Synthesis of Telechelic Polyphosphazenes Via the Ambient Temperature Living Cationic Polymerization of Amino Phosphoranimines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topological Polymer Chemistry
Prog. Polym. Sci. 27 +2002) 1069±1122 www.elsevier.com/locate/ppolysci Topological polymer chemistry Yasuyuki Tezuka*, Hideaki Oike1 Department of Organic and Polymeric Materials, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan Received 4 December 2001; revised 15 February 2002; accepted 16 February 2002 Abstract Recent developments in designing non-linear polymer topologies comprising cyclic and branched segments are reviewed. Thus ®rst, a systematic classi®cation of non-linear polymer topologies is presented by reference to constitutional isomerism in a series of alkanes +CnH2n12), monocycloalkanes +CnH2n) and polycycloalkanes +CnH2n22,CnH2n24, etc.). A special emphasis is placed on constitutional isomerism as well as stereoisomerism occurring uniquely in such non-linear polymer molecules as cyclics, knots and catenanes. Secondly, a novel strategy based on an `electrostatic self-assembly and covalent ®xation' process is described to realize a variety of topologically unique polymer architectures. Those include monocyclic and polycyclic polymers, polymeric topological isomers, cyclic macromonomers and cyclic telechelics +kyklo-telechelics) and `a ring with a branch' topology polymers, as well as such model branched polymers as star polymers and polymacromonomers. In this process, new telechelic polymer precursors having a moderately strained cyclic onium salt group as single or multiple end groups carrying multifunctional carboxylate counteranions have been prepared through an ion- exchange reaction. The unique electrostatic self-assembly directed by these polymer precursors, particularly in a diluted organic solution, is transformed into the covalent product by the heat treatment of the polymer precursor, causing the ring-opening reaction to produce a variety of topologically unique, non-linear polymer architectures in high ef®ciency. -
The Pennsylvania State University
The Pennsylvania State University The Graduate School Department of Chemistry SYNTHESIS AND CHARACTERIZATION OF MIXED-SUBSTITUENT POLY(ORGANOPHOSPHAZENES) A Thesis in Chemistry by Andrew Elessar Maher © 2004 Andrew Elessar Maher Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2004 The thesis of Andrew Elessar Maher was reviewed and approved* by the following: Harry R. Allcock Evan Pugh Professor of Chemistry Thesis Advisor Chair of Committee Alan Benesi Teaching Professor of Chemistry Karl Mueller Associate Professor of Chemistry James Runt Professor of Polymer Science Andrew Ewing J. Lloyd Huck Chair in Natural Sciences Professor of Chemistry Adjunct Professor of Neuroscience and Anatomy Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT This thesis focuses on the synthesis and characterization of mixed-substituent poly(organophosphazenes). The work in chapters 2 through 4 examines mixed- substituent polyphosphazenes with fluoroalkoxy side groups. Chapters 2 and 3 involve a synthetic route to mixed-substituent polyphosphazenes via side group replacement of fluoroalkoxy substituents. The thermal and mechanical properties of mixed-substituent poly(fluoroalkoxyphosphazenes) are examined through varying the ratios of two fluoroalkoxy substituents. These structure-property relationships and the potential use of these materials as fluoroelastomers are the subjects of chapter 4. The specifics of chapters 2-4 are summarized below. The work in chapter 5 concerns the synthesis and evaluation of mixed-substituent polyphosphazenes as single-ion conductors. The synthesis of a sulfonimide functionalized side group for proton conducting fuel cell applications is the subject of the appendix and is also utilized in the work in chapter 5. -
Designing Polymers for Advanced Battery Chemistries
REVIEWS Designing polymers for advanced battery chemistries Jeffrey Lopez 1, David G. Mackanic 1, Yi Cui 2,3 and Zhenan Bao 1* Abstract | Electrochemical energy storage devices are becoming increasingly important to our global society , and polymer materials are key components of these devices. As the demand for high- energy density devices increases, innovative new materials that build on the fundamental understanding of physical phenomena and structure–property relationships will be required to enable high-capacity next-generation battery chemistries. In this Review , we discuss core polymer science principles that are used to facilitate progress in battery materials development. Specifically , we discuss the design of polymeric materials for desired mechanical properties, increased ionic and electronic conductivity and specific chemical interactions. We also discuss how polymer materials have been designed to create stable artificial interfaces and improve battery safety. The focus is on these design principles applied to advanced silicon, lithium-metal and sulfur battery chemistries. The development of new electrochemical energy storage of existing materials or to enable the application of new technologies has been instrumental to the proliferation battery chemistries. In this Review, we summarize the of portable electronic devices and the increasing adop- fundamental polymer science and engineering con- tion of electric vehicles. Intermittent electricity genera- cepts related to the development of polymers for next- tion (for example, from wind and solar power sources) generation battery applications (Table 1). We specifically has further intensified the demand for high-energy den- discuss how these core concepts drive the design of new sity, high- power and low-cost energy storage devices1,2. -
The Pennsylvania State University
The Pennsylvania State University The Graduate School Department of Chemistry POLYPHOSPHAZENE DESIGN, SYNTHESIS, AND CHARACTERIZATION FOR POTENTIAL LIGAMENT AND TENDON SCAFFOLDS A Dissertation in Chemistry by Jessica L. Nichol 2014 Jessica L. Nichol Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2014 ii The dissertation of Jessica L. Nichol was reviewed and approved* by the following: Harry R. Allcock Evan Pugh Professor of Chemistry Dissertation Advisor Chair of Committee Philip Bevilacqua Professor of Chemistry Benjamin J. Lear Assistant Professor of Chemistry Mike Hickner Associate Professor of Materials Science and Engineering, Chemical Engineering Barbara J. Garrison Shapiro Professor of Chemistry Head of the Chemistry Department *Signatures are on file in the Graduate School iii ABSTRACT The work described in this thesis describes the progress towards developing polyphosphazenes designed specifically for tissue engineering applications with an emphasis on ligament and tendon repair and replacement. Chapter 1 outlines the fundamentals of polymer chemistry in conjunction with the importance of polyphosphazene chemistry and its potential for biomedical applications. Chapter 6 illustrates additional possibilities and considerations for designing future polymers for tissue engineering scaffolds. Chapter 2 discusses the design, synthesis, and characterization of new polyphosphazenes to determine their potential as scaffolds for ligament and tendon tissue engineering. The carboxylic -
Effect of Cyclotriphosphazene-Based Curing Agents on the Flame Resistance of Epoxy Resins
polymers Article Effect of Cyclotriphosphazene-Based Curing Agents on the Flame Resistance of Epoxy Resins Lucie Zarybnicka 1,* , Jana Machotova 2, Radka Kopecka 3, Radek Sevcik 1,4, Martina Hudakova 5, Jaroslav Pokorny 4 and Jiri Sal 4 1 Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telc, Prosecka 809/76, 190 00 Prague, Czech Republic; [email protected] 2 Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic; [email protected] 3 Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 267/2, 611 37 Brno, Czech Republic; [email protected] 4 The Institute of Technology and Business in Ceske Budejovice, Okruzni 517/10, 370 01 Ceske Budejovice, Czech Republic; [email protected] (J.P.); [email protected] (J.S.) 5 Fire Research Institute, Ministry of Interior of the Slovak Republic, Roznavska 11, 83 104 Bratislava, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +420-567-225-333 Abstract: Epoxy resins are characterized by excellent properties such as chemical resistance, shape stability, hardness and heat resistance, but they present low flame resistance. In this work, the syn- thesized derivatives, namely hexacyclohexylamino-cyclotriphosphazene (HCACTP) and novel diaminotetracyclohexylamino-cyclotriphosphazene (DTCATP), were applied as curing agents for halogen-free flame retarding epoxy materials. The thermal properties and combustion behavior of the cured epoxy resins were investigated. The obtained results revealed that the application of both derivatives significantly increased flame resistance. The epoxy resins cured with HCACTP and DTCATP exhibited lower total heat release together with lower total smoke production compared to the epoxy materials based on conventional curing agents (dipropylenetriamine and ethylenediamine). -
PDF (Chapter 1)
1 Chapter 1 Introduction 2 Olefin Metathesis Olefin metathesis is a versatile carbon-carbon bond rearrangement reaction, catalyzed by transition metal complexes. 1 First proposed by Chauvin in 1971, the mechanism for olefin metathesis involves olefin coordination to a metal carbene and subsequent cycloaddition to form a metallocyclobutane intermediate. This metallocyclobutane can undergo cleavage either in a productive manner to afford a new olefin and a new metal carbene complex or in a non-productive manner to regenerate starting materials (Figure 1). In general, each step in olefin metathesis is a thermodynamically controlled, reversible equilibrium process and requires a driving force, such as the release of ring strain or the loss of a volatile small molecule, to obtain the desired products. R2 R3 R2 R3 R2 R3 [M] [M] [M] R1 R1 R1 metallocyclobutane Figure 1. General mechanism of olefin metathesis. In the first two decades of olefin metathesis (early 1960s to early 1980s), a number of ill-defined multicomponent catalysts were found active to mediate olefin metathesis.1 The first isolated, well-defined, single-component olefin metathesis catalyst, reported by Gilliom and Grubbs in 1986, was obtained by reacting the Tebbe reagent with norbornene and it was able to catalyze living polymerization of norbornene. 2 Meanwhile, a variety of highly active, well-defined Mo and W based catalysts were developed by the Schrock group.3 Despite their high reactivity, early transition metal- based catalysts exhibited extreme air and moisture sensitivity, low thermal stability, and 3 poor tolerance for many functional groups, such as alcohols and aldehydes, due to the electrophilic nature of these metals. -
End–Functionalized Polymers: Versatile Building Blocks for Soft Materials
The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria End–Functionalized Polymers: Versatile Building Blocks for Soft Materials Federica Lo Verso Christos N. Likos Vienna, Preprint ESI 1994 (2008) January 21, 2008 Supported by the Austrian Federal Ministry of Education, Science and Culture Available via http://www.esi.ac.at To appear as Feature Article in Polymer, 2008 End-functionalized polymers: versatile building blocks for soft materials Federica Lo Verso1,2 and Christos N. Likos1,3 1Institut f¨ur Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universit¨at D¨usseldorf, Universit¨atsstraße 1, D-40225 D¨usseldorf, Germany 2Chimie Analytique et Biophysico-chimie de l’ Environnement (CABE), Universit´ede Gen`eve - Sciences II, 30 Quai Ernest-Ansermet, CH-1211 Gen`eve 4, Switzerland 3The Erwin Schr¨odinger International Institute for Mathematical Physics (ESI), Boltzmanngasse 9, A-1090 Vienna, Austria Abstract We present a concise review of telechelic polymers of various architectures, focusing on the structure, solute solvent interactions, aggregation processes, equilibrium and dynamical properties and applications. Telechelics are macromolecules with functionalized, mutually attractive end- groups, which assume a variety of conformations that depend on solvent quality, salinity and pH of the solvent, as well as on the particular macromolecular architecture. In concentrated solutions, telechelic polymers offer unique possibilities to create novel materials with distinct rheological properties. Depending on chemistry and architecture, they can create percolating clusters and transient gels or they can show macroscopic phase separation into a dilute and a structured dense phase. The possibility to externally steer the morphology of these structures and the concomitant physical properties of the materials renders telechelic polymers into important and versatile building blocks for modern materials science. -
Polyphosphazenes with Stimulated Degradation
Submitted by M.Sc. Aitziber Iturmendi Submitted at POLYPHOSPHAZENES Institute of Polymer Chemistry Supervisor and First Examiner WITH STIMULATED Assoc. Univ.-Prof. Dr. Ian Teasdale Second Examiner Assoc. Univ.-Prof. Dr. Uwe DEGRADATION Monkowius Month Year May 2018 PATHWAYS Doctoral Thesis to obtain the academic degree of Doktorin der Naturwissenschaften in the Doctoral Program Naturwissenschaften JOHANNES KEPLER UNIVERSITY LINZ Altenberger Str. 69 4040 Linz, Austria www.jku.at DVR 0093696 STATUTORY DECLARATION I hereby declare that the thesis submitted is my own unaided work, that I have not used other than the sources indicated, and that all direct and indirect sources are acknowledged as references. This printed thesis is identical with the electronic version submitted. Linz, May 2018 iii The Amazing thing about life is that You choose what you allow into it You choose how things affect you You choose how you react Happiness is a Choice Make it It´s up to you v ACKNOWLEDGMENTS First of all, I want to thank Assoc. Univ.-Prof. Dr. Ian Teasdale. Thank you so much for giving me the opportunity to work in your team not only for 6 months, even for more than 5 years! Many thanks also for being my supervisor, my guide, my support (in and out of work) and why not part of my stress ;) I am grateful to Univ.-Prof. Dr. Oliver Brüggemann for providing me with all equipments I needed, the access to the labs and his support. I would like to thank also Assoc. Univ.-Prof. Dr. Uwe Monkowius for his help and guidance during my thesis. -
United States Patent 19 11 Patent Number: 5,627,248 Koster Et Al
USOO5627248A United States Patent 19 11 Patent Number: 5,627,248 Koster et al. 45 Date of Patent: May 6, 1997 54 DIFUNCTIONAL LIVING FREE RADICAL 5,412,047 5/1995 Georges et al. POLYMERIZATION INITIATORS 5,498,679 3/1996 Moffiat et al. .......................... 526/204 d OTHER PUBLICATIONS 75 Inventors: Robert A. Koster; Duane B. Priddy; Irene Li, all of Midland, Mich. J. Org. Chem. (1992) 57(3), 982-988. J. Am. Chem. Soc. 1994, 116, 11185-11186 (Craig H. 73 Assignee: The Dow Chemical Company. Hawker). Midland, Mich. Polymer Preprints, Synthesis. Characterization, and Evalu ation of Initiators for Living Free Radical Polymerization: 21 Appl. No.: 533,799 $';Polystyrene w/Controlled Structure vol.36, No. 22 Filed: Sep. 26, 1995 Chemistry in Australia, Jan.-Feb. 1987, p. 32 (Ezio Riz 6 Zardo). 51 Int. Cl. ............................ ce,8: St. B MacromoleculesJ.org. Chem. vol. 1995, 40, No.28.4391-4398, 23, 1975, pp. Veregin, 348-3450. et al. 52 U.S. Cl. ....................... 526/217:526/204; 526/328.5; Macromolecules, 1993, 26, pp. 2987-2988. 526/346; 526/340; 526/342.502/59 Makromol. Chem. Rapid commun. 3, 533-536 (1982). 58) Field of Search .................................... 526/217, 204, Moad et al. 526/328.5, 340,342, 346; 502/159 Angew. Chem. Int. Ed. Engl. 1995, 34, No. 13/14, pp. d 1456-1459. (Hawker). 56) References Cited Primary Examiner-Joseph- L. Schofer U.S. PATENT DOCUMENTS Assistant Examiner-Wu C. Cheng 4,581,429 4/1986 Solomon et al. 57 ABSTRACT 5,051,511 9/1991 Seltzer et al.. 5,140,081 8/1992 Seltzer et al. -
Polyphosphazene Copolymers Containing a Substituent Bonded to Phosphorus Through a Carbon Atom, and Their Preparation
Patentamt J)JEuropaisches European Patent Office © Publication number: 0 010 590 Office europeen des brevets © EUROPEAN PATENT APPLICATION © Application number: 79103275.8 © Int. CI.3: C 08 G 79/02 @ Date of filing: 05.09.79 © Priority: 08.09.78 US 941109 @ Applicant: THE FIRESTONE TIRE & RUBBER 08.09.78 US 941117 COMPANY, 1200 Firestone Parkway, Akron, 20.10.78 US 953281 Ohio 44317 (US) @ Inventor: Hergenrother, William Lee, 195 Dorchester © Date of publication of application: 14.05.80 Road, Akron, Ohio 44313 (US) Bulletin 80/10 Inventor: Halasa, Adel Farhan, 5040 Everett Road, Bath, Ohio 44210 (US) @ Representative: Kraus, Walter, Dr. et ai, Patentanwalte Dres. Kraus & Weisert Irmgardstrasse 15, D-8000 @ Designated Contracting States: BE DE FR GB IT NL SE Miinchen 71 (DE) © Polyphosphazene copolymers containing a substituent bonded to phosphorus through a carbon atom, and their preparation. The copolymers can be utilized to form protective films, moldings, coatings, and the like where heat stability and solvent resistance are important. The copolymers are prepared by reacting poly(dichloro- phosphazene) with a mixture of compounds of the formulas 5 HX and HX'. BACKGROUND OF THE INVENTION This invention relates to polyphosphazene copolymers containing repeating = N- units in the polymer chain in which a substituent is attached or bonded to the phosphorus atom through a carbon atom. More particularly, the invention relates to polyphosphazene copolymers containing a substituent derived from a malononitrile or substituted malononitrile compound or nitroalkyl compound or sulfone compound and a substituent which may be a substituted or unsubstituted alkoxy, alkenyloxy, aryloxy, alkenylaryloxy, amino or mercapto group. -
Controlled Synthesis of Polyphosphazenes with Chain-Capping Agents
molecules Article Controlled Synthesis of Polyphosphazenes with Chain-Capping Agents Robert A. Montague † and Krzysztof Matyjaszewski * Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA; [email protected] * Correspondence: [email protected] or [email protected] † Current address: 2217 Forest Avenue, Ashland, KY 41101, USA. Abstract: N-alkyl phosphoranimines were synthesized via the Staudinger reaction of four different alkyl azides with tris(2,2,2-trifluoroethyl) phosphite. N-adamantyl, N-benzyl, N-t-butyl, and N-trityl phosphoranimines were thoroughly characterized and evaluated as chain-capping compounds in the anionic polymerization of P-tris(2,2,2-trifluoroethoxy)-N-trimethylsilyl phosphoranimine monomer. All four compounds reacted with the active chain ends in a bulk polymerization, and the alkyl end groups were identified by 1H-NMR spectroscopy. These compounds effectively controlled the molecular weight of the resulting polyphosphazenes. The chain transfer constants for the monomer and N-benzyl phosphoranimine were determined using Mayo equation. Keywords: N-alkyl phosphoranimines; polyphosphazenes; phosphoramidate esters; fluoride; trifluoroethoxide; N-methylimidazole initiators; anionic; chain-capping agents Citation: Montague, R.A.; 1. Introduction Matyjaszewski, K. Controlled The most important examples of inorganic polymers [1–3] are the polysiloxanes—(R2Si- Synthesis of Polyphosphazenes with O)n [4–8], polysilanes—(R2Si)n [9–11], and the polyphosphazenes—(R2P=N)n− [12–14]. Chain-Capping Agents. Molecules They have been the subject of significant research due to desirable properties, such as 2021, 26, 322. https://doi.org/ biocompatibility, high thermal resistance, oxidative stability, UV resistance, interesting 10.3390/molecules26020322 photoelectronic behavior, and high flexibility that are often difficult or impossible to achieve Academic Editors: in carbon-based organic polymers. -
Title SYNTHESIS of TELECHELIC and TRI-ARMED POLYMERS BY
SYNTHESIS OF TELECHELIC AND TRI-ARMED Title POLYMERS BY LIVING CATIONIC POLYMERIZATION( Dissertation_全文 ) Author(s) Shohi, Hajime Citation 京都大学 Issue Date 1992-05-23 URL https://doi.org/10.11501/3089086 Right 許諾条件により本文は2011-03-01に公開 Type Thesis or Dissertation Textversion author Kyoto University 2 ./ SYNTHESIS OF TELECHELIC AND TRI-ARMED POLYMERS BY LIVING CATIONIC POLYMERIZATION HAJIME SHOHI 1991 CONTENTS GENERAL INTRODUCTION 1 PART 1 SYNTHESIS OF TELECHELIC POLYMERS BY LIVING CATIONIC POLYMERIZATION CHAPTER 1 End-Functionalized Polymers of Isobutyl Vinyl Ether 17 CHAPTER 2 Homo- and Hetero-Telechelic Polymers of Isobutyl Vinyl Ether 29 CHAPTER 3 Telechelic Polymers of p-Methoxystyrene 51 CHAPTER 4 End-Functionalized Polymers of p-t-Butoxystyrene 71 PART 2 SYNTHESIS OF TRI-ARMED FUNCTIONAL POLYMERS BY LIVING CATIONIC POLYMERIZATION CHAPTER 5 Tri-Armed Star Polymers of Isobutyl Vinyl Ether Based on Novel Trifunctiona] Initiators 89 CHAPTER 6 Tri-Armed Amphiphilic Star Block Copolymers of Isobutyl and 2-Hydroxyethyl Vinyl Ethers 113 CHAPTER 7 Tri-Armed Star Polymers of p-Methoxystyrene 125 LIST OF PUBLICATIONS 139 ACKNOWLEDGMENTS 141 GENERAL INTRODUCTION Background: Synthesis of End-Functionalized Polymers by Living Cationic Polymerization End-Functionalized Polymers. "End-functionalized polymers" are a family of macromolecules that possess functional groups at their terminals. As in the reactions of small organic compounds, these terminal functional groups can react with each other to generate new polymer molecules where identical or different segments are connected through newly formed chemical bonds. For example, Eq (1) shows reaction of two different monofunctional end-reactive polymers (1 and 2; with terminal functions X and Y, respectively) into an AB block copolymer (3), whereas Eq (2) illustrates a consecutive linking reaction of bifunctional telechelic polymers (4; with mutually reactive two different groups X and Y on both terminals) into a chain-extended polymer (5).