Synthesis of Telechelic Poly(p-benzamide)s Mahshid Alizadeh and Andreas F.M. Kilbinger* University of Fribourg, Chemistry Department, Chemin du Musée 9, Ch-1700 Fribourg, Switzerland
[email protected] ABSTRACT: Well-defined telechelic poly(benzamide)s were synthesized by chain-growth polycondensation of phenyl-4-amino benzoate and pentafluorophenyl-4-amino benzoate derivatives with a bifunctional initiator in the presence of LiTMP as base. The polymerization was carried out at -70°C to prevent self-initiated polymerization. To confirm the control over molecular weight, different defined molecular weight polymers were synthesized and analyzed by GPC. Taking advantage of the labile ester end groups of these poly(benzamide)s, we carried out post- polymerization modifications to introduce different end functional groups such as alkyne, amine, alcohol, alkyl halide and olefin suitable for different types of post-polymerization reactions. Successful end group modification was confirmed by 1H-NMR spectroscopy and isotopically resolved MALDI-ToF mass spectrometry. INTRODUCTION Polycondensation is an important method for the synthesis of commercial polymers such as polyamides and polyesters. Conventional polycondensations proceed in a step-growth manner 1 with broad polydispersities and control over the molecular weight can often be difficult.1-3 Yokozawa et al. developed a polycondensation method using a chain-growth mechanism to synthesize well defined aromatic polyamides with narrow polydispersity.4-8 Many other well- defined polymers with narrow polydispersity have also been synthesized using chain-growth polycondensation mechanisms such as polyesters,9, 10 polyethers,11-13 poly(ether sulfone)s,14 polythiophenes,15-17 polyethylenes18 and polyfluorenes19. The strategy used here for the synthesis of poly(benzamide)s relies on polymer end groups being more reactive than the monomer itself resulting in a kinetically controlled living chain-growth polymerization.