Novel Lithium Salt and Polymer Electrolytes for Polymer Lithium Batteries
Total Page:16
File Type:pdf, Size:1020Kb
NOVEL LITHIUM SALT AND POLYMER ELECTROLYTES FOR POLYMER LITHIUM BATTERIES by JIAN LIN Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Dr. Morton H. Litt Department of Macromolecular Science and Engineering CASE WESTERN RESERVE UNIVERSITY August, 2008 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Jian Lin candidate for the Ph.D. degree*. (Signed) Morton H. Litt (chair of the committee) Gary Wnek David Schiraldi Chung-Chiun Liu (date) 06/06/2008 *We also certify that written approval has been obtained for any proprietary material contained therein. Table of contents Chapter 1 Introduction………………………………………………...…......1 1.1. The rocking-chair cell…………………………..………………….……..…….…2 1.2. Polymer electrolytes for secondary lithium batteries…………………….…..........3 1.2.1. Random copolymers……………………..………………….……………5 1.2.2. Comb polymers and hyperbranched polymers……………………...……7 1.2.3. Block copolymers…………………………………….………………....16 1.2.4. Networks…………………………………………………………..……17 1.2.5. Composite polymer electrolytes and blends………………………...…..18 1.3. Gel electrolytes……………………………………………………….…...…..…20 1.4. Polymer-in-salt electrolytes or ionic rubbers…………………...………....……..24 1.5. Polyelectrolytes……………………….…………… ……….…………..……...27 1.6. Crystalline polymer electrolytes…………………………………………….…...36 1.7. Other cation conductors………………………….…………………...……...…..38 1.8. Ion transport measurement………………………………….……………….…...39 1.9. Temperature dependence of ionic conductivity…………………...………......…41 1.10. Research goal………………………………………………………..……….…..42 1.11. References……………………………………………..……………..…………..45 I Chapter 2. Synthesis and characterization of novel lithium salts with bulky anions ……………………………………………………………………………...58 2.1. Introduction…………………………………………………………....................58 2.2. Experimental procedures………………………………………………………...65 2.2.1. Materials………………………………………………………………...65 2.2.2. Characterization techniques…………………………………………….65 2.2.2.1. Infrared spectroscopy………………………………………65 2.2.2.2. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF) ……………...………...65 2.2.2.3. Nuclear magnetic resonance Spectroscopy (NMR)……..…66 2.2.2.4. X-ray Photoelectron Spectroscopy (XPS)…... ……………66 2.2.2.5. Thermogravimetric analysis (TGA)………… …………….66 2.2.2.6. Gel Permeation Chromatography (GPC)…………………..67 2.2.3. Synthesis………………………………………………………………...67 2.2.3.1. Attempted synthesis of dilithium pentaerithritol di(pinacolato)borate……………………………………….67 2.2.3.2. Synthesis of lithium tetrakis(methanoxyato)borate……..…68 2.2.3.3. Synthesis of lithium tetrakis(1, 1, 1, 3, 3, 3-hexafluoro-2- propoxy)borate………………………………….………….68 2.2.3.4. Synthesis of lithium bis(benzopinacolato(2-)-O,O´)borate..70 2.2.3.5. Synthesis of lithium tetrakis [3,5- bis(trifluoromethyl)phenyl]borate……………………….....71 2.3. Results and discussion………………………………………….………………..72 II 2.3.1. Attempted synthesis of dilithium pentaerithritol dipinacolborate………72 2.3.2. Synthesis of lithium tetrakis(1,1,1,3,3,3-hexafluoro-2-propoxy)borate..75 2.3.3. Synthesis of lithium bis[benzopinacolato(2-)-O,O’]borate…………….77 2.3.4. Synthesis of lithium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate…...82 2.4. Conclusions………………………………………………………………………86 2.5. References………………………………………………………………………..87 III Chapter 3. Synthesis of comb polymers with oligo(ethylene oxide) side chains and their characterization……………………..……………………………………………90 3.1. Introduction ……………………………………………………………………...90 3.2. Experimental procedures………………………………………………………...93 3.2.1. Materials………………………………………………………………..93 3.2.2. Characterization techniques…………………………………………….93 3.2.2.1. Gel permeation chromatography (GPC)….………………..93 3.2.2.2. Infrared spectroscopy………………………………….…...94 3.2.2.3. Nuclear magnetic resonance spectroscopy (NMR)……...…94 3.2.2.4. AC impedance spectroscopy……………………………….94 3.2.2.5. Differential scanning calorimetry (DSC)……….….………95 3.2.2.6. X-ray photoelectron spectroscopy (XPS)…………….……95 3.2.2.7. Elemental analysis…………………………………………96 3.2.3. Synthesis………………………………………………………………..96 3.2.3.1. Attempted preparation of comb polymers from poly(ethylene oxide-co-epichlorohydrin) by Williamson ether synthesis……………………………………………………96 3.2.3.2. Preparation of 3,3-bis(bromomethyl)oxetane……………...97 3.2.3.3. Cationic ring-opening polymerization of 3,3- bis(bromomethyl)oxetane………………………………….97 3.2.3.4. Copolymerization of trimethylene oxide and 3, 3- bis(bromomethyl)oxetane………………………………….98 IV 3.2.3.5. Preparation of comb copolymer from poly[3,3- bis(bromomethyl)oxetane]…………………………………98 3.2.3.6. Preparation of comb copolymer from poly[trimethylene oxide-co-3,3-bis(bromomethyl)oxetane]…………………..99 3.2.3.7. Preparation of polymer/lithium salt complexes…………..100 3.3. Results and discussion………………………………………………………….101 3.3.1. Synthesis……………………………………………………………….101 3.3.1.1. Attempted synthesis of comb polyethers based on poly(ethylene oxide-co-epichlorohydrin)………………...101 3.3.1.2. Synthesis of comb polyethers with poly(trimethylene oxide) as backbone and oligo(ethylene oxide) as side chains……………………………………..……………....105 3.3.2. Solution properties…………………………………………………….113 3.3.3. Thermal properties…………………………………………………….114 3.3.3.1. Thermal stability…………………………….……………114 3.3.3.2. Glass transition temperature……………………………...115 3.3.4. Ionic conductivity……………………………………………………...120 3.3.5. Polarization measurements at low frequencies…….………………….131 3.3.6. Simulation model for electrical behavior…………………….………..135 3.4. Conclusions…………………………………………………………..................144 3.5. References………………………………………………………………………147 V Chapter 4. Synthesis of comb polymers with oligo(trimethylene oxide) side chains and their characterization………………...……..……………………………………151 4.1. Introduction……………………………………………………………….…….151 4.2. Experimental procedures…………………………………………………....….158 4.2.1. Materials……………………………………………………………….158 4.2.2. Characterization techniques………….....…………………………….159 4.2.2.1. Gel permeation chromatography (GPC)…………………..159 4.2.2.2. Infrared spectroscopy……………………………………...159 4.2.2.3. Nuclear magnetic resonance spectroscopy (NMR)………..159 4.2.2.4. AC impedance spectroscopy………………………….…...159 4.2.2.5. Differential scanning calorimetry (DSC)………………….160 4.2.2.6. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF)……………………………...160 4.2.3. Synthesis………………………………………..………………….…..161 4.2.3.1. Synthesis of oligo(trimethylene oxide)monomethylether…161 4.2.3.2. Synthesis of oligo(trimethylene oxide)-disubstituted oxetane……………………………………………………..162 4.2.3.3. Copolymerization of trimethylene oxide and oligo(trimethylene oxide)-disubstituted oxetane…………..163 4.3. Results and discussion……………………………….………………………....165 4.3.1. Synthesis ……………………..……………………….……………….165 4.3.1.1. Synthesis of oligo(trimethylene oxide)monomethyl ether...165 VI 4.3.1.2. Synthesis of oxetane monomer with disubstituted oligo(trimethylene oxide) and its polymerization…………175 4.3.2. Solution properties…………………………………………………….180 4.3.3. Thermal properties…………………………………………………….180 4.3.3.1. Thermal stability…………………………………………..180 4.3.3.2. Glass transition temperature……………………………….182 4.3.4. Ionic conductivity………………………………………………….......184 4.3.5. Polarization measurements at low frequencies.…………………….....194 4.4. Conclusions……………………………………………………………………..198 4.5. References………………………………………………………………………200 Chapter 5. Future Work…………………………………………………………….204 References………………………………………………………………………………208 Bibliography…………………………………………………………………………...209 VII List of tables Table 3.1. Properties of PEGME, polymer, copolymer and EO comb polymers with poly(trimethylene oxide) as backbones……….……………………..…..119 Table 3.2. Activation energy (Ea/KJ mol-1) of the ethylene oxide comb polymer electrolytes using the Arrhenius equation……………………………...130 Table 3.3. Activation energy (Ea/KJ mol-1) of the ethylene oxide comb polymer electrolytes using the VTF model………….…………………………...130 Table 3.4. Time constants for EO comb copolymer/LiTFSI-[O]/[Li]=50………....142 Table 3.5. Time constants for EO comb copolymer/LiTMPB-[O]/[Li]=50...……..143 Table 3.6. Time constants for EO comb copolymer/LiTMPB-[O]/[Li]=70……....143 Table 4.1. Binding energies (ΔEe, Kcal/mol) of Li+-PEO, Li+-PPO, Li+-PTMO complexes as a function of coordination number……………………...155 Table 4.2. The calculated activation energies (Ea/KJ mol-1) of the trimethylene oxide comb polymer electrolytes using the VTF model…………..…………..193 VIII List of schemes Scheme 2.1. Attempted synthesis of dilithium pentaerithritol dipinacolborate…….…..73 Scheme 2.2. Two possible routes for the synthesis of lithium bis[1,1,1,3,3,3-hexafluoro- 2-propoxy]borate…………………..……………...…………………..….76 Scheme 2.3. Two attempted synthetic routes to lithium bis[benzopinacolato(2-)-O,O’] borate……………….…….………………………...…………...…..…….79 Scheme 2.4. Synthesis of lithium tetrakis[3,5-bis(trifluoromethyl)phenyl] borate by two possible routes……………….………………………......………......……82 Scheme 3.1. Attempted synthesis of the comb polymer starting from Hydrin C using two possible routes.………….………………..….…………...………..……102 Scheme 3.2. Synthesis of 3,3-bis(bromomethyl) oxetane……..…………...………….105 Scheme 3.3. Synthesis of ethylene oxide comb polymers by two possible routes..…...109 Scheme 3.4. The proposed three-parallel simulation model …………………...…..…136 Scheme 4.1. Non polymerization of 2-[2-(2-methoxyethoxy)ethoxy]-1, 3-dioxolane 156 Scheme 4.2. The synthetic route to incorporate TMO units into the monomer and anionic polymerization used to obtain comb polyepoxide