been added. A dry ice/hexane cooling bath was applied to maintain the reaction temperature at 41-44°C. The total feed time was thirty-two minutes. An exotherm was noted until the last drop of feed was added, 15 then the temperature was maintained at 36-40°C for an additional thirty minutes. The reaction mixture was then trans- ferred to a sintered glass filter while still warm. The filtration was complete in three minutes with three psi argon pressure. This afforded a hazy suspension. Yield = 400 ml, 298.2 grams. Active C - Li = 0.361 M (0.469 m/kg) at 40°C. Yield (based on active C - Li = 87%. [0072] The product crystallized from solution upon standing at room temperature. The concentration of the clear 20 supernatant solution was about 0.3 M. [0073] A dry 500 ml round bottom flask was fitted with a magnetic stir bar, and an argon inlet. This apparatus was purged with argon, then 154.77 grams (0.0726 mole) of the suspension prepared above was added to the flask. Iso- prene, 9.4 grams (0.138 mole, 1.90 equivalents) was then added all at once. The reaction mixture was then heated to 48-49°C for forty minutes. This afforded a slightly hazy golden solution, which was partially vacuum-stripped on the 25 rotary evaporator to afford the product solution. Yield = 43.32 grams. Active C - Li = 1.36 M (1.65 m/kg). Recovered yield (based on active C - Li) = 98.5%.

EXAMPLES OF THE INVENTION - PREPARATION OF POLYMERS

30 Example 1

Hetero-telechelic Polyisoprene with Tertiary Amine Functional Group at the ω-Chain End

[0074] Isoprene and cyclohexane were purified according to the conventional methods for anionic polymerization. 35 Solutions of 3-(1,1-dimethyl ethoxy)-1-propyllithium, chain extended with two moles of isoprene, which has t-butoxy group at the chain end, was injected into the reactor in the amount of 25.8 ml (7.74 x 10-3 M). Purified 450 ml of cyclohexane was distilled into the reactor and then reactor was flame sealed off. After the adding the monomer into the reactor by breaking the break-seal for the ampoule containing 38 ml of purified isoprene, the reaction proceeded for eight hours at room temperature. An ampoule of 260 ml of living poly(isoprenyl)lithium was sealed off for further 40 functionalization reaction and the small amount of residual polymer solution was terminated by degassed methanol for the determination of molecular weight. This 260 ml of polyisoprenyllithium solution which has 4.47 x 10-3 M of living chain ends was deactivated by 1.5-molar excess (6.71x10-3M) of 3-(dimethylamino)propyl chloride(DMAPC) which was prepared by the neutralization of DMAPC.HCl by sodium hydroxide in water. DMAPC was stirred over calcium hydride for several hours before distillation into the ampoule. After termination with degassed methanol, polyisoprene 45 was isolated into a large amount of methanol. Molecular weight and polydispersity were determined by SEC as Mn = 3150 g/mol and Mw/Mn = 1.06. By TLC analysis using toluene as an eluent, small amount of unfunctionalized polymer was detected and separated by silica gel column chromatography. It was characterized by titration and 1H-NMR (δ=2.20 ppm) and the pure dimethylamino-functionalized polyisoprene was isolated in 85% yield by silica gel column chroma- tography. 50 Example 2

Hetero-telechelic Polystyrene with Sulfonated Functional Group at the ω-Chain End

55 [0075] Styrene and benzene were purified as described previously. 16.7 ml solution of 3-(tert-amyloxy)-1-propyllith- ium, chain extended with two moles of isoprene, which has t-amyloxy group at the chain end in cyclohexane (5.0 x 10-3 M) was injected into the reactor. After distillating 200 ml of benzene into the reactor, the purified styrene monomer was added to solution by breaking the breakseal. Living polystytryllithum was end-capped with 1.5 molar excess (4.0

14 EP 0 842 199 B1

mmol) of 1,1-diphenylethylene and the crossover reaction, monitored by UV/Vis spectroscopy, was complete in an hour. A 1:6 (v/v) ratio of THF/benzene solution of a 1.5 molar excess (4.0 mmol) of 1,3-propane sultone was added to the living polystyryllithium which was end-capped with 1,1-diphenylethylene. The molecular weight of the base polymer which was obtained by termination with degassed methanol before the functionalization was 3,100 g/mol from the SEC 5 with 1.18 of polydispersity. After the silica gel column chromatography separation, the functionality of theω -sulfonated polystyrene obtained was over 90%. [0076] Table 1 below sets forth information relating to the polymers prepared as described above in Examples 1 and 2, as well as additional information relating to other proposed polymers in accordance with the invention.

10 TABLE 1 Polymer Initiator Terminating Polymer Molecular Polydispersity Functionality Functionality Agent Functionality Weight (Mn) (Mw/Mn) (%) PS1 X-SH2 ethylene HS OH 4,100 1.17 >90 15 oxide PI3 X'-SH4 ethylene HS OH 6,910 1.08 >90 oxide

PS X-SH CO2 HS COOH 7,420 1.07 >90 5 20 PI X-OH DMAPC HO N(CH3)2 3,150 1.06 85

PI X'-OH 1,3-propane HO SO3H 2,200 1.06 93 sultone

6 PS X'-OH NBTSA HO NH2 3,100 1.18 >90 25 PS X-OH CO2 HO COOH 2,000 <1.1 >90

1RO X-OH CO2 HO COOH 2,000 <1.1 >90 Notes: 1. PS is polystyrene. 30 2. X represents t-butyl group from initiator. 3. PI is polyisoprene. 4. X' represents t-amyl group from initiator. 5. DMAPC is 3-(dimethylamino) propyl chloride. 6. NBTSA is N-(benzylidene) trimethylsilylamine.

35 [0077] The foregoing examples are illustrative of the present invention and are not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.

Claims 40

1. A polymer having mixed functional ends produced by the process comprising:

polymerizing a monomer selected from conjugated diene hydrocarbons, alkenylsubstituted aromatic hydro- carbons, and mixtures thereof, with a protected functional organometallic initiator of the formula 45

1 2 3 M-Qn-Z-J-[A(R R R )]x (II)

50 wherein:

M is an alkali metal; Q is a saturated or unsaturated hydrocarbyl group derived by incorporation of a compound selected from the group consisting of conjugated diene hydrocarbons, alkenylsubstituted aromatic hydrocarbons, and mixtures

55 thereof; n is an integer from 0 to 5; Z is a branched or straight chain hydrocarbon group which contains 3-25 carbon atoms, optionally containing aryl or substituted aryl groups;

15 EP 0 842 199 B1

J is oxygen, sulfur, or nitrogen; 1 2 3 [A(R R R )]x is a protecting group in which A is an element selected from Group IVa of the Periodic Table of Elements; R1,R2, and R3 are independently selected from hydrogen, alkyl, substituted alkyl groups containing lower 5 alkyl, lower alkylthio, and lower dialkylamino groups, aryl, substituted aryl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, cycloalkyl and substituted cycloalkyl containing 5 to 12 carbon atoms; and x is dependent on the valence of J and varies from one when J is oxygen or sulfur to two when J is nitrogen, to form a mono-protected, mono-functionalized living polymer; and 10 functionalizing the living polymer with a protected or non-protected functionalizing compound capable of ter- minating or end-capping a living polymer to incorporate a protected or non-protected functional group into the living polymer to provide a di-functional polymer having a protected or non-protected group FG and a protecting 1 2 3 1 2 3 group -[A(R R R )]x, with the proviso that J-[A(R R R )]x of the initiator and the functionalizing compound differ, and that when J is oxygen, then A is not silicon, to provide a hetero-telechelic polymer. 15 2. A polymer having mixed functional ends produced by the process comprising:

polymerizing a monomer selected from conjugated diene hydrocarbons, alkenylsubstituted aromatic hydro- carbons, and mixtures thereof, with a protected functional organometallic initiator of the formula 20

1 2 3 M-Qn-Z-J-[A(R R R )]x (II)

wherein: 25 M is an alkali metal; Q is a saturated or unsaturated hydrocarbyl group derived by incorporation of a compound selected from the group consisting of conjugated diene hydrocarbons, alkenylsubstituted aromatic hydrocarbons, and mixtures thereof; 30 n is an integer from 0 to 5; Z is a branched or straight chain hydrocarbon group which contains 3-25 carbon atoms, optionally containing aryl or substituted aryl groups; J is oxygen, sulfur, or nitrogen; 1 2 3 [A(R R R )]x is a protecting group in which A is an element selected from Group IVa of the Periodic Table of 35 Elements; R1,R2, and R3 are independently selected from hydrogen, alkyl, substituted alkyl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, aryl, substituted aryl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, cycloalkyl and substituted cycloalkyl containing 5 to 12 carbon atoms; and 40 x is dependent on the valence of J and varies from one when J is oxygen or sulfur to two when J is nitrogen, to form a mono-protected, mono-functionalized living polymer; and functionalizing the living polymer with a protected or non-protected functionalizing compound capable of ter- minating or end-capping a living polymer to incorporate a protected or non-protected functional group into the living polymer to provide a di-functional polymer having a protected or non-protected functional group FG and 45 1 2 3 1 2 3 a protecting group -[A(R R R )]x, with the proviso that J-[A(R R R )]x of the initiator and the functionalizing compound differ and that when J is oxygen, then A is not silicon, to provide a hetero-telechelic polymer; and removing at least one protecting group.

3. A hetero-telechelic polymer having the formula: 50

1 2 3 FG-(Q)d-Z-J-[A(R R R )]x (I)

wherein: 55 FG is a protected or non-protected functional group; Q is a saturated or unsaturated hydrocarbyl group derived by incorporation of a compound selected from the

16 EP 0 842 199 B1

group consisting of conjugated diene hydrocarbons, alkenylsubstituted aromatic hydrocarbons, and mixtures thereof; d is an integer from 10 to 2000; Z is a branched or straight chain hydrocarbon group which contains 3-25 carbon atoms, optionally containing 5 aryl or substituted aryl groups; J is oxygen, sulfur, or nitrogen; 1 2 3 [A(R R R )]x is a protecting group, wherein A is an element selected from Group IVa of the Periodic Table of Elements; R1,R2, and R3 are each independently selected from the group consisting of hydrogen, alkyl, sub- stituted alkyl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, aryl, substituted 10 aryl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, cycloalkyl and substituted cycloalkyl containing 5 to 12 carbon atoms; and x is dependent on the valence of J and varies from one when J is oxygen or sulfur to two when J is nitrogen, 1 2 3 with the proviso J-[A(R R R )]x and FG are not the same, and that when J is oxygen, A is not silicon.

15 4. The polymer of any of Claims 1, 2 and 3, wherein:

said conjugated diene hydrocarbon is selected from the group consisting of 1,3-butadiene, isoprene, 2,3-dime- thyl-1,3-butadiene, 1,3-pentadiene, myrcene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-pentadi- ene, 1,3-hexadiene, 2-methyl-1,3-hexadiene, 1,3-heptadiene, 3-methyl-1,3-heptadiene, 1,3-octadiene, 20 3-butyl-1,3-octadiene, 3,4-dimethyl-1,3-hexadiene, 3-n-propyl-1,3-pentadiene, 4,5-diethyl-1,3-octadiene, 2,4-diethyl-1,3-butadiene, 2,3-di-n-propyl-1,3-butadiene, and 2-methyl-3-isopropyl-1,3-butadienes; and said alkenylsubstituted aromatic hydrocarbon is selected from the group consisting of styrene, alpha-methyl- styrene, vinyltoluene, 2-vinylpyridine, 4-vinylpyridine, 1-vinylnaphthalene, 2-vinylnaphthalene, 1-alphameth- ylvinylnaphthalene, 2-alpha-methylvinylnaphthalene, 1,2-diphenyl-4-methyl-1-hexene, and mixtures of these 25 and alkyl, cycloalkyl, aryl, alkylaryl and arylalkyl derivatives thereof in which the total number of carbon atoms in the combined hydrocarbon constituents is not greater than 18.

5. The polymer of any of Claims 1, 2, and 3, wherein A is carbon or silicon.

30 6. The polymer of any of Claims 1, 2, and 3, wherein at least a portion of aliphatic unsaturation of said polymer has been saturated with hydrogen.

7. The polymer of Claim 6, wherein at least about 90% of the aliphatic unsaturation has been saturated with hydrogen.

35 8. The polymer of any of the Claims of 1 or 2, wherein said functionalizing compound is selected from the group consisting of ethylene oxide, propylene oxide, styrene oxide, oxetane, oxygen, sulfur, carbon dioxide, chlorine, bromine, iodine, chlorotrimethylsilane, styrenyldimethyl chlorosilane, 1,3-propane sultone, caprolactam, N-ben- zylidene trimethylsilylamide, dimethyl formamide, silicon acetals, 1,5-diazabicyclo[3.1.0]hexane, allyl bromide, allyl chloride, methacryloyl chloride, 3-(dimethylamino)-propyl chloride, N-(benzylidene)trimethylsilylamine, epichloro- 40 hydrin, epibromohydrin, and epiiodohydrin.

9. The polymer of Claims 1 or 2, wherein said organometallic initiator is selected from the group consisting of ome- ga-(tert-alkoxy)-1-alkyllithiums, omega-(tert-alkoxy)-1-alkyllithiums chain extended with conjugated alkadienes, alkenylsubstituted aromatic hydrocarbons, and mixtures thereof, omega-(tert-alkylthio)-1-alkyllithiums, ome- 45 ga-(tert-alkylthio)-1-alkyllithiums chain extended with conjugated alkadienes, alkenylsubstituted aromatic hydro- carbons, and mixtures thereof, omega-(tert-butyldimethylsilyloxy)-1-alkyllithiums, omega-(tert-butyldimethylsi- lylthio)-1-alkyllithiums, omega-(dialkylamino)-1-alkyllithiums, omega-(dialkylamino)-1-alkyllithiums chain-extend- ed with conjugated alkadienes, alkenylsubstituted aromatic hydrocarbons, and mixtures thereof, and omega-(bis- tert-alkylsilylamino)-1-alkyllithiums. 50 10. The polymer of Claim 9, wherein said organometallic initiator is selected from the group consisting of 3-(1,1-dimeth- ylethoxy)-1-propyllithium, 3-(tert-butyldimethylsilyloxy)-1-propyllithium, 3-(1,1-dimethylethylthio)-1-propyllithium, 3-(dimethylamino)-1-propyllithium, 3-(di-tert-butyldimethylsilylamino)-1-propyllithium, 3-(1,1-dimethylethoxy)- 1-propyllithium, 3-(1,1-dimethylethoxy)-2-methyl-1-propyllithium, 3-(1,1-dimethylethoxy)-2,2-dimethyl-1-propyl- 55 lithium, 4-(1,1-dimethylethoxy)-1-butyllithium, 5-(1,1-dimethylethoxy)-1-pentyllithium, 6-(1,1-dimethylethoxy)- 1-hexyllithium, 8-(1,1-dimethylethoxy)-1-octyllithium, 3-(1,1-dimethylpropoxy)-1-propyllithium, 3-(1,1-dimethylpro- poxy)-2-methyl-1-propyllithium, 3-(1,1-dimethylpropoxy)-2,2-dimethyl-1-propyllithium, 4- (1,1-dimethylpropoxy)- 1-butyllithium, 5-(1,1-dimethylpropoxy)-1-pentyllithium, 6-(1,1-dimethylpropoxy)-1-hexyllithium, 8-(1,1-dimethyl-

17 EP 0 842 199 B1

propoxy)-1-octyllithium, 3-(t-butyldimethylsilyloxy)-1-propyllithium, 3-(t-butyldimethylsilyloxy)-2-methyl-1-propyl- lithium, 3-(t-butyldimethylsilyloxy)-2,2-dimethyl-1-propyllithium, 4-(t-butyldimethylsilyloxy)-1-butyllithium, 5-(t- butyldimethylsilyloxy)-1-pentyllithium, 6-(t-butyldimethylsilyloxy)-1-hexyllithium, 8-(t-butyldimethylsilyloxy)-1-oc- tyllithiumand3-(trimethylsilyloxy)-2,2-dimethyl-1-propyllithium,3-(dimethylamino)-1-propyllithium,3-(dimethylami- 5 no)-2-methyl-1-propyllithium, 3-(dimethylamino)-2,2-dimethyl-1-propyllithium, 4-(dimethylamino)-1-butyllithium, 5-(dimethylamino)-1-pentyllithium, 6-(dimethylamino)-1-hexyllithium, 8-(dimethylamino)-1-propyllithium, 4-(ethoxy)-1-butyllithium, 4-(propyloxy)-1-butyllithium, 4-(1-methylethoxy)-1-butyllithium, 3-(triphenylmethoxy)- 2,2-dimethyl-1-propyllithium, 4-(triphenylmethoxy)-1-butyllithium, 3-[3-(dimethylamino)-1-propyloxy]-1-propyllithi- um, 3-[2-(dimethylamino)-1-ethoxy]-1-propyllithium, 3-[2-(diethylamino)-1-ethoxy]-1-propyllithium, 3-[2-(diisopro- 10 pyl)amino)-1-ethoxy]-1-propyllithium, 3-[2-(1-piperidino)-1-ethoxy]-1-propyllithium, 3-[2-(1-pyrrolidino)-1-ethoxy]- 1-propyllithium, 4-[3-(dimethylamino)-1-propyloxy]-1-butyllithium, 6-[2-(1-piperidino)-1-ethoxy]-1-hexyllithium, 3-[2-(methoxy)-1-ethoxy]-1-propyllithium, 3-[2-(ethoxy)-1-ethoxy]-1-propyllithium, 4-[2-(methoxy)-1-ethoxy]- 1-butyllithium, 5-[2-(ethoxy)-1-ethoxy]-1-pentyllithium, 3-[3-(methylthio)-1-propyloxy]-1-propyllithium, 3- [4-(meth- ylthio)-1-butyloxy]-1-propyllithium, 3-(methylthiomethoxy)-1-propyllithium, 6-[3-(methylthio)-1-propyloxy]-1-hexyl- 15 lithium, 3-[4-(methoxy)-benzyloxy]-1-propyllithium, 3- [4-(1,1-dimethylethoxy)-benzyloxy]-1-propyllithium, 3-[2,4-(dimethoxy)-benzyloxy]-1-propyllithium, 8-[4-(methoxy)-benzyloxy]-1-octyllithium, 4-[4-(methylthio)-benzy- loxy]-1-butyllithium, 3-[4-(dimethylamino)-benzyloxy]-1-propyllithium, 6-[4-(dimethylamino)-benzyloxy]-1-hexyl- lithium, 5-(triphenylmethoxy)-1-pentyllithium, 6-(triphenylmethoxy)-1-hexyllithium, and 8-(triphenylmethoxy)-1-oc- tyllithium, 3-(hexamethyleneimino)-1-propyllithium, 4-(hexamethyleneimino)-1-butyllithium, 5-(hexamethyleneimi- 20 no)-1-pentyllithium, 6-(hexamethyleneimino)-1-hexyllithium, 8-(hexamethyleneimino)-1-octyllithium, 3-(t-butyld- imethylsilylthio)-1-propyllithium, 3-(t-butyldimethylsilylthio)-2-methyl-1-propyllithium, 3-(t-butyldimethylsilylthio)- 2,2-dimethyl-1-propyllithium, 4-(t-butyldimethylsilylthio)-1-butyllithium, 6-(t-butyldimethylsilylthio)-1-hexyllithium, 3-(trimethylsilylthio)-2,2-dimethyl-1-propyllithium,3-(1,1-dimethylethylthio)-1-propyllithium,3-(1,1-dimethylethylth- io)-2-methyl-1-propyllithium, 3-(1,1-dimethylethylthio)-2,2-dimethyl-1-propyllithium, 4-(1,1-dimethylethylthio)- 25 1-butyllithium, 5-(1,1-dimethylethylthio)-1-pentyllithium, 6-(1,1-dimethylethylthio)-1-hexyllithium, 8-(1,1-dimethyl- ethylthio)-1-octyllithium, 3-(1,1-dimethylpropylthio)-1-propyllithium, 3-(1,1-dimethylpropylthio)-2-methyl-1-propyl- lithium, 3-(1,1-dimethylpropylthio)-2,2-dimethyl-1-propyllithium, 4-(1,1-dimethylpropylthio)-1-butyllithium, 5-(1,1-dimethylpropylthio)-1-pentyllithium, 6-(1,1-dimethylpropylthio)-1-hexyllithium, and 8-(1,1-dimethylpropylth- io)-1-octyllithium, hydrocarbon soluble conjugated alkadiene, alkenylsubstituted aromatic hydrocarbons, and mix- 30 tures thereof, chain extended oligomeric analogs thereof, and mixtures thereof.

11. The polymer of Claims 1 or 2, wherein said diene hydrocarbons and said alkenylsubstituted aromatic hydrocarbons are reacted singly, sequentially, or as mixtures thereof.

35 12. The polymer of Claim 3, wherein at least one of J or FG is deprotected, and wherein said hetero-telechelic polymer further includes at least one functional comonomer reacted with at least one of said deprotected functional groups.

13. The polymer of Claim 12, wherein said at least one comonomer is selected from the group consisting of lactams, cyclic ethers, diamines, diisocyanates, polyisocyanates, diamides, polyamides, cyclic amides, dicarboxylic acids, 40 polycarboxylic acids, diols, polyols, anhydrides, and mixtures thereof.

14. The polymer of Claim 13, wherein said polymer includes at least one hydroxyl functional group, and wherein said at least one hydroxyl functional group is reacted with diisocyanate and diol to produce polyurethane blocks.

45 15. The polymer of Claim 14, wherein said diol includes acid group functionalities, and wherein said acid group func- tionalities are neutralized with tertiary amines to provide dispersibility in water.

16. The polymer of Claim 13, wherein said polymer includes at least one hydroxyl functional group, and wherein said at least one hydroxyl functional group is reacted with diacid or anhydride and diamine or lactam to produce polya- 50 mide blocks.

17. The polymer of Claim 13, wherein said polymer includes at least one hydroxyl functional group, and wherein said at least one hydroxyl functional group is reacted with diacid or anhydride and diol or polyol to produce polyester blocks. 55 18. The polymer of Claim 17, wherein at least a portion of said diacid or anhydride is substituted by an unsaturated acid or anhydride to provide unsaturated polyester blocks capable of crosslinking with unsaturated monomers by addition of free radical initiators.

18 EP 0 842 199 B1

19. The polymer of Claim 13, wherein said polymer includes at least one hydroxyl functional group, and wherein said at least one hydroxyl functional group is reacted with anhydride to form a half-ester with free carboxyl functionality at the terminus thereof.

5 20. The polymer of Claim 19, wherein said carboxyl functional terminal groups are further reacted with epoxy resins and amine curing agents to form epoxy resin composites.

21. The polymer of Claim 13, wherein said polymer includes at least one hydroxyl functional group, and wherein said at least one hydroxyl functional group is reacted with methacroyl chloride to provide polymerizable alkenyl groups 10 at the terminus thereof.

22. The polymer of Claim 21, further comprising acrylic monomers polymerized by use of free radical initiators onto said alkenyl terminal groups.

15 23. The polymer of Claim 22, wherein said acrylic acid monomers are functional or amide functional acrylic monomers to provide polar hydrophilic polymer segments.

24. The polymer of Claim 21, wherein sulfonated styrene and/or 4-vinyl pyridine are polymerized by free radical initi- ators onto said terminal alkenyl groups to provide functional polymer segments capable of improving dispersability 20 of the polymer.

25. The polymer of Claim 13, wherein said polymer includes at least one hydroxyl functional group, and wherein said at least one hydroxyl functional group is reacted with sulfonyl chloride in the presence of a tertiary amine catalyst to form sulfonate functional groups at the terminus thereof. 25 26. The polymer of Claim 25, wherein said sulfonate functional groups are reacted with primary amines or ammonia, under heat and pressure, to form polymers with amine functionality at the terminus thereof.

27. The polymer of Claim 19, wherein said carboxyl functional groups are reacted with an epoxy resin and an excess 30 of amine to completely react all of the epoxy groups, the excess amine is removed by distillation, and the resulting epoxy-amine adduct is reacted with a water soluble organic or inorganic acid to form water soluble quaternary ammonium containing polymers.

28. A process for preparing hetero-telechelic polymer. having mixed functional ends, comprising: 35 polymerizing a monomer selected from conjugated diene hydrocarbons, alkenylsubstituted aromatic hydro- carbons, and mixtures thereof, with a protected functional organlometallic initiator of the formula

1 2 3 40 M-Qn-Z-J-[A(R R R )]x (II)

wherein:

M is an alkali metal; 45 Q is a saturated or unsaturated hydrocarbyl group derived by incorporation of a compound selected from the group consisting of conjugated diene hydrocarbons, alkenylsubstituted aromatic hydrocarbons, and mixtures thereof; n is an integer from 0 to 5; Z is a branched or straight chain hydrocarbon group which contains 3-25 carbon atoms, optionally containing 50 aryl or substituted aryl groups; J is oxygen, sulfur, or nitrogen; A is an element selected from Group IVa of the Periodic Table of Elements; R1,R2, and R3 are independently selected from hydrogen, alkyl, substituted alkyl groups containing lower alkyl, lower alkylthio, and lower dialkylamino groups, aryl, substituted aryl groups containing lower alkyl, lower 55 alkylthio, and lower dialkylamino groups, cycloalkyl and substituted cycloalkyl containing 5 to 12 carbon atoms; and x is dependent on the valence of J and varies from one when J is oxygen or sulfur to two when J is nitrogen,

19 EP 0 842 199 B1

to form a mono-protected, mono-functionalized living polymer; and functionalizing the living polymer with a protected or non-protected functionalizing compound capable of ter- minating or end-capping a living polymer to incorporate a protected or non-protected functional group into the living polymer to provide a di-functional polymer having a protected or non-protected functional group FG and 5 1 2 3 1 2 3 a protecting group -[A(R R R )]x, with the proviso that -J-[A(R R R )]x and the functionalizing compound differ and that when J is oxygen, then A is not silicon, to provide a hetero-telechelic polymer.

29. The process of Claim 28, wherein:

10 said conjugated diene hydrocarbon is selected from the group consisting of 1,3-butadiene, isoprene, 2,3-dime- thyl-1,3-butadiene, 1,3-pentadiene, myrcene, 2-methyl-3-ethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-pentadi- ene, 1,3-hexadiene, 2-methyl-1,3-hexadiene, 1,3-heptadiene, 3-methyl-1,3-heptadiene, 1,3-octadiene, 3-butyl-1,3-octadiene, 3,4-dimethyl-1,3-hexadiene, 3-n-propyl-1,3-pentadiene, 4,5-diethyl-1,3-octadiene, 2,4-diethyl-1,3-butadiene, 2,3-di-n-propyl-1,3-butadiene, and 2-methyl-3-isopropyl-1,3-butadienes; and 15 said alkenylsubstituted aromatic hydrocarbon is selected from the group consisting of styrene, alpha-methyl- styrene, vinyltoluene, 2-vinylpyridine, 4-vinylpyridine, 1-vinylnaphthalene, 2-vinylnaphthalene, 1-alphameth- ylvinylnaphthalene, 2-alpha-methylvinylnaphthalene, 1,2-diphenyl-4-methyl-1-hexene, and mixtures of these and alkyl, cycloalkyl, aryl, alkylaryl and arylalkyl derivatives thereof in which the total number of carbon atoms in the combined hydrocarbon constituents is not greater than 18. 20 30. The process of Claim 28, wherein A is carbon or silicon.

31. The process of Claim 28, further comprising deprotecting at least one of said functional ends of said hetero-tel- echelic polymer after said functionalizing step. 25 32. The process of Claim 28, further comprising saturating at least a portion of aliphatic unsaturation of said hetero- telechelic polymer with hydrogen after said polymerizing step.

33. The process of Claim 31, further comprising saturating at least a portion of aliphatic unsaturation of said hetero- 30 telechelic polymer with hydrogen after said deprolecting step.

34. The process of Claim 32 or 33, wherein said saturating step comprises saturating at least about 90% of the aliphatic unsaturation with hydrogen.

35 35. The process of Claim 28, wherein said functionalizing step comprises functionalizing said living polymer with a functionalizing compound selected from the group consisting of ethylene oxide, propylene oxide, styrene oxide, oxetane, oxygen, sulfur, carbon dioxide, chlorine, bromine, iodine, chlorotrimethylsilane, styrenyldimethyl chlorosi- lane, 1,3-propane sultone, caprolactam, N-benzylidene trimethylsilylamide, dimethyl formamide, silicon acetals, 1,5-diazabicyclo[3.1.0]hexane, allyl bromide, allyl chloride, methacryloyl chloride, 3-(dimethylamino) -propyl chlo- 40 ride, N-(benzylidene)trimethylsilylamine, epichlorohydrin, epibromohydrin, and epiiodohydrin.

36. The process of Claim 28, wherein said organometallic initiator is selected from the group consisting of omega-(tert- alkoxy)-1-alkyllithiums, omega-(tert-alkoxy)-1-alkyllithiums chain extended with conjugated alkadienes, alkenyl- substituted aromatic hydrocarbons, and mixtures thereof, omega-(tert-alkylthio)-1-alkyllithiums, omega-(tert- 45 alkylthio)-1-alkyllithiums chain extended with conjugated alkadienes, alkenylsubstituted aromatic hydrocarbons, and mixtlures thereof, omega-(tert-butyldimethylsilyloxy)-1-alkyllithiums, omega-(tert-butyldimethylsilylthio)- 1-alkyllithiums, omega-(dialkylamino)-1-alkyllithiums, omega-(dialkylamino)-1-alkyllithiums chain-extended with conjugated alkadienes, alkenylsubstituted aromatic hardrocarbons, and mixtures thereof, and omega-(bis-tert- alkylsilylamino)-1-alkyllithiums. 50 37. The process of Claim 36, wherein said organometallic initiator is selected from the group consisting of 3-(1,1-dimeth- ylethoxy)-1-propyllithium, 3-(tert-butyldimethylsilyloxy)-1-propyllithium, 3-(1,1-dimethylethylthio)-1-propyllithium, 3-(dimethylamino)-1-propyllithium, 3-(di-tert-butyldimethylsilylamino)-1-propyllithium, 3-(1,1-dimethylethoxy)- 1-propyllithium, 3-(1,1-dimethylethoxy)-2-methyl-1-propyllithium, 3-(1,1-dimethylethoxy)-2,2-dimethyl-1-propyl- 55 lithium, 4- (1,1-dimethylethoxy)-1-butyllithium, 5-(1,1-dimethylethoxy)-1-pentyllithium, 6-(1,1-dimethylethoxy)- 1-hexyllithium, 8-(1,1-dimethylethoxy)-1-octyllithium, 3-(1,1-dimethylpropoxy)-1-propyllithium, 3-(1,1-dimethylpro- poxy)-2-methyl-1-propyllithium, 3-(1,1-dimethylpropoxy)-2,2-dimethyl-1-propyllithium, 4-(1,1-dimethylpropoxy)- 1-butyllithium, 5-(1,1-dimethylpropoxy)-1-pentyllithium, 6-(1,1-dimethylpropoxy)-1-hexyllithium, 8-(1,1-dimethyl-

20 EP 0 842 199 B1

propoxy)-1-octyllithium, 3-(t-butyldimethylsilyloxy)-1-propyllithium, 3-(t-butyldimethylsilyloxy)-2-methyl-1-propyl- lithium, 3-(t-butyldimethylsilyloxy)-2,2-dimethyl-1-propyllithium, 4-(t-butyldimethylsilyloxy)-1-butyllithium, 5-(t- butyldimethylsilyloxy)-1-pentyllithium, 6-(t-butyldimethylsilyloxy)-1-hexyllithium, 8-(t-butyldimethylsilyloxy)-1-oc- tyllithiumand3-(trimethylsilyloxy)-2,2-dimethyl-1-propyllithium,3-(dimethylamino)-1-propyllithium,3-(dimethylami- 5 no)-2-methyl-1-propyllithium, 3-(dimethylamino)-2,2-dimethyl-1-propyllithium, 4-(dimethylamino)-1-butyllithium, 5-(dimethylamino)-1-pentyllithium, 6-(dimethylamino)-1-hexyllithium, 8-(dimethylamino)-1-propyllithium, 4-(ethoxy)-1-butyllithium, 4-(propyloxy)-1-butyllithium, 4-(1-methylethoxy)-1-butyllithium, 3-(triphenylmethoxy)- 2,2-dimethyl-1-propyllithium, 4-(triphenylmethoxy)-1-butyllithium, 3-[3-(dimethylamino)-1-propyloxy] -1-propyllith- ium, 3- [2-(dimethylamino)-1-ethoxy]-1-propyllithium, 3-[2-(diethylamino)-1-ethoxy]-1-propyllithium, 3-[2-(diisopro- 10 pyl)amino)-1-ethoxy]-1-propyllithium, 3-[2-(1-piperidino)-1-ethoxy]-1-propyllithium, 3-[2-(1-pyrrolidino)-1-ethoxy]- 1-propyllithium, 4-[3-(dimethylamino)-1-propyloxy]-1-butyllithium, 6-[2-(1-piperidino)-1-ethoxy]-1-hexyllithium, 3-[2-(methoxy)-1-ethoxy]-1-propyllithium, 3-[2-(ethoxy)-1-ethoxy]-1-propyllithium, 4-[2-(methoxy)-1-ethoxy]- 1-butyllithium,5-[2-(ethoxy)-1-ethoxy]-1-pentyllithium,3-[3-(methylthio)-1-propyloxy]-1-propyllithium,3-[4-(methyl- thio)-1-butyloxy]-1-propyllithium, 3- (methylthiomethoxy) -1-propyllithium, 6-[3-(methylthio) -1-propyloxy]-1-hexyl- 15 lithium, 3-[4-(methoxy)-benzyloxy]-1-propyllithium, 3-[4-(1,1-dimethylethoxy)-benzyloxy]-1-propyllithium, 3-[2,4-(dimethoxy)-benzyloxy]-1-propyllithium, 8-[4-(methoxy)-benzyloxy]-1-octyllithium, 4-[4-(methylthio)-benzy- loxy]-1-butyllithium, 3- [4- (dimethylamino)-benzyloxy]-1-propyllithium, 6-[4-(dimethylamino)-benzyloxy]-1-hexyl- lithium, 5-(triphenylmethoxy)-1-pentyllithium, 6-(triphenylmethoxy)-1-hexyllithium, and 8-(triphenylmethoxy)-1-oc- tyllithium, 3-(hexamethyleneimino)-1-propyllithium, 4-(hexamethyleneimino)-1-butyllithium, 5-(hexamethyleneimi- 20 no)-1-pentyllithium, 6-(hexamethyleneimino) -1-hexyllithium, 8-(hexamethyleneimino)-1-octyllithium, 3-(t-butyld- imethylsilylthio)-1-propyllithium, 3-(t-butyldimethylsilylthio)-2-methyl-1-propyllithium, 3-(t-butyldimethylsilylthio)- 2,2-dimethyl-1-propyllithium, 4-(t-butyldimethylsilylthio)-1-butyllithium, 6-(t-butyldimethylsilylthio) -1-hexyllithium, 3-(trimethylsilylthio)-2,2-dimethyl-1-propyllithium,3-(1,1-dimethylethylthio)-1-propyllithium,3-(1,1-dimethylethylth- io)-2-methyl-1-propyllithium, 3-(1,1-dimethylethylthio)-2,2-dimethyl-1-propyllithium, 4-(1,1-dimethylethylthio)- 25 1-butyllithium, 5-(1,1-dimethylethylthio)-1-pentyllithium, 6-(1,1-dimethylethylthio)-1-hexyllithium, 8-(1,1-dimethyl- ethylthio)-1-octyllithium, 3-(1,1-dimethylpropylthio)-1-propyllithium, 3-(1,1-dimethylpropylthio)-2-methyl-1-propyl- lithium, 3-(1,1-dimethylpropylthio)-2,2-dimethyl-1-propyllithium, 4-(1,1-dimethylpropylthio)-1-butyllithium, 5-(1,1-dimethylpropylthio)-1-pentyllithium, 6-(1,1-dimethylpropylthio)-1-hexyllithium, and 8-(1,1-dimethylpropylth- io)-1-octyllithium, hydrocarbon soluble conjugated alkadiene, alkenylsubstituted aromatic hydrocarbons, and mix- 30 tures thereof, chain extended oligomeric analogs thereof, and mixtures thereof.

38. The process of Claim 28, wherein said polymerizing step comprises polymerizing said diene hydrocarbons or said alkenylsubstituted aromatic hydrocarbons singly, sequentially, or as mixtures thereof.

35 39. The process of Claim 28, further comprising copolymerizing at least one of said functional groups of said hetero- telechelic polymer with at least one comonomer after said functionalizing step to form a copolymer.

40. The process of Claim 39, wherein said at least one comonomer is selected from the group consisting of lactams, cyclic ethers, diamines, diisocyanates, polyisocyanates, diamides, polyamides, cyclic amides, dicarboxylic acids, 40 polycarboxylic acids, diols, polyols, anhydrides, and mixtures thereof.

41. The process of Claim 39, wherein said copolymerizing step comprises reacting said polymer with one or more comonomers under conditions sufficient to deprotect said polymer and to polymerize said one or more comonomers at both functional ends of said deprotected polymer. 45 42. The process of Claim 41, wherein said reacting step comprises reacting said polymer and said one or more comon- omers in the presence of a strong acid catalyst.

43. The process of Claim 39, wherein said copolymerizing step comprises reacting said polymer with one or more 50 comonomers under conditions sufficient to maintain the integrity of at least one protective group of said polymer to provide at least one deprotected functional end and to polymerize said one or more comonomers at said at least one deprotected functional end of said polymer.

44. The process of Claim 43, further comprising deprotecting said protected functional end. 55 45. The process of Claim 43, further comprising reacting said copolymer with a comonomer.

46. The process for modifying the surface adhesion properties of polyolefins, comprising melt mixing the functional

21 EP 0 842 199 B1

polymer of any of Claims 1 to 28 with a polyolefin in an amount of 1 to 25% by weight based on the polyolefin.

47. The process of Claim 46, wherein the polyolefin is selected from the group consisting of low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, polyisobutylene and copolymers and 5 blends thereof.

Patentansprüche

10 1. Polymer mit gemischten funktionellen Enden, das hergestellt wird nach einem Verfahren, das die folgenden Schritte umfaßt:

Polymerisieren eines aus konjugierten Dienkohlenwasserstoffen, alkenylsubstituierten aromatischen Kohlen- wasserstoffen und Mischungen derselben ausgewählten Monomers mit einem geschützten funktionellen me- 15 tallorganischen Initiator der Formel

1 2 3 M-Qn-Z-J-[A(R R R )]x (II)

20 wobei:

M ein Alkalimetall ist;

Q eine gesättigte oder ungesättigte Hydrocarbylgruppe ist, die man erhält durch Aufnahme einer aus der aus 25 konjugierten Dienkohlenwasserstoffen, alkenylsubstituierten aromatischen Kohlenwasserstoffen und Mi- schungen derselben bestehenden Gruppe ausgewählten Verbindung;

n eine ganze Zahl von 0 bis 5 ist;

30 Z eine verzweigt- oder geradkettige Kohlenwasserstoffgruppe ist, die 3 bis 25 Kohlenstoffatome und wahlweise Arylgruppen oder substituierte Arylgruppen enthält;

J Sauerstoff, Schwefel oder Stickstoff ist;

35 1 2 3 [A(R R R )]x eine Schutzgruppe ist, bei der A ein aus Gruppe IVa des Periodensystems der Elemente aus- gewähltes Element ist;

R1,R2und R3 unabhängig voneinander ausgewählt sind aus Wasserstoff, Alkylgruppen, niedere Alkylgruppen, niedere A1kylthiogruppen und niedere Dialkylaminogruppen enthaltenden substituierten Alkylgruppen, Aryl- 40 gruppen, niedere Alkylgruppen, niedere Alkylthiogruppen und niedere Dialkylaminogruppen enthaltenden sub- stituierten Arylgruppen, Cycloalkylgruppen und substituierten Cycloalkylgruppen, die 5 bis 12 Kohlenstoffato- me enthalten; und

x von der Wertigkeit von J abhängt und schwankt zwischen eins, wenn J Sauerstoff oder Schwefel ist, und 45 zwei, wenn J Stickstoff ist, um ein monogeschütztes, monofunktionalisiertes lebendes Polymer zu bilden; und

Funktionalisieren des lebenden Polymers mit einer geschützten oder nichtgeschützten funktionalisierenden Verbindung, die als Ende oder Abschluß eines lebenden Polymers geeignet ist, um eine geschützte oder nichtgeschützte funktionelle Gruppe in das lebende Polymer aufzunehmen, um ein difunktionelles Polymer 50 1 2 3 mit einer geschützten oder nichtgeschützten Gruppe FG und einer Schutzgruppe -[A(R R R )]x bereitzustel- 1 2 3 len, vorausgesetzt daß die Gruppe J-[A(R R R )]x des Initiators und die funktionalisierende Verbindung ver- schieden sind und daß dann, wenn J Sauerstoff ist, A nicht Silicium ist, um ein heterotelecheles Polymer bereitzustellen.

55 2. Polymer mit gemischten funktionellen Enden, das hergestellt wird nach einem Verfahren, das die folgenden Schritte umfaßt:

22 EP 0 842 199 B1

Polymerisieren eines aus konjugierten Dienkohlenwasserstoffen, alkenylsubstituierten aromatischen Kohlen- wasserstoffen und Mischungen derselben ausgewählten Monomers mit einem geschützten funktionellen me- tallorganischen Initiator der Formel

5 1 2 3 M-Qn-Z-J-[A(R R R )]x (II)

wobei:

10 M ein Alkalimetall ist;

Q eine gesättigte oder ungesättigte Hydrocarbylgruppe ist, die man erhält durch Aufnahme einer aus der aus konjugierten Dienkohlenwasserstoffen, alkenylsubstituierten aromatischen Kohlenwasserstoffen und Mi- schungen derselben bestehenden Gruppe ausgewählten Verbindung; 15 n eine ganze Zahl von 0 bis 5 ist;

Z eine verzweigt- oder geradkettige Kohlenwasserstoffgruppe ist, die 3 bis 25 Kohlenstoffatome und wahlweise Arylgruppen oder substituierte Arylgruppen enthält; 20 J Sauerstoff, Schwefel oder Stickstoff ist;

1 2 3 [A(R R R )]x eine Schutzgruppe ist, bei der A ein aus Gruppe IVa des Periodensystems der Elemente aus- gewähltes Element ist; 25 R1,R2und R3 unabhängig voneinander ausgewählt sind aus Wasserstoff, Alkylgruppen, niedere Alkylgruppen, niedere Alkylthiogruppen und niedere Dialkylaminogruppen enthaltenden substituierten Alkylgruppen, Aryl- gruppen, niedere Alkylgruppen, niedere Alkylthiogruppen und niedere Dialkylaminogruppen enthaltenden sub- stituierten Arylgruppen, Cycloalkylgruppen und substituierten Cycloalkylgruppen, die 5 bis 12 Kohlenstoffato- 30 me enthalten; und

x von der Wertigkeit von J abhängt und schwankt zwischen eins, wenn J Sauerstoff oder Schwefel ist, und zwei, wenn J Stickstoff ist, um ein monogeschütztes, monofunktionalisiertes lebendes Polymer zu bilden; und

35 Funktionalisieren des lebenden Polymers mit einer geschützten oder nichtgeschützten funktionalisierenden Verbindung, die als Ende oder Abschluß eines lebenden Polymers geeignet ist, um eine geschützte oder nichtgeschützte funktionelle Gruppe in das lebende Polymer aufzunehmen, um ein difunktionelles Polymer 1 2 3 mit einer geschützten oder nichtgeschützten Gruppe FG und einer Schutzgruppe -[A(R R R )]x bereitzustel- 1 2 3 len, vorausgesetzt daß die Gruppe J-[A(R R R )]x des Initiators und die funktionalisierende Verbindung ver- 40 schieden sind und daß dann, wenn J Sauerstoff ist, A nicht Silicium ist, um ein heterotelecheles Polymer bereitzustellen; und

Entfernen wenigstens einer Schutzgruppe.

45 3. Heterotelecheles Polymer mit der Formel:

1 2 3 FG-(Q)d-Z-J-[A(R R R )]x (I)

50 wobei:

FG eine geschützte oder nichtgeschützte funktionelle Gruppe ist;

Q eine gesättigte oder ungesättigte Hydrocarbylgruppe ist, die man erhält durch Aufnahme einer aus der aus 55 konjugierten Dienkohlenwasserstoffen, alkenylsubstituierten aromatischen Kohlenwasserstoffen und Mi- schungen derselben bestehenden Gruppe ausgewählten Verbindung;

23 EP 0 842 199 B1

d eine ganze Zahl von 10 bis 2000 ist;

Z eine verzweigt- oder geradkettige Kohlenwasserstoffgruppe ist, die 3 bis 25 Kohlenstoffatome und wahlweise Arylgruppen oder substituierte Arylgruppen enthält; 5 J Sauerstoff, Schwefel oder Stickstoff ist;

1 2 3 [A(R R R )]x eine Schutzgruppe ist, bei der A ein aus Gruppe IVa des Periodensystems der Elemente aus- gewähltes Element ist; R1,R2und R3 unabhängig voneinander ausgewählt sind aus der aus Wasserstoff, 10 Alkylgruppen, niedere Alkylgruppen, niedere Alkylthiogruppen und niedere Dialkylaminogruppen enthaltenden substituierten Alkylgruppen, Arylgruppen, niedere Alkylgruppen, niedere Alkylthiogruppen und niedere Dial- kylaminogruppen enthaltenden substituierten Arylgruppen, Cycloalkylgruppen und 5 bis 12 Kohlenstoffatome enthaltenden substituierten Cycloalkylgruppen bestehenden Gruppe; und x von der Wertigkeit von J abhängt und schwankt zwischen eins, wenn J Sauerstoff oder Schwefel ist, und zwei, wenn J Stickstoff ist, 15 1 2 3 vorausgesetzt, daß J-[A(R R R )]x und FG nicht gleich sind und daß dann, wenn J Sauerstoff ist, A nicht Silicium ist.

4. Polymer nach einem der Ansprüche 1, 2 und 3, bei dem:

20 der konjugierte Dienkohlenwasserstoff ausgewählt ist aus der aus 1,3-Butadien, Isopren, 2,3-Dimethyl-1,3-bu- tadien, 1,3-Pentadien, Myrcen, 2-Methyl-3-ethyl-1,3-butadien, 2-Methyl-3-ethyl-1,3-pentadien, 1,3-Hexadien, 2-Methyl-1,3-hexadien, 1,3-Heptadien, 3-Methyl-1,3-heptadien, 1,3-Octadien, 3-Butyl-1,3-octadien, 3,4-Di- methyl-1,3-hexadien, 3-n-Propyl-1,3-pentadien, 4,5-Diethyl-1,3-octadien, 2,4-Diethyl-1,3-butadien, 2,3-di-n- Propyl-1,3-butadien und 2-Methyl-3-isopropyl-1,3-butadienen bestehenden Gruppe; und 25 der alkenylsubstituierte aromatische Kohlenwasserstoff ausgewählt ist aus der aus Styrol, α-Methylstyrol, Vinyltoluol, 2-Vinylpyridin, 4-Vinylpyridin, 1-Vinylnaphthalin, 2-Vinylnaphthalin, 1-α-Methylvinylnaphthalin, 2-α-Methyl-vinylnaphthalin, 1,2-Diphenyl-4-methyl-1-hexen und Mischungen derselben und Alkyl-, Cycloal- kyl-, Aryl-, Alkylaryl- und Arylalkylderivaten derselben bestehenden Gruppe, wobei die Gesamtzahl der Koh- 30 lenstoffatome in den kombinierten Kohlenwasserstoffbestandteilen nicht größer ist als 18.

5. Polymer nach einem der Ansprüche 1, 2 und 3, bei dem A Kohlenstoff oder Silicium ist.

6. Polymer nach einem der Ansprüche 1, 2 und 3, bei dem wenigstens ein aliphatisch ungesättigter Teil des Polymers 35 mit Wasserstoff gesättigt wurde.

7. Polymer nach Anspruch 6, bei dem wenigstens etwa 90 % des aliphatisch ungesättigten Teils mit Wasserstoff gesättigt wurden.

40 8. Polymer nach einem der Ansprüche 1 oder 2, bei dem die funktionalisierende Verbindung ausgewählt ist aus der aus Ethylenoxid, Propylenoxid, Styroloxid, Oxetan, Sauerstoff, Schwefel, Kohlendioxid, Chlor, Brom, Iod, Chlor- trimethylsilan, Styrenyldimethylchlorsilan, 1,3-Propansulfon, Caprolactam, N-Benzylidentrimethylsilylamid, Dime- thylformamid, Siliciumacetalen, 1,5-Diazobicyclo[3.1.0]hexan, Allylbromid, Allylchlorid, Methacryloylchlorid, 3-(Di- methylamino)-propylchlorid, N-(Benzyliden)trimethylsilylamin, Epichlorhydrin, Epibromhydrin und Epiiodhydrin be- 45 stehenden Gruppe.

9. Polymer nach Anspruch 1 oder 2, bei dem der metallorganische Initiator ausgewählt ist aus der aus Omega-(tert- alkoxy)-1-alkyllithium, mit konjugierten Alkadienen verlängertem Omega-(tert-alkoxy)-1-alkyllithium, alkenylsub- stituierten aromatischen Kohlenwasserstoffen und Mischungen derselben, omega-(tert-alkylthio)-1-alkyllithium, 50 mit konjugierten Alkadienen verlängertem Omega-(tert-alkylthio)-1-alkyllithium, alkenylsubstituierten aromati- schen Kohlenwasserstoffen und Mischungen derselben, Omega-(tert-butyldimethylsilyloxy)-1-alkyllithium, Ome- ga-(tert-butyldimethylsilylthio)-1-alkyllithium, Omega-(dialkylamino)-1-alkyllithium, mit konjugierten Alkadienen verlängertem Omega-(dialkylamino)-1-alkyllithium, alkylensubstituierten aromatischen Kohlenwasserstoffen und Mischungen derselben und Omega-(bis-tert-alkylsilylamino)-1-alkyllithium bestehenden Gruppe. 55 10. Polymer nach Anspruch 9, bei dem der metallorganische Initiator ausgewählt ist aus der aus 3-(1,1-Dimethyle- thoxy)-1-propyllithium, 3-(tert-Butyldimethylsilyloxy)-1-propyl-lithium, 3-(1,1-Dimethylethylthio)-1-propyllithium, 3-(Dimethylamino)-1-propyllithium, 3-(di-tert-Butyldimethylsilylamino)-1-propyllithium, 3-(1,1-Dimethylethoxy)-

24 EP 0 842 199 B1

1-propyllithium, 3-(1,1-Dimethylethoxy)-2-methyl-1-propyllithium, 3-(1,1-Dimethylethoxy-2,2-dimethyl-1-propylli- thium, 4-(1,1-dimethylethoxy)-1-butyllithium, 5-(1,1-Dimethylethoxy)-1-pentyllithium, 6-(1,1-Dimethylethoxy)- 1-hexyllithium,8-(1,1-dimethylethoxy)-1-octyllithium,3-(1,1-Dimethylpropoxy)-1-propyllithium,3-(1,1-Dimethylpro- poxy)-2-methyl-1-propyllithium, 3-(1,1-Dimethylpropoxy)-2,2-dimethyl-1-propyllithium, 4-(1,1-dimethylpropoxy)- 5 1-butyllithium, 5-(1,1-Dimethylpropoxy)-1-pentyllithium, 6-(1,1-Dimethylpropoxy)-1-hexyllithium, 8-(1,1-Dimethyl- propoxy)-1-octyllithium, 3-(t-Butyldimethylsilyloxy)-1-propyllithium, 3-(t-Butyldimethylsilyloxy)-2-methyl-1-propylli- thium, 3-(t-Butyldimethylsilyloxy)-2,2-dimethyl-1-propyllithium, 4-(t-Butyldimethylsilyloxy)-1-butyllithium, 5-(t-Bu- tyldimethylsilyloxy)-1-pentyllithium, 6-(t-Butyldimethylsilyloxy)-1-hexyllithium, 8-(t-Butyldimethylsilyloxy)-1-octylli- thium und 3-(Trimethylsilyloxy)-2,2-dimethyl-1-propyllithium, 3-(Dimethylamino)-1-propyllithium, 3-(Dimethylami- 10 no)-2-methyl-1-propyllithium, 3-(Dimethylamino)-2,2-dimethyl-1-propyllithium, 4-(Dimethylamino)-1-butyllithium, 5-(Dimethylamino)-1-pentyllithium, 6-(Dimethylamino)-1-hexyllithium, 8-(Dimethylamino)-1-propyllithium, 4-(Ethoxy)-1-butyllithium, 4-(Propyloxy)-1-butyllithium, 4-(1-Methylethoxy)-1-butyllithium, 3-(Triphenylmethoxy)- 2,2-dimethyl-1-propyllithium, 4-(Triphenylmethoxy)-1-butyllithium, 3-[3-(Dimethylamino)-1-propyloxy-1-propyllithi- um, 3-[2-(Dimethylamino)-1-ethoxy]-1-propyllithium, 3-[2-(Diethylamino)-1-ethoxy]-1-propyllithium, 3-[2-(Diisopro- 15 pyl)amino)-1-ethoxy]-1-propyllithium, 3-[2-(1-piperidino)-1-ethoxy]-1-propyllithium, 3-[2-(1-pyrrolidino)-1-ethoxy]- 1-propyllithium, 4-[3-(Dimethylamino)-1-propyloxy]-1-butyllithium, 6-[2-(1-piperidino)-1-ethoxy]-1-hexyllithium, 3-[2-(Methoxy)-1-ethoxy]-1-propyllithium, 3-[2-(Ethoxy)-1-ethoxy]-1-propyllithium, 4-[2-(Methoxy)-1-ethoxy]-1-bu- tyllithium, 5-[2-(Ethoxy)-1-ethoxy]-1-pentyllithium, 3-[3-(Methylthio)-1-propyloxy]-1-propyllithium, 3-[4-(Me- thylthio)-1-butyloxy]-1-propyllithium, 3-(Methylthiomethoxy)-1-propyllithium, 6-[3-(Methylthio)-1-propyloxy]-1-he- 20 xyllithium, 3-[4-Methoxy)-benzyloxy]-1-propyllithium, 3-[4-(1,1-Dimethylethoxy)-benzyloxy]-1-propyllithium, 3-[2,4-Dimethoxy)-benzyloxy]-1-propyllithium, 8-[4-Methoxy)-benzyloxy]-1-octyllithium, 4-[4-Methylthio)-benzylo- xy]-1-Butyllithium, 3-[4-Dimethylamino)-benzyloxy]-1-propyllithium, 6-[4-(Dimethylamino)-benzyloxy]-1-hexyllithi- um, 5-(Triphenylmethoxy)-1-pentyllithium, 6-(Triphenylmethoxy)-1-hexyllithium und 8-(Triphenylmethoxy)-1-octyl- lithium, 3-(Hexamethylenimino)-1-propyllithium, 4-(Hexamethylenimino)-1-butyllithium, 5-(Hexamethylenimino)- 25 1-pentyllithium, 6-Hexamethylenimino)-1-hexyllithium, 8-(Hexamethylenimino)-1-octyllithium, 3-(t-Butyldimethyl- silylthio)-1-propyllithium, 3-(t-Butyldimethylsilylthio)-2-methyl-1-propyllithium, 3-(t-Butyldimethylsilylthio)-2,2-di- methyl-1-propyllithium, 4-(t-Butyldimethylsilylthio)-1-butyllithium, 6-(t-Butyldimethylsilylthio)-1-hexyllithium, 3-(Tri- methylsilylthio)-2,2-dimethyl-1-propyllithium, 3-(1,1-Dimethylethylthio)-1-propyllithium, 3-(1,1-Dimethylethylthio)- 2-methyl-l-propyllithium, 3-(1,1-Dimethylethylthio)-2,2-dimethyl-1-propyllithium, 4-(1,1-Dimethylethylthio)-1-butyl- 30 lithium, 5-(1,1-Dimethylethylthio)-1-pentyllithium, 6-(1,1-Dimethylethylthio)-1-hexyllithium, 8-(1,1-Dimethyle- thylthio)-1-octyllithium, 3-(1,1-Dimethylpropylthio)-1-propyllithium, 3-(1,1-Dimethylpropylthio)-2-methyl-1-propylli- thium, 3-(1,1-Dimethylpropylthio)-2,2-dimethyl-1-propyllithium, 4-(1,1-Dimethylpropylthio)-1-butyllithium, 5-(1,1-Dimethylpropylthio)-1-pentyllithium, 6-(1,1-Dimethylpropylthio)-1-hexyllithium und 8-(1,1-Dimethylpro- pylthio)-1-octyllithium, kohlenwasserstofflöslichem konjugiertem Alkadien, alkenylsubstituierten aromatischen 35 Kohlenwasserstoffen und Mischungen derselben, verlängerten oligomeren Analoga derselben und Mischungen derselben bestehenden Gruppe.

11. Polymer nach Anspruch 1 oder 2, bei dem die Dienkohlenwasserstoffe und die alkenylsubstituierten aromatischen Kohlenwasserstoffe einzeln, sequentiell oder als Mischungen derselben umgesetzt werden. 40 12. Polymer nach Anspruch 3, bei dem wenigstens eines von J oder FG den Schutz verliert, und bei dem das hete- rotelechele Polymer ferner wenigstens ein funktionelles Comonomer umfaßt, das mit wenigstens einer der nicht mehr geschützten funktionellen Gruppen umgesetzt wird.

45 13. Polymer nach Anspruch 12, bei dem das wenigstens eine Comonomer ausgewählt ist aus der aus Lactamen, zyklischen Ethern, Diaminen, Diisocyanaten, Polyisocyanaten, Diamiden, Polyamiden, zyklischen Amiden, Dicar- bonsäuren, Polycarbonsäuren, Diolen, Polyolen, Anhydriden und Mischungen derselben bestehenden Gruppe.

14. Polymer nach Anspruch 13, bei dem das Polymer wenigstens eine funktionelle Hydroxylgruppe umfaßt, und bei 50 dem die wenigstens eine funktionelle Hydroxylgruppe mit Diisocyanat und Diol umgesetzt wird, um Polyurethan- blöcke herzustellen.

15. Polymer nach Anspruch 14, bei dem das Diol Säuregruppenfunktionalitäten umfaßt, und bei dem die Säuregrup- penfunktionalitäten mit tertiären Aminen neutralisiert werden, um eine Dispergierbarkeit in Wasser bereitzustellen. 55 16. Polymer nach Anspruch 13, bei dem das Polymer wenigstens eine funktionelle Hydroxylgruppe umfaßt, und bei dem die wenigstens eine funktionelle Hydroxylgruppe mit einer zweibasigen Säure oder einem Anhydrid und Dia- min oder Lactam umgesetzt wird, um Polyamidblöcke herzustellen.

25 EP 0 842 199 B1

17. Polymer nach Anspruch 13, bei dem das Polymer wenigstens eine funktionelle Hydroxylgruppe umfaßt, und bei dem die wenigstens eine funktionelle Hydroxylgruppe mit einer zweibasigen Säure oder einem Anhydrid und Diol oder Polyol umgesetzt wird, um Polyesterblöcke herzustellen.

5 18. Polymer nach Anspruch 17, bei dem wenigstens ein Teil der zweibasigen Säure oder des Anhydrids durch eine ungesättigte Säure oder ein ungesättigtes Anhydrid ersetzt wird, um ungesättigte Polyesterblöcke bereitzustellen, die sich durch Zugabe radikalischer Initiatoren mit ungesättigten Monomeren vernetzen können.

19. Polymer nach Anspruch 13, bei dem das Polymer wenigstens eine funktionelle Hydroxylgruppe umfaßt, und bei 10 dem die wenigstens eine funktionelle Hydroxylgruppe mit Anhydrid umgesetzt wird, um einen Halbester mit einer freien Carboxylfunktionalität an seinem Ende zu bilden.

20. Polymer nach Anspruch 19, bei dem die funktionellen endständigen Carboxylgruppen weiterhin mit Epoxidharzen und Härtungsmitteln auf Aminbasis umgesetzt werden, um Epoxidharzverbundstoffe zu bilden. 15 21. Polymer nach Anspruch 13, bei dem das Polymer wenigstens eine funktionelle Hydroxylgruppe umfaßt, und bei dem die wenigstens eine funktionelle Hydroxylgruppe mit Methacryloylchlorid umgesetzt wird, um an ihrem Ende polymerisierbare Alkenylgruppen bereitzustellen.

20 22. Polymer nach Anspruch 21, wobei das Polymer ferner Acrylsäuremonomere umfaßt, die unter Verwendung radi- kalischer Initiatoren auf die endständigen Alkenylgruppen polymerisiert wurden.

23. Polymer nach Anspruch 22, bei dem die Acrylsäuremonomere funktionelle oder amidfunktionelle Acrylsäuremo- nomere sind, um polare hydrophile Polymersegmente bereitzustellen. 25 24. Polymer nach Anspruch 21, bei dem sulfoniertes Styrol und/oder 4-Vinylpyridin durch radikalische Initiatoren auf die endständigen Alkenylgruppen polymerisiert werden, um funktionelle Polymersegmente bereitzustellen, die die Dispergierbarkeit des Polymers verbessern können.

30 25. Polymer nach Anspruch 13, bei dem das Polymer wenigstens eine funktionelle Hydroxylgruppe umfaßt, und bei dem die wenigstens eine funktionelle Hydroxylgruppe in Gegenwart eines Katalysators auf Basis eines tertiären Amins mit Sulfonylchlorid umgesetzt wird, um an ihrem Ende funktionelle Sulfonatgruppen zu bilden.

26. Polymer nach Anspruch 25, bei dem die funktionellen Sulfonatgruppen unter Hitze und Druck mit primären Aminen 35 oder Ammoniak umgesetzt werden, um an ihrem Ende Polymere mit Aminfunktionalität zu bilden.

27. Polymer nach Anspruch 19, bei dem die funktionellen Carboxylgruppen mit einem Epoxidharz und einer über- schüssigen Menge Amin umgesetzt werden, um alle Epoxidgruppen vollständig umzusetzen, bei dem das über- schüssige Amin abdestilliert wird, und bei dem das resultierende Epoxid-Amin-Anlagerungsprodukt mit einer was- 40 serlöslichen organischen oder anorganischen Säure umgesetzt wird, um wasserlösliche, quartäres Ammonium enthaltende Polymere zu bilden.

28. Verfahren zur Herstellung eines heterotelechelen Polymers mit gemischten funktionellen Enden, wobei das Ver- fahren folgende Schritte umfaßt: 45 Polymerisieren eines aus konjugierten Dienkohlenwasserstoffen, alkenylsubstituierten aromatischen Kohlen- wasserstoffen und Mischungen derselben ausgewählten Monomers mit einem geschützten funktionellen me- tallorganischen Initiator der Formel

50 1 2 3 M-Qn-Z-J-[A(R R R )]x (II)

wobei:

55 M ein Alkalimetall ist;

Q eine gesättigte oder ungesättigte Hydrocarbylgruppe ist, die man erhält durch Aufnahme einer aus der aus

26 EP 0 842 199 B1

konjugierten Dienkohlenwasserstoffen, alkenylsubstituierten aromatischen Kohlenwasserstoffen und Mi- schungen derselben bestehenden Gruppe ausgewählten Verbindung;

n eine ganze Zahl von 0 bis 5 ist; 5 Z eine verzweigt- oder geradkettige Kohlenwasserstoffgruppe ist, die 3 bis 25 Kohlenstoffatome und wahlweise Arylgruppen oder substituierte Arylgruppen enthält;

J Sauerstoff, Schwefel oder Stickstoff ist; 10 A ein aus Gruppe IVa des Periodensystems der Elemente ausgewähltes Element ist;

R1,R2und R3 unabhängig voneinander ausgewählt sind aus Wasserstoff, Alkylgruppen, niedere Alkylgruppen, niedere Alkylthiogruppen und niedere Dialkylaminogruppen enthaltenden substituierten Alkylgruppen, Aryl- 15 gruppen, niedere Alkylgruppen, niedere Alkylthiogruppen und niedere Dialkylaminogruppen enthaltenden sub- stituierten Arylgruppen, Cycloalkylgruppen und substituierten Cycloalkylgruppen, die 5 bis 12 Kohlenstoffato- me enthalten; und

x von der Wertigkeit von J abhängt und schwankt zwischen eins, wenn J Sauerstoff oder Schwefel ist, und 20 zwei, wenn J Stickstoff ist, um ein monogeschütztes, monofunktionalisiertes lebendes Polymer zu bilden; und

Funktionalisieren des lebenden Polymers mit einer geschützten oder nichtgeschützten funktionalisierenden Verbindung, die als Ende oder Abschluß eines lebenden Polymers geeignet ist, um eine geschützte oder nichtgeschützte funktionelle Gruppe in das lebende Polymer aufzunehmen, um ein difunktionelles Polymer 25 1 2 3 mit einer geschützten oder nichtgeschützten Gruppe FG und einer Schutzgruppe -[A(R R R )]x bereitzustel- 1 2 3 len, vorausgesetzt daß die Gruppe J-[A(R R R )]x und die funktionalisierende Verbindung verschieden sind und daß dann, wenn J Sauerstoff ist, A nicht Silicium ist, um ein heterotelecheles Polymer bereitzustellen.

29. Verfahren nach Anspruch 28, bei dem: 30 der konjugierte Dienkohlenwasserstoff ausgewählt ist aus der aus 1,3-Butadien, Isopren, 2,3-Dimethyl-1,3-bu- tadien, 1,3-Pentadien, Myrcen, 2-Methyl-3-ethyl-1,3-butadien, 2-Methyl-3-ethyl-1,3-pentadien, 1,3-Hexadien, 2-Methyl-1,3-hexadien, 1,3-Heptadien, 3-Methyl-1,3-heptadien, 1,3-Octadien, 3-Butyl-1,3-octadien, 3,4-Di- methyl-1,3-hexadien, 3-n-Propyl-1,3-pentadien, 4,5-Diethyl-1,3-octadien, 2,4-Diethyl-1,3-butadien, 2,3-di-n- 35 Propyl-1,3-butadien und 2-Methyl-3-isopropyl-1,3-butadienen bestehenden Gruppe; und

der alkenylsubstituierte aromatische Kohlenwasserstoff ausgewählt ist aus der aus Styrol, α-Methylstyrol, Vinyltoluol, 2-Vinylpyridin, 4-Vinylpyridin, 1-Vinylnaphthalin, 2-Vinylnaphthalin, 1-α-Methylvinylnaphthalin, 2-α-Methylvinylnaphthalin, 1,2-Diphenyl-4-methyl-l-hexen und Mischungen derselben und Alkyl-, Cycloalkyl-, 40 Aryl-, Alkylaryl- und Arylalkylderivaten derselben bestehenden Gruppe, wobei die Gesamtzahl der Kohlen- stoffatome in den kombinierten Kohlenwasserstoffbestandteilen nicht größer ist als 18.

30. Verfahren nach Anspruch 28, bei dem A Kohlenstoff oder Silicium ist.

45 31. Verfahren nach Anspruch 28, bei dem ferner wenigstens eines der funktionellen Enden des heterotelechelen Po- lymers nach dem Funktionalisieren seinen Schutz verliert.

32. Verfahren nach Anspruch 28, bei dem ferner wenigstens ein aliphatisch ungesättigter Teil des heterotelechelen Polymers nach dem Polymerisieren mit Wasserstoff gesättigt wird. 50 33. Verfahren nach Anspruch 31, bei dem ferner wenigstens ein aliphatisch ungesättigter Teil des heterotelechelen Polymers nach dem Verlieren des Schutzes mit Wasserstoff gesättigt wird.

34. Verfahren nach Anspruch 32 oder 33, bei dem der Schritt des Sättigens das Sättigen von wenigstens etwa 90 % 55 des aliphatisch ungesättigten Teils mit Wasserstoff umfaßt.

35. Verfahren nach Anspruch 28, bei dem der Schritt des Funktionalisierens das Funktionalisieren des lebenden Po- lymers mit einer funktionalisierenden Verbindung umfaßt, die ausgewählt ist aus der aus Ethylenoxid, Propylen-

27 EP 0 842 199 B1

oxid, Styroloxid, Oxetan, Sauerstoff, Schwefel, Kohlendioxid, Chlor, Brom, Iod, Chlortrimethylsilan, Styrenyldime- thylchlorsilan, 1,3-Propansulfon, Caprolactam, N-Benzylidentrimethylsilylamid, Dimethylformamid, Siliciumaceta- len, 1,5-Diazobicyclo[3.1.0]hexan, Allylbromid, Allylchlorid, Methacryloylchlorid, 3-(Dimethylamino)-propylchlorid, N-(Benzyliden)trimethylsilylamin, Epichlorhydrin, Epibromhydrin und Epiiodhydrin bestehenden Gruppe. 5 36. Verfahren nach Anspruch 28, bei dem der metallorganische Initiator ausgewählt ist aus der aus Omega-(tert- alkoxy)-1-alkyllithium, mit konjugierten Alkadienen verlängertem Omega-(tert-alkoxy)-1-alkyllithium, alkenylsub- stituierten aromatischen Kohlenwasserstoffen und Mischungen derselben, Omega-(tert-alkylthio)-1-alkyllithium, mit konjugierten Alkadienen verlängertem Omega-(tert-alkylthio)-1-alkyllithium, alkenylsubstituierten aromati- 10 schen Kohlenwasserstoffen und Mischungen derselben, Omega-(tert-butyldimethylsilyloxy)-1-alkyllithium, Ome- ga-(tert-butyldimethylsilylthio)-1-alkyllithium, Omega-(dialkylamino)-1-alkyllithium, mit konjugierten Alkadienen verlängertem Omega-(dialkylamino)-1-alkyllithium, alkylensubstituierten aromatischen Kohlenwasserstoffen und Mischungen derselben und aus Omega-(bis-tert-alkylsilylamino)-1-alkyllithium bestehenden Gruppe.

15 37. Verfahren nach Anspruch 36, bei dem der metallorganische Initiator ausgewählt ist aus der aus 3-(1,1-Dimethyle- thoxy)-1-propyllithium, 3-(tert-Butyldimethylsilyloxy)-1-propyllithium, 3-(1,1-Dimethylethylthio)-1-propyllithium, 3-(Dimethylamino)-1-propyllithium, 3-(di-tert-Butyldimethylsilylamino)-1-propyllithium, 3-(1,1-Dimethylethoxy)- 1-propyllithium, 3-(1,1-Dimethylethoxy)-2-methyl-1-propyllithium, 3-(1,1-Dimethylethoxy-2,2-dimethyl-1-propylli- thium, 4-(1,1-dimethylethoxy)-1-butyllithium, 5-(1,1-Dimethylethoxy)-1-pentyllithium, 6-(1,1-Dimethylethoxy)- 20 1-hexyllithium,8-(1,1-dimethylethoxy)-1-octyllithium,3-(1,1-Dimethylpropoxy)-1-propyllithium,3-(1,1-Dimethylpro- poxy)-2-methyl-1-propyllithium, 3-(1,1-Dimethylpropoxy)-2,2-dimethyl-1-propyllithium, 4-(1,1-dimethylpropoxy)- 1-butyllithium, 5-(1,1-Dimethylpropoxy)-1-pentyllithium, 6-(1,1-Dimethylpropoxy)-1-hexyllithium, 8-(1,1-Dimethyl- propoxy)-1-octyllithium, 3-(t-Butyldimethylsilyloxy)-1-propyllithium, 3-(t-Butyldimethylsilyloxy)-2-methyl-1-propylli- thium, 3-(t-Butyldimethylsilyloxy)-2,2-dimethyl-1-propyllithium, 4-(t-Butyldimethylsilyloxy)-1-butyllithium, 5-(t-Bu- 25 tyldimethylsilyloxy)-1-pentyllithium, 6-(t-Butyldimethylsilyloxy)-1-hexyllithium, 8-(t-Butyldimethylsilyloxy)-1-octylli- thium und 3-(Trimethylsilyloxy)-2,2-dimethyl-1-propyllithium, 3-(Dimethylamino)-1-propyllithium, 3-(Dimethylami- no)-2-inethyl-1-propyllithium, 3-(Dimethylamino)-2,2-dimethyl-1-propyllithium, 4-(Dimethylamino)-1-butyllithium, 5-(Dimethylamino)-1-pentyllithium, 6-(Dimethylamino)-1-hexyllithium, 8-(Dimethylamino)-1-propyllithium, 4-(Ethoxy)-1-butyllithium, 4-(Propyloxy)-1-butyllithium, 4-(1-Methylethoxy)-1-butyllithium, 3-(Triphenylmethoxy)- 30 2,2-dimethyl-1-propyllithium, 4-(Triphenylmethoxy)-1-butyllithium, 3-[3-(Dimethylamino)-1-propyloxy-1-propyllithi- um, 3-[2-(Dimethylamino)-1-ethoxy]-1-propyllithium, 3-[2-(Diethylamino)-1-ethoxy]-1-propyllithium, 3-[2-(Diisopro- pyl)amino)-1-ethoxy]-1-propyllithium, 3-[2-(1-piperidino)-1-ethoxy]-1-propyllithium, 3-[2-(1-pyrrolidino)-1-ethoxy]- 1-propyllithium, 4-[3-(Dimethylamino)-1-propyloxy]-1-butyllithium, 6-[2-(1-piperidino)-1-ethoxy]-1-hexyllithium, 3-[2-(Methoxy)-1-ethoxy]-1-propyllithium, 3-[2-(Ethoxy)-1-ethoxy]-1-propyllithium, 4-[2-(Methoxy)-1-ethoxy]-1-bu- 35 tyllithium, 5-[2-(Ethoxy)-1-ethoxy]-1-pentyllithium, 3-[3-(Methylthio)-1-propyloxy]-1-propyllithium, 3-[4-(Me- thylthio)-1-butyloxy]-1-propyllithium, 3-(Methylthiomethoxy)-1-propyllithium, 6-[3-(Methylthio)-1-propyloxy]-1-he- xyllithium, 3-[4-Methoxy)-benzyloxy]-1-propyllithium, 3-[4-(1,1-Dimethylethoxy)-benzyloxy]-1-propyllithium, 3-[2,4-Dimethoxy)-benzyloxy]-1-propyllithium, 8-[4-Methoxy)-benzyloxy]-1-octyllithium, 4-[4-Methylthio)-benzylo- xy]-1-Butyllithium, 3-[4-Dimethylamino)-benzyloxy]-1-propyllithium, 6-[4-(Dimethylamino)-benzyloxy]-1-hexyllithi- 40 um, 5-(Triphenylmethoxy)-1-pentyllithium, 6-(Triphenylmethoxy)-1-hexyllithium und 8-(Triphenylmethoxy)-1-octyl- lithium, 3-(Hexamethylenimino)-1-propyllithium, 4-(Hexamethylenimino)-1-butyllithium, 5-(Hexamethylenimino)- 1-pentyllithium, 6-Hexamethylenimino)-1-hexyllithium, 8-(Hexamethylenimino)-1-octyllithium, 3-(t-Butyldimethyl- silylthio)-1-propyllithium, 3-(t-Butyldimethylsilylthio)-2-methyl-1-propyllithium, 3-(t-Butyldimethylsilylthio)-2,2-di- methyl-1-propyllithium, 4-(t-Butyldimethylsilylthio)-1-butyllithium, 6-(t-Butyldimethylsilylthio)-1-hexyllithium, 3-(Tri- 45 methylsilylthio)-2,2-dimethyl-1-propyllithium, 3-(1,1-Dimethylethylthio)-1-propyllithium, 3-(1,1-Dimethylethylthio)- 2-methyl-1-propyllithium, 3-(1,1-Dimethylethylthio)-2,2-dimethyl-1-propyllithium, 4-(1,1-Dimethylethylthio)-1-bu- tyllithium, 5-(1,1-Dimethylethylthio)-1-pentyllithium, 6-(1,1-Dimethylethylthio)-1-hexyllithium, 8-(1,1-Dimethyle- thylthio)-1-octyllithium, 3-(1,1-Dimethylpropylthio)-1-propyllithium, 3-(1,1-Dimethylpropylthio)-2-methyl-1-propylli- thium, 3-(1,1-Dimethylpropylthio)-2,2-dimethyl-1-propyllithium, 4-(1,1-Dimethylpropylthio)-1-butyllithium, 50 5-(1,1-Dimethylpropylthio)-1-pentyllithium, 6-(1,1-Dimethylpropylthio)-1-hexyllithium und 8-(1,1-Dimethylpro- pylthio)-1-octyllithium, kohlenwasserstofflöslichem konjugiertem Alkadien, alkenylsubstituierten aromatischen Kohlenwasserstoffen und Mischungen derselben, verlängerten oligomeren Analoga derselben und Mischungen derselben bestehenden Gruppe.

55 38. Verfahren nach Anspruch 28, bei dem der Schritt des Polymerisierens das Polymerisieren der Dienkohlenwasser- stoffe oder der alkenylsubstituierten aromatischen Kohlenwasserstoffe einzeln, sequentiell oder als Mischungen derselben umfaßt.

28 EP 0 842 199 B1

39. Verfahren nach Anspruch 28, bei dem wenigstens eine der funktionellen Gruppen des heterotelechelen Polymers nach dem Funktionalisieren mit wenigstens einem Comonomer copolymerisiert wird, um ein Copolymer zu bilden.

40. Verfahren nach Anspruch 39, bei dem das wenigstens eine Comonomer ausgewählt ist aus der aus Lactamen, 5 zyklischen Ethern, Diaminen, Diisocyanaten, Polyisocyanaten, Diamiden, Polyamiden, zyklischen Amiden, Dicar- bonsäuren, Polycarbonsäuren, Diolen, Polyolen, Anhydriden und Mischungen derselben bestehenden Gruppe.

41. Verfahren nach Anspruch 39, bei dem der Schritt des Copolymerisierens das Umsetzen des Polymers mit einem oder mehreren Comonomeren unter Bedingungen umfaßt, die ausreichen, damit das Polymer den Schutz verliert, 10 und um das eine bzw. die mehreren Comonomere an beiden funktionellen Enden des nicht mehr geschützten Polymers zu polymerisieren.

42. Verfahren nach Anspruch 41, bei dem der Schritt des Umsetzens das Umsetzen des Polymers und des einen bzw. der mehreren Comonomere in Gegenwart eines stark sauren Katalysators umfaßt. 15 43. Verfahren nach Anspruch 39, bei dem der Schritt des Copolymerisierens das Umsetzen des Polymers mit einem bzw. mehreren Comonomeren unter Bedingungen umfaßt, die ausreichen, um die Unversehrtheit wenigstens einer Schutzgruppe des Polymers aufrechtzuerhalten, um wenigstens ein nicht mehr geschütztes funktionelles Ende bereitzustellen und das eine bzw. die mehreren Comonomere an dem wenigstens einen nicht mehr geschützten 20 funktionellen Ende des Polymers zu polymerisieren.

44. Verfahren nach Anspruch 43, bei dem ferner das geschützte funktionelle Ende seinen Schutz verliert.

45. Verfahren nach Anspruch 43, bei dem ferner das Copolymer mit einem Comonomer umgesetzt wird. 25 46. Verfahren zum Modifizieren der Oberflächenhaftung von Polyolefinen, bei dem das funktionelle Polymer nach einem der Ansprüche 1 bis 28 mit einem Polyolefin in einer Menge von 1 bis 25 Gew.-% bezogen auf das Polyolefin schmelzvermischt wird.

30 47. Verfahren nach Anspruch 46, bei dem das Polyolefin ausgewählt ist aus der aus Polyethylen niedriger Dichte, linearem Polyethylen niedriger Dichte, Polyethylen hoher Dichte, Polypropylen, Polyisobutylen und Copolymeren und Mischungen derselben bestehenden Gruppe.

35 Revendications

1. Polymère ayant des extrémités fonctionnelles mélangées produit par le procédé comprenant :

la polymérisation d'un monomère choisi parmi des hydrocarbures diéniques conjugués, des hydrocarbures 40 aromatiques alcényl-substitués et leurs mélanges, avec un initiateur organométallique fonctionnel protégé de formule :

1 2 3 M-Qn-Z-J-[A(R R R )]x (II) 45 dans laquelle :

M est un métal alcalin ; Q est un groupe hydrocarbyle saturé ou insaturé obtenu par incorporation d'un composé choisi dans le groupe 50 consistant en hydrocarbures diéniques conjugués, hydrocarbures aromatiques alcényl-substitués et leurs mélanges ; n est un entier de 0 à 5 ; Z est un groupe hydrocarboné à chaîne droite ou ramifiée qui contient 3 à 25 atomes de carbone, contenant éventuellement des groupes aryle ou aryle substitué ; 55 J est un atome d'oxygène, de soufre ou d'azote ; 1 2 3 [A(R R R )]x est un groupe protecteur dans lequel A est un élément choisi dans le Groupe IVA du tableau périodique des éléments ;

29 EP 0 842 199 B1

R1,R2et R3 sont indépendamment choisis dans le groupe comprenant un atome d'hydrogène, des groupes alkyle, alkyle substitué contenant des groupes alkyle inférieur, alkylthio inférieur et dialkylamino inférieur, des groupes aryle, aryle substitué contenant des groupes alkyle inférieur, alkylthio inférieur et dialkylamino infé- rieur, des groupes cycloalkyle et cycloalkyle substitué contenant 5 à 12 atomes de carbone ; et 5 x dépend de la valence de J et varie de un lorsque J est un atome d'oxygène ou de soufre à deux lorsque J est un atome d'azote, pour former un polymère vivant mono-protégé, mono- fonctionnalisé ; et la fonctionnalisation du polymère vivant avec un composé fonctionnalisant protégé ou non protégé capable de terminer ou de coiffer une extrémité d'un polymère vivant pour incorporer un groupe fonctionnel protégé ou non protégé à l'intérieur du polymère vivant pour fournir un polymère difonctionnel ayant un groupe FG 10 1 2 3 1 2 3 protégé ou non protégé et un groupe protecteur -[A(R R R )]x à la condition que J-[A(R R R )]x de l'initiateur et le composé fonctionnalisant soient différents et que lorsque J est un atome d'oxygène, alors A ne soit pas un atome de silicium, pour fournir un polymère hétéro-téléchélique.

2. Polymère ayant des extrémités fonctionnelles mélangées produit par le procédé comprenant : 15 la polymérisation d'un monomère choisi parmi des hydrocarbures diéniques conjugués, des hydrocarbures aromatiques alcényl-substitués et leurs mélanges, avec un initiateur organométallique fonctionnel protégé de formule :

20 1 2 3 M-Qn-Z-J-[A(R R R )]x (II)

dans laquelle :

25 M est un métal alcalin ; Q est un groupe hydrocarbyle saturé ou insaturé obtenu par incorporation d'un composé choisi dans le groupe consistant en hydrocarbures diéniques conjugués, hydrocarbures aromatiques alcényl-substitués et leurs mélanges ; n est un entier de 0 à 5 ; 30 Z est un groupe hydrocarboné à chaîne droite ou ramifiée qui contient 3 à 25 atomes de carbone, contenant éventuellement des groupes aryle ou aryle substitué ; J est un atome d'oxygène, de soufre ou d'azote ; 1 2 3 [A(R R R )]x est un groupe protecteur dans lequel A est un élément choisi dans le Groupe IVA du tableau périodique des éléments ; 35 R1,R2et R3 sont indépendamment choisis dans le groupe comprenant un atome d'hydrogène, des groupes alkyle, alkyle substitué contenant des groupes alkyle inférieur, alkylthio inférieur et dialkylamino inférieur, des groupes aryle, aryle substitué contenant des groupes alkyle inférieur, alkylthio inférieur et dialkylamino infé- rieur, des cycloalkyle et cycloalkyle substitué contenant 5 à 12 atomes de carbone ; et x dépend de la valence de J et varie de un lorsque J est un atome d'oxygène ou de soufre à deux lorsque J 40 est un atome d'azote, pour former un polymère vivant mono-protégé, mono-fonctionnalisé ; la fonctionnalisation du polymère vivant avec un composé fonctionnalisant protégé ou non protégé capable de terminer ou de coiffer une extrémité d'un polymère vivant pour incorporer un groupe fonctionnel protégé ou non protégé à l'intérieur du polymère vivant pour fournir un polymère difonctionnel ayant un groupe FG 1 2 3 1 2 3 protégé ou non protégé et un groupe protecteur -[A(R R R )]x à la condition que J-[A(R R R )]x de l'initiateur 45 et le composé fonctionnalisant soient différents et que lorsque J est un atome d'oxygène, alors A ne soit pas un atome de silicium, pour fournir un polymère hétéro-téléchélique ; et l'élimination d'au moins un groupe protecteur.

3. Polymère hétéro-téléchélique ayant la formule 50

1 2 3 FG-(Q)d-Z-J-[A(R R R )]x (I)

dans laquelle : 55 FG est un groupe fonctionnel protégé ou non protégé ; Q est un groupe hydrocarbyle saturé ou insaturé obtenu par incorporation d'un composé choisi dans le groupe

30 EP 0 842 199 B1

consistant en hydrocarbures diéniques conjugués, hydrocarbures aromatiques alcényl-substitués et leurs mélanges ; d est un entier de 10 à 2000 ; Z est un groupe hydrocarboné à chaîne droite ou ramifiée qui contient 3 à 25 atomes de carbone, contenant 5 éventuellement des groupes aryle ou aryle substitué ; J est un atome d'oxygène, de soufre ou d'azote ; 1 2 3 [A(R R R )]x est un groupe protecteur dans lequel A est un élément choisi dans le Groupe IVA du tableau périodique des éléments ; R1,R2et R3 sont indépendamment choisis dans le groupe comprenant un atome d'hydrogène, des groupes alkyle, alkyle substitué contenant des groupes alkyle inférieur, alkylthio inférieur et 10 dialkylamino inférieur, des groupes aryle, aryle substitué contenant des groupes alkyle inférieur, alkylthio in- férieur et dialkylamino inférieur, des groupes cycloalkyle et cycloalkyle substitué contenant 5 à 12 atomes de carbone ; et x dépend de la valence de J et varie de un lorsque J est un atome d'oxygène ou de soufre à deux lorsque J est un atome d'azote, 1 2 3 à la condition que J-[A(R R R )]x et FG soient différents et que lorsque J est un atome d'oxygène, alors A ne 15 soit pas un atome de silicium.

4. Polymère suivant l'une quelconque des revendications 1, 2 et 3, dans lequel :

ledit hydrocarbure diénique conjugué est choisi dans le groupe consistant en 1,3-butadiène, isoprène, 2,3-di- 20 méthyl-1,3-butadiène, 1,3-pentadiène, myrcène, 2-méthyl-3-éthyl-1,3-butadiène, 2-méthyl-3-éthyl-1,3-penta- diène, 1,3-hexadiène, 2-méthyl-1,3-hexadiène, 1,3-heptadiène, 3-méthyl-1,3-heptadiène, 1,3-octadiène, 3-butyl-1,3-octadiène, 3,4-diméthyl-1,3-hexadiène, 3-n-propyl-1,3-pentadiène, 4,5-diéthyl-1,3-octadiène, 2,4-diéthyl-1,3-butadiène, 2,3-di-n-propyl-1,3-butadiène et 2-méthyl-3-isopropyl-1,3-butadiènes ; et ledit hydrocarbure aromatique alcényl-substitué est choisi dans le groupe consistant en styrène, alpha-mé- 25 thylstyrène, vinyltoluène, 2-vinylpyridine, 4-vinylpyridine, 1-vinylnaphtalène, 2-vinylnaphtalène, 1-alpha-mé- thylvinylnaphtalène, 2-alphaméthylvinylnaphtalène, 1,2-diphényl-4-méthyl-1-hexène et leurs mélanges, et leurs dérivés alkyliques, cycloalkyliques, aryliques, alkylaryliques et aryialkyliques dans lesquels le nombre total d'atomes de carbone dans les constituants hydrocarbonés combinés ne dépasse pas 18.

30 5. Polymère suivant l'une quelconque des revendications 1, 2 et 3, dans lequel A est un atome de carbone ou de silicium.

6. Polymère suivant l'une quelconque des revendications 1, 2 et 3, dans lequel une partie au moins de l'insaturation aliphatique dudit polymère a été saturée avec de l'hydrogène. 35 7. Polymère suivant la revendication 6, dans lequel au moins environ 90% de l'insaturation aliphatique ont été saturés avec de l'hydrogène.

8. Polymère suivant l'une quelconque des revendications 1 ou 2, dans lequel ledit composé fonctionnalisant est choisi 40 dans le groupe consistant en oxyde d'éthylène, oxyde de propylène, oxyde de styrène, oxétane, oxygène, soufre, dioxyde de carbone, chlore, brome, iode, chlorotriméthylsilane, styrényldiméthyl chlorosilane, 1,3-propane sultone, caprolactame, N-benzylidène triméthylsilylamide, diméthyl formamide, silicium acétals, 1,5-diazabicyclo-[3.1.0]- hexane, bromure d'allyle, chlorure d'allyle, chlorure de méthacryloyle, chlorure de 3-(diméthylamino)-propyle, N-(benzylidène)-triméthylsilylamine, épichlorohydrine, épibromohydrine et épi-iodohydrine. 45 9. Polymère suivant les revendications 1 ou 2, dans lequel ledit initiateur organométallique est choisi dans le groupe consistant en oméga-(t-alcoxy)-1-alkyllithium, chaîne d'oméga-(t-alcoxy)-1-alkyllithium prolongée avec des alca- diènes conjugués, des hydrocarbures aromatiques alcényl-substitués et leurs mélanges, oméga-(t-alkylthio)-1-alk- yllithium, chaîne d'oméga-(t-alkylthio)-1-alkyllithium prolongée avec des alcadiènes conjugués, des hydrocarbures 50 aromatiques alcényl-substitués et leurs mélanges, oméga-(t-butyldiméthylsilyloxy)-1-alkyllithium, oméga-(t-butyl- diméthylsilylthio)-1-alkyllithium, oméga-(dialkylamino)-1-alkyllithium, chaîne d'oméga-(dialkylamino)-1-alkylli- thium prolongée avec des alcadiènes conjugués, des hydrocarbures aromatiques alcényl-substitués et leurs mé- langes, et oméga-(bis'-t-alkylsilylamino)-1-alkyllithium.

55 10. Polymère suivant la revendication 9, dans ledit initiateur organométallique est choisi dans le groupe consistant en 3-(1,1-diméthyléthoxy)-1-propyllithium, 3-(t-butyldiméthylsilyloxy)-1-propyliithium, 3-(1,1-diméthyléthylthio)-1-pro- pyllithium, 3-(diméthylamino)-1-propyllithium, 3-di-(t-butyldiméthylsilylamino)-1-propyllithium, 3-(1,1-diméthylé- thoxy)-1-propyllithium, 3-(1,1-diméthyléthoxy-2-méthyl-1-propyllithium, 3-(1,1-diméthyléthoxy-2,2-diméthyl-1-pro-

31 EP 0 842 199 B1

pyllithium, 4-(1,1-diméthyléthoxy)-1-butyllithium, 5-(1,1-diméthyléthoxy-1-pentyllithium, 6-(1,1-diméthyléthoxy)- 1-hexyllithium, 8-(1,1-diméthyléthoxy)-1-octyllithium, 3-(1,1-diméthylpropoxy)-1-propyllithium, 3-(1,1-diméthylpro- poxy)-2-méthyl-1-propyllithium; 3-(1,1-diméthylpropoxy)-2,2-diméthyl-1-propyllithium, 4-(1,1-diméthylpropoxy)- 1-butyllithium, 5-(1,1-diméthylpropoxy)-1-pentyllithium, 6-(1,1-diméthylpropoxy)-1-hexyllithium, 8-(1,1-diméthyl- 5 propoxy)-1-octyllithium, 3-(t-butyldiméthylsilyloxy)-1-propyllithium, 3-(t-butyldiméthylsilyloxy-2-méthyl-1-propylli- thium, 3-(t-butyldiméthylsilyloxy)-2,2-diméthyl-1-propyllithium, 4-(t-butyldiméthylsilyloxy)-1-butyllithium, 5-(t-butyl- diméthylsilyloxy)-1-pentyllithium, 6-(t-butyldiméthysilyloxy)-1-hexyllithium, 8-(t-butyldiméthylsilyloxy)-1-octylli- thium et 3-(triméthylsilyloxy)-2,2-diméthyl-1-propyllithium, 3-(diméthylamino)-1-propyllithium, 3-(diméthylamino)- 2-méthyl-1-propyllithium, 3-(diméthylamino)-2,2-diméthyl-1-propyllithium, 4-(diméthylamino)-1-butyllithium, 5-(di- 10 méthylamino)-1-pentyllithium, 6-(diméthylamino)-1-hexyllithium, 8-(diméthylamino)-1-propyllithium, 4-(éthoxy)- 1-butyllithium, 4-(propyloxy)-1-butyllithium, 4-(1-méthyléthoxy)-1-butyllithium, 3-(triphénylméthoxy)-2,2-diméthyl- 1-propyllithium,4-(triphénylméthoxy)-1-butyllithium,3-[3-(diméthylamino)-1-propyloxy]-1-propyllithium,3-[2-(dimé- thy)amino)-1-éthoxy]-1-propyllithium, 3-[2-(diéthylamino)-1-éthoxy]-1-propyllithium, 3-[2-(diisopropyl-amino)- 1-éthoxy]-1-propyllithium, 3-[2-(1-pipéridino)-1-éthoxy]-1-propyllithium, 3-[2-(1-pyrrolidino)-1-éthoxy]-1-propylli- 15 thium, 4-[3-(diméthylamino)-1-propyloxy]-1-butyllithium, 6-[2-(1-pipéridino)-1-éthoxy]-1-hexyllithium, 3-[2-(mé- thoxy)-1-éthoxy]-1-propyllithium, 3-[2-éthoxy)-1-éthoxy]-1-propyllithium, 4-[2-(méthoxy)-1-éthoxy]-1-butyllithium, 5-[2-(éthoxy)-1-éthoxy]-1-pentyllithium, 3-[3-(méthylthio)-1-propyloxy]-1-propyllithium, 3-[4-(méthylthio)-1-buty- loxy]-1-propyllithium, 3-(méthylthiométhoxy)-1-propyllithium, 6-[3-(méthylthio)-1-propyloxy]-1-hexyllithium, 3-[4-(méthoxy)-benzyloxy]-1-propyllithium, 3-[4-(1,1-diméthyléthoxy)-benzyloxy]-1-propyllithium, 3-[2,4-(dimé- 20 thoxy)-benzyloxy]-1-propyllithium, 8-[4-(méthoxy)-benzyloxy]-1-octyllithium, 4-[4-(méthylthio)-benzyloxy]-1-butyl- lithium, 3-[4-(diméthylamino)-benzyloxy]-1-propyllithium, 6-[4-(diméthylamino)-benzyloxy]-1-hexyllithium, 5-(tri- phénylméthoxy)-1-pentyllithium, 6-(triphénylméthoxy)-1-hexyllithium et 8-(triphénylméthoxy)-1-octyllithium, 3-(hexaméthylèneimino)-1-propyllithium, 4-(hexaméthylèneimino)-1-butyllithium, 5-(hexaméthylèneimino)-1-pen- tyllithium, 6-(hexaméthylèneimino)-1-hexyllithium, 8-(hexaméthylène imino)-1-octyllithium, 3-(t-butyldiméthylsilyl- 25 thio)-1-propyllithium, 3-(t-butyldiméthylsilylthio)-2-méthyl-1-propyllithium, 3-(t-butyldiméthylsilylthio)-2,2-diméthyl- 1-propyllithium, 4-(t-butyldiméthylsilylthio)-1-butyllithium, 6-(t-butyldiméthylsilylthio)-1-hexyllithium, 3-(triméthyl- silylthio)-2,2-diméthyl-1-propyllithium, 3-(1,1-diméthyléthylthio)-1-propyllithium, 3-(1,1-diméthyléthylthio-2-mé- thyl-1-propyllithium, 3-(1,1-diméthyléthylthio)-2,2-diméthyl-1-propyllithium, 4-(1,1-diméthyléthylthio)-1-butylli- thium, 5-(1,1-diméthyléthylthio)-1-pentyllithium, 6-(1,1-diméthyléthylthio)-1-hexyllithium, 8-(1,1-diméthyléthyl- 30 thio)-1-octyllithium, 3-(1,1-diméthylpropylthio)-1-propyllithium, 3-(1,1-diméthylpropylthio)-2-méthyl-1-propylli- thium, 3-(1,1-diméthylpropylthio)-2,2-diméthyl-1-propyllithium, 4-(1,1-diméthylpropylthio)-1-butyllithium, 5-(1,1-di- méthylpropylthio)-1-pentyllithium, 6-(1,1-diméthylpropylthio)-1-hexyllithium et 8-(1,1-diméthylpropylthio)-1-octylli- thium, alcadiène conjugué soluble dans des hydrocarbures, hydrocarbures aromatiques alcényl-substitués et leurs mélanges, leurs analogues oligomères à chaîne prolongée et leurs mélanges. 35 11. Polymère suivant les revendications 1 ou 2, dans lequel lesdits hydrocarbures diéniques et lesdits hydrocarbures aromatiques alcényl-substitués sont traités seuls, séquentiellement ou sous forme de leurs mélanges.

12. Polymère suivant la revendication 3, dans lequel au moins l'un de J ou FG est déprotégé, et dans lequel ledit 40 polymère hétéro-téléchélique comprend de plus au moins un comonomère fonctionnel traité avec au moins l'un de ces groupes fonctionnels déprotégés.

13. Polymère suivant la revendication 12, dans lequel ledit comonomère au moins présent est choisi dans le groupe consistant en lactames, éthers cycliques, diamines, diisocyanates, polyisocyanates, diamides, polyamides, ami- 45 des cycliques, acides dicarboxyliques, acides polycarboxyliques, diols, polyols, anhydrides et leurs mélanges.

14. Polymère suivant la revendication 13, dans lequel ledit polymère comprend au moins un groupe fonctionnel hy- droxy, et dans lequel ledit groupe fonctionnel hydroxy au moins présent est traité avec un diisocyanate et un diol pour produire des blocs polyuréthane. 50 15. Polymère suivant la revendication 14, dans lequel ledit diol comprend des fonctionnalités de groupe acide, et dans lequel lesdites fonctionnalités de groupe acide sont neutralisées avec des amines tertiaires pour fournir une apti- tude à la dispersion dans l'eau.

55 16. Polymère suivant la revendication 13, dans lequel ledit polymère comprend au moins un groupe fonctionnel hy- droxy, et dans lequel ledit groupe fonctionnel hydroxy au moins présent est traité avec un diacide ou un anhydride et une diamine ou un lactame pour produire des blocs polyamide.

32 EP 0 842 199 B1

17. Polymère suivant la revendication 13, dans lequel ledit polymère comprend au moins un groupe fonctionnel hy- droxy, et dans lequel ledit groupe fonctionnel hydroxy au moins présent est traité avec un diacide ou un anhydride et un diol ou un polyol pour produire des blocs polyester.

5 18. Polymère suivant la revendication 17, dans lequel au moins une partie dudit diacide ou dudit anhydride est subs- tituée par un acide ou un anhydride insaturés pour fournir des blocs polyester insaturés capables de se réticuler avec des monomères insaturés par addition d'initiateurs de radicaux libres.

19. Polymère suivant la revendication 13, dans lequel ledit polymère comprend au moins un groupe fonctionnel hy- 10 droxy, et dans lequel ledit groupe fonctionnel hydroxy au moins présent est traité avec un anhydride pour former un semi-ester avec une fonctionnalité carboxy libre à son extrémité terminale.

20. Polymère suivant la revendication 19, dans lesdits groupes terminaux fonctionnels carboxy sont de plus traités avec des résines époxy et des agents de durcissement de type amine pour former des composites de résine époxy. 15 21. Polymère suivant la revendication 13, dans lequel ledit polymère comprend au moins un groupe fonctionnel hy- droxy, et dans lequel ledit groupe fonctionnel hydroxy au moins présent est traité avec du chlorure de méthacroyle pour fournir des groupes alcényle polymérisables à son extrémité.

20 22. Polymère suivant la revendication 21, comprenant de plus des monomères acryliques polymérisés avec des ini- tiateurs de radicaux libres sur lesdits groupes terminaux alcényles.

23. Polymère suivant la revendication 22, dans lequel lesdits monomères acide acrylique sont des monomères acryli- ques fonctionnels ou amides fonctionnels pour fournir des segments de polymère hydrophiles polaires. 25 24. Polymère suivant la revendication 21, dans lequel du styrène sulfoné et/ou de la 4-vinyl pyridine sont polymérisés par des initiateurs de radicaux libres sur lesdits groupes alcényles terminaux pour fournir des segments de poly- mère fonctionnels capables d'améliorer l'aptitude à la dispersion du polymère.

30 25. Polymère suivant la revendication 13, dans lequel ledit polymère comprend au moins un groupe fonctionnel hy- droxy, et dans lequel ledit groupe fonctionnel hydroxy au moins présent est traité avec du chlorure de sulfonyle en présence d'un catalyseur de type amine tertiaire pour former des groupes fonctionnels sulfonate à son extrémité terminale.

35 26. Polymère suivant la revendication 25, dans lequel lesdits groupes fonctionnels sulfonate sont traités avec des amines primaires ou de l'ammoniac, à chaud et sous pression, pour former des polymères ayant une fonctionnalité amine à son extrémité terminale.

27. Polymère suivant la revéndication 19, dans lequel lesdits groupes fonctionnels carboxy sont traités avec une résine 40 époxy et un excès d'amine pour faire réagir complètement la totalité des groupes époxy, l'amine en excès est éliminée par distillation, et le produit d'addition époxyamine résultant est traité avec un acide organique ou inor- ganique soluble dans l'eau pour former des polymères contenant un ammonium quaternaire soluble dans l'eau.

28. Procédé pour préparer un polymère hétéro-téléchélique ayant des extrémités fonctionnelles mélangées, 45 comprenant :

la polymérisation d'un monomère choisi parmi des hydrocarbures diéniques conjugués, des hydrocarbures aromatiques alcényl-substitués et leurs mélanges, avec un initiateur organométallique fonctionnel protégé de formule : 50

1 2 3 M-Qn-Z-J-[A(R R R )]x (II)

dans laquelle : 55 M est un métal alcalin ; Q est un groupe hydrocarbyle saturé ou insaturé obtenu par incorporation d'un composé choisi dans le groupe

33 EP 0 842 199 B1

consistant en hydrocarbures diéniques conjugués, hydrocarbures aromatiques alcényl-substitués et leurs mélanges ; n est un entier de 0 à 5 ; Z est un groupe hydrocarboné à chaîne droite ou ramifiée qui contient 3 à 25 atomes de carbone, contenant 5 éventuellement des groupes aryle ou aryle substitué ; J est un atome d'oxygène, de soufre ou d'azote ; A est un élément choisi dans le Groupe IVA du tableau périodique des éléments ; R1,R2et R3 sont indépendamment choisis dans le groupe comprenant un atome d'hydrogène, des groupes alkyle, alkyle substitué contenant des groupes alkyle inférieur, alkylthio inférieur et dialkylamino inférieur, des 10 groupes aryle, aryle substitué contenant des groupes alkyle inférieur, alkylthio inférieur et dialkylamino infé- rieur, des groupes cycloalkyle et cycloalkyle substitué contenant 5 à 12 atomes de carbone ; et x dépend de la valence de J et varie de un lorsque J est un atome d'oxygène ou de soufre à deux lorsque J est un atome d'azote, pour former un polymère vivant mono-protégé, mono- fonctionnalisé ; et la fonctionnalisation du polymère vivant avec un composé fonctionnalisant protégé ou non protégé capable 15 de terminer ou de coiffer une extrémité d'un polymère vivant pour incorporer un groupe fonctionnel protégé ou non protégé à l'intérieur du polymère vivant pour fournir un polymère difonctionnel ayant un groupe fonc- 1 2 3 1 2 3 tionnel FG protégé ou non protégé et un groupe protecteur -[A(R R R )]x à la condition que -J-[A(R R R )]x de l'initiateur et le composé fonctionnalisant soient différents et que lorsque J est un atome d'oxygène, alors A ne soit pas un atome de silicium, pour fournir un polymère hétéro-téléchélique. 20 29. Procédé suivant la revendication 28, dans lequel:

ledit hydrocarbure diénique conjugué est choisi dans le groupe consistant en 1,3-butadiène, isoprène, 2,3-di- méthyl-1,3-butadiène, 1,3-pentadiène, myrcène, 2-méthyl-3-éthyl-1,3-butadiène, 2-méthyl-3-éthyl-1,3-penta- 25 diène, 1,3-hexadiène, 2-méthyl-1,3-hexadiène, 1,3-heptadiène, 3-méthyl-1,3-heptadiène, 1,3-octadiène, 3-butyl-1,3-octadiène, 3,4-diméthyl-1,3-hexadiène, 3-n-propyl-1,3-pentadiène, 4,5-diéthyl-1,3-octadiène, 2,4-diéthyl-1,3-butadiène, 2,3-di-n-propyl-1,3-butadiène et 2-méthyl-3-isopropyl-1,3-butadiènes ; et ledit hydrocarbure aromatique alcényl-substitué est choisi dans le groupe consistant en styrène, alpha-mé- thylstyrène, vinyltoluène, 2-vinylpyridine, 4-vinylpyridine, 1-vinylnaphtalène, 2-vinylnaphtalène, 1-alpha-mé- 30 thylvinylnaphtalène, 2-alphaméthylvinylnaphtalène, 1,2-diphényl-4-méthyl-1-hexène et leurs mélanges, et leurs dérivés alkyliques, cycloalkyliques, aryliques, alkylaryliques et arylalkyliques dans lesquels le nombre total d'atomes de carbone dans les constituants hydrocarbonés combinés ne dépasse pas 18.

30. Procédé suivant la revendication 28, dans lequel A est un atome de carbone ou de silicium. 35 31. Procédé suivant la revendication 28 comprenant de plus la déprotection d'au moins l'une desdites extrémités fonctionnelles dudit polymère hétéro-téléchélique après ladite étape de fonctionnalisation.

32. Procédé suivant la revendication 28 comprenant de plus la saturation d'au moins une partie de l'insaturation ali- 40 phatique dudit polymère hétéro-téléchélique avec de l'hydrogène après ladite étape de polymérisation.

33. Procédé suivant la revendication 31, comprenant de plus la saturation d'au moins une partie de l'insaturation aliphatique dudit polymère hétérotéléchélique avec de l'hydrogène après ladite étape de déprotection.

45 34. Procédé suivant les revendications 32 ou 33, dans lequel ladite étape de saturation comprend la saturation d'au moins environ 90% de l'insaturation aliphatique avec de l'hydrogène.

35. Procédé suivant la revendication 28, dans lequel ladite étape de fonctionnalisation comprend la fonctionnalisation dudit polymère vivant avec un composé fonctionnalisant choisi dans le groupe consistant en oxyde d'éthylène, 50 oxyde de propylène, oxyde de styrène, oxétane, oxygène, soufre, dioxyde de carbone, chlore, brome, iode, chlo- rotriméthylsilane, styrényldiméthyl chlorosilane, 1,3-propane sultone, caprolactame, N-benzylidène triméthylsily- lamide, diméthyl formamide, silicium acétals, 1,5-diazabicyclo-[3.1.0]-hexane, bromure d'allyle, chlorure d'allyle, chlorure de méthacryloyle, chlorure de 3-(diméthylamino)-propyle, N-(benzylidène)-triméthylsilylamine, épichlo- rohydrine, épibromohydrine et épi-iodohydrine. 55 36. Procédé suivant la revendication 28, dans lequel ledit initiateur organométallique est choisi dans le groupe con- sistant en oméga-(t-alcoxy)-1-alkyllithium, chaîne d'oméga-(t-alcoxy)-1-alkyllithium prolongée avec des alcadiè- nes conjugués, des hydrocarbures aromatiques alcényl-substitués et leurs mélanges, oméga-(t-alkylthio)-1-alkyl-

34 EP 0 842 199 B1

lithium, chaîne d'oméga-(t-alkylthio)-1-alkyllithium prolongée avec des alcadiènes conjugués, des hydrocarbures aromatiques alcényl-substitués et leurs mélanges, oméga-(t-butyldiméthylsilyloxy)-1-alkyllithium, oméga-(t-butyl- diméthylsilylthio)-1-alkyllithium, oméga-(dialkylamino)-1-alkyllithium, chaîne d'oméga-(dialkylamino)-1-alkylli- thium prolongée avec des alcadiènes conjugués, des hydrocarbures aromatiques alcényl-substitués et leurs mé- 5 langes, et oméga-(bis-t-alkylsilylamino)-1-alkyllithium.

37. Procédé suivant la revendication 36, dans lequel ledit initiateur organométallique est choisi dans le groupe con- sistant en 3-(1,1-diméthyléthoxy)-1-propyllithium, 3-(t-butyldiméthylsilyloxy)-1-propyllithium, 3-(1,1-diméthyléthyl- thio)-1-propyllithium, 3-(diméthylamino)-1-propyllithium, 3-di-(t-butyldiméthylsilylamino)-1-propyllithium, 3-(1,1-di- 10 méthyléthoxy)-1-propyllithium, 3-(1,1-diméthyléthoxy-2-méthyl-1-propyllithium, 3-(1,1-diméthyléthoxy-2,2-dimé- thyl-1-propyllithium, 4-(1,1-diméthyléthoxy)-1-butyllithium, 5-(1,1-diméthyléthoxy-1-pentyllithium, 6-(1,1-diméthy- léthoxy)-1-hexyllithium, 8-(1,1-diméthyléthoxy)-1-octyllithium, 3-(1,1-diméthylpropoxy)-1-propyllithium, 3-(1,1-di- méthylpropoxy)-2-méthyl-1-propyllithium; 3-(1,1-diméthylpropoxy)-2,2-diméthyl-1-propyllithium, 4-(1,1-diméthyl- propoxy)-1-butyllithium, 5-(1,1-diméthylpropoxy)-1-pentyllithium, 6-(1,1-diméthylpropoxy)-1-hexyllithium, 15 8-(1,1-diméthylpropoxy)-1-octyllithium, 3-(t-butyldiméthylsilyloxy)-1-propyllithium, 3-(t-butyldiméthylsilyloxy- 2-méthyl-1-propyllithium, 3-(t-butyldiméthylsilyloxy)-2,2-diméthyl-1-propyllithium, 4-(t-butyldiméthylsilyloxy)-1-bu- tyllithium, 5-(t-butyldiméthylsilyloxy)-1-pentyllithium, 6-(t-butyldiméthysilyloxy)-1-hexyllithium, 8-(t-butyldiméthyl- silyloxy)-1-octyllithium et 3-(triméthylsilyloxy)-2,2-diméthyl-1-propyllithium, 3-(diméthylamino)-1-propyllithium, 3-(diméthylamino)-2-méthyl-1-propyllithium, 3-(diméthylamino)-2,2-diméthyl-1-propyllithium, 4-(diméthylamino)- 20 1-butyllithium, 5-(diméthylamino)-1-pentyllithium, 6-(diméthylamino)-1-hexyllithium, 8-(diméthylamino)-1-propylli- thium, 4-(éthoxy)-1-butyllithium, 4-(propyloxy)-1-butyllithium, 4-(1-méthyléthoxy)-1-butyllithium, 3-(triphénylmé- thoxy)-2,2-diméthyl-1-propyllithium, 4-(triphénylméthoxy)-1-butyllithium, 3-[3-(diméthylamino)-1-propyloxy]- 1-propyllithium, 3-[2-(diméthylamino)-1-éthoxy]-1-propyllithium, 3-[2-(diéthylamino)-1-éthoxy]-1-propyllithium, 3-[2-(diisopropyl-amino)-1-éthoxy]-1-propyllithium, 3-[2-(1-pipéridino)-1-éthoxy]-1-propyllithium, 3-[2-(1-pyrroli- 25 dino)-1-éthoxy]-1-propyllithium, 4-[3-(diméthylamino)-1-propyloxy]-1-butyllithium, 6-[2-(1-pipéridino)-1-éthoxy]- 1-hexyllithium, 3-[2-(méthoxy)-1-éthoxy]-1-propyllithium, 3-[2-éthoxy)-1-éthoxy]-1-propyllithium, 4-[2-(méthoxy)- 1-éthoxy]-1-butyllithium, 5-[2-(éthoxy)-1-éthoxy]-1-pentyllithium, 3-[3-(méthylthio)-1-propyloxy]-1-propyllithium, 3-[4-(méthylthio)-1-butyloxy]-1-propyllithium, 3-(méthylthiométhoxy)-1-propyllithium, 6-[3-(méthylthio)-1-propy- loxy]-1-hexyllithium, 3-[4-(méthoxy)-benzyloxy]-1-propyllithium, 3-[4-(1,1-diméthyléthoxy)-benzyloxy]-1-propylli- 30 thium, 3-[2,4-(diméthoxy)-benzyloxy]-1-propyllithium, 8-[4-(méthoxy)-benzyloxy]-1-octyllithium, 4-[4-(méthylthio)- benzyloxy]-1-butyllithium, 3-[4-(diméthylamino)-benzyloxy]-1-propyllithium, 6-[4-(diméthylamino)-benzyloxy]- 1-hexyllithium, 5-(triphénylméthoxy)-1-pentyllithium, 6-(triphénylméthoxy)-1-hexyllithium et 8-(triphénylméthoxy)- 1-octyllithium, 3-(hexaméthylèneimino)-1-propyllithium, 4-(hexaméthylèneimino)-1-butyllithium, 5-(hexaméthylè- neimino)-1-pentyllithium, 6-(hexaméthylèneimino)-1-hexyllithium, 8-(hexaméthylène imino)-1-octyllithium, 3-(t-bu- 35 tyldiméthylsilylthio)-1-propyllithium, 3-(t-butyldiméthylsilylthio)-2-méthyl-1-propyllithium, 3-(t-butyldiméthylsilyl- thio)-2,2-diméthyl-1-propyllithium, 4-(t-butyldiméthylsilylthio)-1-butyllithium, 6-(t-butyldiméthylsilylthio)-1-hexylli- thium, 3-(triméthylsilylthio)-2,2-diméthyl-1-propyllithium, 3-(1,1-diméthyléthylthio)-1-propyllithium, 3-(1,1-diméthy- léthylthio-2-méthyl-1-propyllithium, 3-(1,1-diméthyléthylthio)-2,2-diméthyl-1-propyllithium, 4-(1,1-diméthyléthyl- thio)-1-butyllithium,5-(1,1-diméthyléthylthio)-1-pentyllithium,6-(1,1-diméthyléthylthio)-1-hexyllithium,8-(1,1-dimé- 40 thyléthylthio)-1-octyllithium, 3-(1,1-diméthylpropylthio)-1-propyllithium, 3-(1,1-diméthylpropylthio)-2-méthyl-1-pro- pyllithium, 3-(1,1-diméthylpropylthio)-2,2-diméthyl-1-propyllithium, 4-(1,1-diméthylpropylthio)-1-butyllithium, 5-(1,1-diméthylpropylthio)-1-pentyllithium, 6-(1,1-diméthylpropylthio)-1-hexyllithium et 8-(1,1-diméthylpropylthio)- 1-octyllithium, alcadiène conjugué soluble dans des hydrocarbures, hydrocarbures aromatiques alcényl-substitués et leurs mélanges, leurs analogues oligomères à chaîne prolongée et leurs mélanges. 45 38. Procédé suivant la revendication 28, dans lequel ladite étape de polymérisation comprend fa polymérisation desdits hydrocarbures diéniques, ou desdits hydrocarbures aromatiques alcényl-substitués seuls, de façon séquentielle ou sous forme de leurs mélanges.

50 39. Procédé suivant la revendication 28, comprenant de plus la copolymérisation d'au moins l'une de desdits groupes fonctionnels dudit polymère hétérotéléchélique avec au moins un comonomère après ladite étape de fonctionali- sation pour former un copolymère.

40. Procédé suivant la revendication 39, dans lequel ledit comonomère au moins présent est choisi dans le groupe 55 consistant en lactames, éthers cycliques, diamines, diisocyanates, polyisocyanates, diamides, polyamides, ami- des cycliques, acides dicarboxyliques, acides polycarboxyliques, diols, polyols, anhydrides et leurs mélanges.

41. Procédé suivant la revendication 39, dans lequel ladite étape de copolymérisaton comprend la réacton dudit po-

35 EP 0 842 199 B1

lymère avec un ou plusieurs comonomères dans des conditions suffisantes pour déprotéger ledit polymère et pour polymériser ledit un ou lesdits plusieurs comonomères aux deux extrémités fonctionnelles dudit polymère dépro- tégé.

5 42. Procédé suivant la revendication 41, dans lequel ladite étape de réaction comprend la réaction dudit polymère et dudit un ou plusieurs comonomères en présence d'un catalyseur de type acide fort.

43. Procédé suivant la revendication 39, dans lequel ladite étape de copolymérisation faisant réagir ledit polymère avec un ou plusieurs comonomères dans des conditions suffisantes pour maintenir l'intégrité d'au moins un groupe 10 protecteur dudit polymère pour fournir au moins une extrémté fonctionnelle déprotégée et pour polymériser ledit un ou plusieurs comonomères au niveau de ladite extrémité fonctionnel déprotégée dudit polymère.

44. Procédé suivant la revendication 43, comprenant de plus la déprotection de ladite extrémité fonctionnelle protégée.

15 45. Procédé suivant la revendication 43, comprenant de plus la réaction dudit copolymère avec un comonomère.

46. Procédé pour modifier les propriétés d'adhérence de surface des polyoléfines, comprenant le mélange à l'état fondu du polymère fonctionnel suivant l'une quelconque des revendications 1 à 28 avec une polyoléfine en une quantité de 1 à 25% en poids par rapport à la polyoléfine. 20 47. Procédé suivant la revendication 46, dans lequel la polyoléfine est choisie dans le groupe consistant en polyéthy- lène basse densité, polyéthylène linéaire basse densité, polyéthylène haute densité, polypropylène, polyisobuty- lène et leurs copolymères et mélanges.

25

30

35

40

45

50

55

36