Indirect Calorimetry Based on Oxygen Luminescence Quenching
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Bioenergetic Analysis of Female Volleyball
University of Nebraska at Omaha DigitalCommons@UNO Student Work 11-2006 Bioenergetic Analysis of Female Volleyball Christine Sjoberg University of Nebraska at Omaha Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork Part of the Health and Physical Education Commons Recommended Citation Sjoberg, Christine, "Bioenergetic Analysis of Female Volleyball" (2006). Student Work. 3031. https://digitalcommons.unomaha.edu/studentwork/3031 This Thesis is brought to you for free and open access by DigitalCommons@UNO. It has been accepted for inclusion in Student Work by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. BIOENERGETIC ANALYSIS OF FEMALE VOLLEYBALL A Thesis Presented to the School of Health, Physical Education; & Recreation and the Faculty of the Graduate College University of Nebraska In Partial Fulfillment of the Requirements for the Degree Master of Science in Exercise Science University of Nebraska at Omaha by Christine Sjoberg November 2006 UMI Number: EP73243 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI EP73243 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor. Ml 48106-1346 THESIS ACCEPTANCE Acceptance for the faculty of the Graduate College, University of Nebraska, in partial fulfillment of the requirements for the degree Master of Science in Exercise Science, University of Nebraska at Omaha. -
Measurement of the Respiratory Quotient of Peat
Utah State University DigitalCommons@USU Hydroponics/Soilless Media Research 8-10-2012 Measurement of the Respiratory Quotient of Peat Jake Nelson Follow this and additional works at: https://digitalcommons.usu.edu/cpl_hydroponics Part of the Plant Sciences Commons Recommended Citation Nelson, Jake, "Measurement of the Respiratory Quotient of Peat" (2012). Hydroponics/Soilless Media. Paper 5. https://digitalcommons.usu.edu/cpl_hydroponics/5 This Article is brought to you for free and open access by the Research at DigitalCommons@USU. It has been accepted for inclusion in Hydroponics/Soilless Media by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Measurement of the respiratory quotient of peat Jake Nelson 8/10/2012 BIOL 5800 Undergraduate Research Summer 2010 Introduction Respiratory quotient (RQ) is the ratio of CO produced to O consumed by an organism. Complete respiration 2 2 of glucose will give an RQ of 1 as described by the formula C H O +nO →nCO +nH O. The respiration of n 2n n 2 2 2 molecules with lower oxygen content, such as lipids, give RQ values of less than one, whereas in cases of anaerobic metabolism, an increase in biomass or the respiration of substances such as humic, oxalic and citric acids the respiratory quotient can be greater than one. In complex systems such as soil, Dilly (2003) found that the RQ varied dramatically, and changed within the same soil under varying conditions. Similarly, Hollender et al. (2003) found RQ was informative in determining the underlying metabolic mechanisms, such as nitrification processes. Dilly (2004), studied the effects of various organic compounds on RQ, and found that beech forest soils amended with cellulose or humic acid maintained RQ values greater than one for more than 20 days after application. -
Respiratory Physiology for the Anesthesiologist
REVIEW ARTICLE Deborah J. Culley, M.D., Editor ABSTRACT Respiratory function is fundamental in the practice of anesthesia. Knowledge of basic physiologic principles of respiration assists in the proper implemen- tation of daily actions of induction and maintenance of general anesthesia, Respiratory Physiology delivery of mechanical ventilation, discontinuation of mechanical and pharma- cologic support, and return to the preoperative state. The current work pro- Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/130/6/1064/455191/20190600_0-00035.pdf by guest on 24 September 2021 for the Anesthesiologist vides a review of classic physiology and emphasizes features important to the anesthesiologist. The material is divided in two main sections, gas exchange Luca Bigatello, M.D., Antonio Pesenti, M.D. and respiratory mechanics; each section presents the physiology as the basis ANESTHESIOLOGY 2019; 130:1064–77 of abnormal states. We review the path of oxygen from air to the artery and of carbon dioxide the opposite way, and we have the causes of hypoxemia and of hypercarbia based on these very footpaths. We present the actions nesthesiologists take control of the respiratory func- of pressure, flow, and volume as the normal determinants of ventilation, and Ation of millions of patients throughout the world each we review the resulting abnormalities in terms of changes of resistance and day. We learn to maintain gas exchange and use respiration compliance. to administer anesthetic gases through the completion of (ANESTHESIOLOGY 2019; 130:1064–77) surgery, when we return this vital function to its legitimate owners, ideally with a seamless transition to a healthy post- operative course. -
Respiratory Support
Intensive Care Nursery House Staff Manual Respiratory Support ABBREVIATIONS FIO2 Fractional concentration of O2 in inspired gas PaO2 Partial pressure of arterial oxygen PAO2 Partial pressure of alveolar oxygen PaCO2 Partial pressure of arterial carbon dioxide PACO2 Partial pressure of alveolar carbon dioxide tcPCO2 Transcutaneous PCO2 PBAR Barometric pressure PH2O Partial pressure of water RQ Respiratory quotient (CO2 production/oxygen consumption) SaO2 Arterial blood hemoglobin oxygen saturation SpO2 Arterial oxygen saturation measured by pulse oximetry PIP Peak inspiratory pressure PEEP Positive end-expiratory pressure CPAP Continuous positive airway pressure PAW Mean airway pressure FRC Functional residual capacity Ti Inspiratory time Te Expiratory time IMV Intermittent mandatory ventilation SIMV Synchronized intermittent mandatory ventilation HFV High frequency ventilation OXYGEN (Oxygen is a drug!): A. Most infants require only enough O2 to maintain SpO2 between 87% to 92%, usually achieved with PaO2 of 40 to 60 mmHg, if pH is normal. Patients with pulmonary hypertension may require a much higher PaO2. B. With tracheal suctioning, it may be necessary to raise the inspired O2 temporarily. This should not be ordered routinely but only when the infant needs it. These orders are good for only 24h. OXYGEN DELIVERY and MEASUREMENT: A. Oxygen blenders allow O2 concentration to be adjusted between 21% and 100%. B. Head Hoods permit non-intubated infants to breathe high concentrations of humidified oxygen. Without a silencer they can be very noisy. C. Nasal Cannulae allow non-intubated infants to breathe high O2 concentrations and to be less encumbered than with a head hood. O2 flows of 0.25-0.5 L/min are usually sufficient to meet oxygen needs. -
Heat Production Partition in Sheep Fed Above Maintenance from Indirect Calorimetry Data
Open Journal of Animal Sciences, 2015, 5, 86-98 Published Online April 2015 in SciRes. http://www.scirp.org/journal/ojas http://dx.doi.org/10.4236/ojas.2015.52011 Heat Production Partition in Sheep Fed above Maintenance from Indirect Calorimetry Data Patricia Criscioni1, María del Carmen López1, Victor Zena2, Carlos Fernández1* 1Research Center ACUMA, Animal Science Department, Polytechnic University of Valencia, Valencia, Spain 2Interuniversity Institute of Bioengineering Research and Technology Oriented to the Human Being, Universidad Politécnica de Valencia, Valencia, Spain Email: *[email protected] Received 11 February 2015; accepted 23 March 2015; published 27 March 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The objective of this study is to compare the partition of heat energy (HE) in two sheep breeds by indirect calorimetry and integral calculus. An experiment was conducted with two Spanish native sheep breeds (dry and non-pregnant) which were fed with pelleted mixed diets above mainten- ance. Six Guirras and six Manchegas breed sheep were selected (58.8 ± 3.1 and 60.2 ± 3.2 kg body weight, respectively). All sheep were fed with the same concentrate mixed ration (0.300 kg cereal straw as forage and 0.700 kg concentrate) in two meals. Half the daily ration was offered at 800 h and another half at 1600 h. The sheep had free access to water. Sheep were allocated in metabolic cages; energy balance and gas exchange were assessed in each sheep. -
Effect of Positive End-Expiratory Pressure on Intrapulmonary Shunt at Different Levels of Fractional Inspired Oxygen
Thorax: first published as 10.1136/thx.35.3.181 on 1 March 1980. Downloaded from Thorax, 1980, 35, 181-186 Effect of positive end-expiratory pressure on intrapulmonary shunt at different levels of fractional inspired oxygen A OLIVEN, U TAITELMAN, F ZVEIBIL, AND S BURSZTEIN From the Intensive Care Department, Rambam Medical Centre, Haifa, Israel ABSTRACT In 10 patients undergoing ventilation, venous admixture was measured at different values of positive end-expiratory pressure (PEEP). The measurements were performed at the level of fractional inspired oxygen (FIO2) at which each patient was ventilated, and at FIo2=1. In patients ventilated at FIo2 between 0-21 and 0 3 venous admixture was not modified by PEEP, while in patients ventilated with FIO2 between 0'4 and 0-6, venous admixture decreased significantly (p<0 01). With FIO2=1, increased PEEP produced a reduction in venous admixture in all cases (p < 0 .05). These observations suggest that in patients similar to ours, PEEP does not reduce venous admixture at low levels of Fio2 (0-21-0.3), and the observed reduction with PEEP at FIO2= I may be misinterpreted. copyright. In patients with acute respiratory failure, and vital signs and minute volume were positive end-expiratory pressure (PEEP) has repeatedly checked, in order to confirm steady been said to reduce pulmonary venous admixture state condi-tions. Blood samples were drawn and improve arterial blood oxygenation.13 The simultaneously into heparinised glass syringes efficiency of PEEP can thus be -evaluated by its from an indwelling arterial line and from a http://thorax.bmj.com/ influence on venous admixture. -
Oxygen Consumption Rate V. Rate of Energy Utilization of Fishes: a Comparison and Brief History of the Two Measurements
Journal of Fish Biology (2016) 88, 10–25 doi:10.1111/jfb.12824, available online at wileyonlinelibrary.com Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements J. A. Nelson* Towson University, Department of Biological Sciences, 8000 York Road, Towson, MD 21252, U.S.A. Accounting for energy use by fishes has been taking place for over 200 years. The original, andcon- tinuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorime- try is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2] in water is more challenging than measuring [O2], most indirect calorimetric studies on fishes have used the rate of2 O consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O consumption by fishes do not attempt to relate this measurement backto 2 ̇ actual energy usage. Thus, the rate of oxygen consumption (MO2) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. -
Respiratory Equations – Behind the Numbers
Southern African Journal of Anaesthesia and Analgesia. 2020;26(6 Suppl 3):S90-93 https://doi.org/10.36303/SAJAA.2020.26.6.S3.2546 South Afr J Anaesth Analg Open Access article distributed under the terms of the ISSN 2220-1181 EISSN 2220-1173 Creative Commons License [CC BY-NC 3.0] © 2020 The Author(s) http://creativecommons.org/licenses/by-nc/3.0 FCA 1 REFRESHER COURSE Respiratory equations – behind the numbers T Leonard Department of Anaesthesia, School of Clinical Medicine, Faculty of Health Sciences, Chris Hani Baragwanath Academic Hospital, University of the Witwatersrand, South Africa Corresponding author, email: [email protected] Summary Candidates for the FCA 1 exam will come across dozens of equations that eventually all merge into something complicated and daunting. The purpose of this review is to highlight some of the respiratory equations that are important and that candidates find confusing and explain the mathematical and physiological principles behind them. Keywords: equations, respiratory physiology, ventilation, perfusion, dead space Introduction VD / VT = (PACO2 – PECO2) / PACO2 P CO partial pressure of CO in alveolar gas There are many equations that candidates will come across in A 2 2 their study of respiratory physiology. These equations describe PECO2 partial pressure of CO2 in the total mixed principles of ventilation, perfusion and diffusion within the res- exhaled breath piratory system. This review attempts to explain the origins and A further modification was made by Henrik Enghoff due to make sense -
Principles of Oxygenator Function: Gas Exchange, Heat Transfer, and Operation
Thoracic Key Fastest Thoracic Insight Engine Home Log In Register Categories » More References » About Gold Membership Contact Search... Principles of Oxygenator Function: Gas Exchange, Heat Transfer, and Operation Principles of Oxygenator Function: Gas Exchange, Heat Transfer, and Operation Michael H. Hines INTRODUCTION Since the early 1950s when the development of a heart-lung machine first began, there has been a tremendous evolution of devices and machinery for cardiac support (1,2). However, despite the diversity in designs through the years, they all contain three essential components: a mechanism to circulate the blood, a method of gas exchange for oxygen and carbon dioxide, and some mechanism for temperature control. Chapter 2 has covered the first important component, and we will now focus on the two subsequent elements: gas exchange and heat transfer. And while it is referred to as the “oxygenator,” we must recognize that it is responsible for the movement of both oxygen in, as well as carbon dioxide out. The discussion will start with a basic review of the principles of physics, and then we will apply those principles to the devices used specifically in extracorporeal support, including cardiopulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO). You may notice as you go through this chapter that there is a scarcity of trade and manufacturer names. The author has intentionally avoided using these. The intent was primarily to focus on the physiology, physics, and chemistry of the oxygenator and heat exchanger, but also to emphasize the fact that there are a large number of manufacturers producing many products that have all been shown to function extremely well. -
Involvement of Ammonia Metabolism in the Improvement of Endurance
www.nature.com/scientificreports OPEN Involvement of ammonia metabolism in the improvement of endurance performance by tea catechins in mice Shu Chen, Yoshihiko Minegishi, Takahiro Hasumura, Akira Shimotoyodome & Noriyasu Ota* Blood ammonia increases during exercise, and it has been suggested that this increase is both a central and peripheral fatigue factor. Although green tea catechins (GTCs) are known to improve exercise endurance by enhancing lipid metabolism in skeletal muscle, little is known about the relationship between ammonia metabolism and the endurance-improving efect of GTCs. Here, we examined how ammonia afects endurance capacity and how GTCs afect ammonia metabolism in vivo in mice and how GTCs afect mouse skeletal muscle and liver in vitro. In mice, blood ammonia concentration was signifcantly negatively correlated with exercise endurance capacity, and hyperammonaemia was found to decrease whole-body fat expenditure and fatty acid oxidation–related gene expression in skeletal muscle. Repeated ingestion of GTCs combined with regular exercise training improved endurance capacity and the expression of urea cycle–related genes in liver. In C2C12 myotubes, hyperammonaemia suppressed mitochondrial respiration; however, pre-incubation with GTCs rescued this suppression. Together, our results demonstrate that hyperammonaemia decreases both mitochondrial respiration in myotubes and whole-body aerobic metabolism. Thus, GTC-mediated increases in ammonia metabolism in liver and resistance to ammonia-induced suppression of mitochondrial -
The Oxylgen Coneenitration of the Air Was About 5 Per Cent.; It Roseto Higher
EFFECT OF OXYGEN CONCENTRATION ON THE RESPIRATION OF SOME VEGETABLES' HANS PLATENIUS (WITH SEVEN FIGURES) Introduction Commiiiiercial methods of storing fruits and vegetables in modified atmos- phere are based on the fact that respiration, ripening, and other physiolog- ical processes can be retarded by maintaining an atmosphere in which the oxygen content is lower and the carbon dioxide concentration higher than in normal air. Many investigators assume that it is the presence of carbon dioxide rather than the limited oxygen supply which has a depressing effect on the physiological activity of the plant tissue. In fact, modified atmos- phere storage is frequently spoken of as "carbon dioxide storage." There is reason to believe, however, that the importance of a limited oxygen supply itself has been underestimated. Indirect evidence for this view is found in the results of THORNTON (8) which make it clear that the presence of carbon dioxide in the storage atmosphere does nlot always depress the respiration of plant material. On the contrary, he found that the respi- ration rate of potatoes and onions was markedly increased when held in an atmosphere of normiial oxygen content to which varying quantities of carbon dioxide had been added. On the other hand, the same treatment had a depressing effect on the respiratory activity of asparagus and strawberries. In the literature few experiments are reported which deal exclusively with the effect of low concentrations of oxygen on the respiration of plant tissue. Somiie of these experiments were conducted for a few hours only, and there is no assurance that the results would have been the same had the storage period been extended to several days. -
Resting Energy Expenditure Is Elevated in Asthma
nutrients Article Resting Energy Expenditure Is Elevated in Asthma Jacob T. Mey 1,2 , Brittany Matuska 2, Laura Peterson 2, Patrick Wyszynski 2, Michelle Koo 2, Jacqueline Sharp 2, Emily Pennington 3, Stephanie McCarroll 3, Sarah Micklewright 3, Peng Zhang 3, Mark Aronica 2,3, Kristin K. Hoddy 1 , Catherine M. Champagne 1, Steven B. Heymsfield 1 , Suzy A. A. Comhair 2, John P. Kirwan 1,2 , Serpil C. Erzurum 2,3 and Anny Mulya 2,* 1 Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA; [email protected] (J.T.M.); [email protected] (K.K.H.); [email protected] (C.M.C.); Steven.Heymsfi[email protected] (S.B.H.); [email protected] (J.P.K.) 2 Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; [email protected] (B.M.); [email protected] (L.P.); [email protected] (P.W.); [email protected] (M.K.); [email protected] (J.S.); [email protected] (M.A.); [email protected] (S.A.A.C.); [email protected] (S.C.E.) 3 Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195, USA; [email protected] (E.P.); [email protected] (S.M.); [email protected] (S.M.); [email protected] (P.Z.) * Correspondence: [email protected]; Tel.: +1-(216)-445-6625; Fax: +1-(216)-636-0104 Abstract: Background: Asthma physiology affects respiratory function and inflammation, factors that may contribute to elevated resting energy expenditure (REE) and altered body composition. Objective: We hypothesized that asthma would present with elevated REE compared to weight- matched healthy controls. Methods: Adults with asthma (n = 41) and healthy controls (n = 20) underwent indirect calorimetry to measure REE, dual-energy X-ray absorptiometry (DEXA) to measure body composition, and 3-day diet records.