Durham E-Theses

Total Page:16

File Type:pdf, Size:1020Kb

Durham E-Theses Durham E-Theses Biological studies on the rivulariaceae Kirkby, Susan M. How to cite: Kirkby, Susan M. (1975) Biological studies on the rivulariaceae, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8282/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk BIOLOGICAL STUDIES ON THE RIVULARIACEAE By Susan M. Kirkby (B.Sc. Dunelm) A thesis submitted for the degree of Doctor of Philosophy in the University of Durham, England. August, 1975 4 NOV This thesis, which is entirely the result of my own work, has not been accepted for any degree, and is not being submitted concurrently in canditature for any .-other degree. ACKNOWLEDGMENTS I wish co acknowledge, with thanks, all those persons who have assisted me in the course of this project. Firstly I wish to thank Dr B.A. Whitton, my supervisor, for help and advice given throughout this work and for suggesting the project. I am grateful to all those people who have helped in my search for Rivularia. Thanks are due to Dr M.E. Bradshaw, Dr D.J. Bellamy, Dr M.K. Hughes, P.F. Williams, N.T.H. Holmes and Dr B. Bell. Thanks are due also to Miss C. Sinclair and A. Donaldson who have provided stimulating and useful discussions of the research topic, Mr W. Simon for technical assistance, Mr D.G. Middlemass for maintaining the growth tanks, Mr T. Brett, Mrs G.A. Walker and E.J.H. Lloyd for help with analysis of the water samples. 1 am grateful to Professor D. Boulter for allowing me to carry out my research in his department and to Durham University for financial support during this work. Finally I wish to thank the many people and in particular my husband and parents, whose constant encouragement has ensured the completion of this work. ABSTRACT This thesis reports a study on the variation of two genera of blue-green algae, Calothrix and Rivularia. The aspects chosen for detailed study were tapering and the hair. Before any comparative work could be undertaken it was necessary to develop ways of describing, in a quantitative manner, changes in the tapering and hair length. Tapering proved to be complex to describe in a satisfactory manner but four simple indices have been suggested. Measurements of individual trichomes have shown problems inherent in detailed studies of tapering, and the indices suggested by the author have been discussed in relation to this. Experimental studies on tapering have been concerned with elaborating the observations of previous authors that, in the presence of combined nitrogen, Calothrix and Gloeotrichia did not develop their characteristic taper. The effect of combined nitrogen on morphology was studied using the tapering indices. Attempts to culture material with hairs proved difficult; however a few factors which affect the development of the hair have been described. A computer program was developed in order to summarise relationships between the occurrence of hairs and other morphological features which have been described in the literature. For practical reasons it was often necessary to assign a name to members of the genus Rivularia; however .in doing this many problems were encountered. To overcome some of these difficulties an objective method of identification was devised. This was used in particular to identify material collected in the field. A brief ecological survey of Rivularia was undertaken in order to study possible correlations between certain aspects of water chemistry and the occurrence of members of the genus. -1- CONTENTS page Acknowledgments Abstract List of Tables 6 List of Figures 8 1 INTRODUCTION 10 1.1 Introduction to the family Rivulariaceae 10 1.2 Morphological variation in the Rivulariaceae 11 1.21 Differentiation of the filament 15 1.22 Variation along the filament 19 1.23 Morphological variation in response to environmental conditions 21 1.24 Taxonomic implications of morphological variation 22 1.25 Physiological aspects of morphological variation 24 1.26 Nitrogen fixation studies 25 1.3 Tapering and the hair 28 1.31 Tapering 29 1.32 Hair formation 30 1.33 Meristerns and development 33 1.4 Ecology of the Rivulariaceae 34 1.41 Introduction 34 1.42 Epilithic freshwater forms 34 1.43 Marine forms 35 1.44 Planktonic forms 37 -2- page 2 MATERIALS AND METHODS 41 2.1 List of abbreviations used in text 41 2.2 Algal materials 41 2.3 Apparatus 44 2.4 Chemicals 45 2.5 Media 45 2.6 Culture techniques 49 2.61 Cleaning of glassware 49 2.62 Sterilisation 50 2.63 Standard growth conditions 50 2.64 Inoculum material 52 2.7 Measurement of growth and morphological variation 52 2.71 Dry weight 52 2.72 Trichome dimensions and morphological variation 53 2.8 Chemical analyses 54 2.9 Acetylene reduction 55 2.10 Collection of field data 55 2.11 Computing 60 2.12 Statistics 62 3 TAPERING AND THE HAIR 71 3.1 Introduction 71 3.2 The concept of tapering 72 3.21 Indices of tapering 72 3.22 Detailed measurements of individual trichomas 91 3.3 The hair 100 3.4 Hairs in laboratory culture 118 3.5 Discussion 134 -3- page 4 PHYSIOLOGICAL ASPECTS OF TAPERING 138 4.1 Introduction 138 4.2 The effect of NH^-N on the growth and morphology of two strains of Calothrix 138 4.21 Calothrix brevissima 138 4.22 Calothrix viguieri 140 4.3 The effect of NO^-N on the growth and morphology of two strains of Calothrix 149 4.31 Calothrix viguieri 149 4.32 Calothrix scopulorum 153 4.4 Discussion 168 5 THE DEVELOPMENT OF AN OBJECTIVE SIMULTANEOUS KEY FOR THE IDENTIFICATION OF CALOTHRIX AND RIVULARIA 172 5.1 Introduction 172 5.2 Development of a standard recording procedure 173 5.21 Standard recording procedure for describing the genera Calothrix and Rivularia 175 5.22 Guide to the standard recording procedure 181 5.23 Standard recording procedure applied to field material 186 5.3 Coding the data 189 5.4 Computer analysis of the data 190 5.41 Identification 190 5.421 Keying-down known species 193 5.412 Keying-down unknown material 199 5.42 Answering data queries 204 5.421 Tapering and the hair 204 5.422 Physiognomic form and the hair 207 -4- page 5.423 Swollen base and the hair 209 5.424 Sheath colour and the hair 209 5.5 Discussion 211 6 AN ECOLOGICAL STUDY OF RIVULARIA 215 6.1 Introduction 215 6.2 Site descriptions 217 6.21 Sampling sites near Inchnadamph,Sutherland 21? 6.22 Additional.Scottish sampling sites 217 6.23 North Pennines and Upper Teesdale 219 6.24 Westmorland 219 6.25 Malham region, West Yorkshire 221 6.26 South Wales 223 6.3 Water chemistry data 223 6.31 Comparison of water chemistries from + and - Rivularia sites 231 6.4 Distribution of Rivularia in terms of substratum and water depth 232 6.5 Discussion 233 7 DISCUSSION 239 7.1 Introductory comments 239 7.2 Tapering 240 7.3 The hair 242 7.4 The effect of combined nitrogen on tapering 242 7.5 Morphological variation and the implications 245 on taxonomy 7.6 The effect of certain factors on the development 247 of the hair 7.7 Problems associated with identifying Calothrix 249 and Rivularia -5- 7.8 The ecological significance of Rivularia 251 7.9 Concluding remarks 253 256 SUMMARY 260 REFERENCES APPENDIX I Authorities for Rivulariaceae included in 286 this work APPENDIX II Information on the morphology of Calothrix 292 and Rivularia APPENDIX III Literature related to the distribution of Rivulariaceae 337 APPENDIX IV Guide to computer records of Rivularia 348 samples Field data and trichome descriptions 350 APPENDIX V Published paper: Pleurocladia lacustris A. Braun (Phaeophyta)- a new British record. -6- List of Tables page Table 1.1 Descriptions of genera of the Rivulariaceae 12 Table 1.2 Nitrogen fixation in the Rivulariaceae 26 Table 2.1 Details of cultures 43 Table 2.2 Media composition 46 Table 2.3 Optimum growth conditions of cultures 51 Table 2.4 Copy of 1 FIELD1 program 64 Table 2.5 Copy of 'IDENTIFY' program 66 Table 2.6 Copy of 'QUESTION' program 69 Table 3.1 Trichome dimensions 81 Table 3.2 Tapering values 82 Table 3.3 Tapering order 83 Table 3.4 Taperingvalues (based on Fig. 3.5) 101 Table 3.5 Tapering order (based on Fig. 3.5) 102 Table 3.6 External surface area and volume measurements 103 Table 3.7 External surface area: volume relationships 117 Table 3.8 Occurrence of hairs in cultures of Calothrix 131 Table 4.1 The effect of initial NH^-N on the subsequent growth and morphology of Calothrix viguieri 144 Table 4.2 Basal and apical widths of Calothrix viguieri cultured in + NO^-N media and - NO^-N media 154 Table 4.3 Change in tapering of Calothrix viguieri cultured in + NO-N and - N0.J-N media 155 Table 4.4 Acetylene reduction assay of Calothrix viguieri cultured in - NO^-N medium 157 Table 4.5 Acetylene reduction assay of Calothrix viguieri cultured in + NO^-N medium 158 Table 4.6 Basal and apical widths of Calothrix scopulorum cultured in + N03~N media and - NO^-N media 163 Table 4.7 Changes in tapering of Calothrix scopulorum cultured in + NO-N and - NO-N media 164 -7- page Table
Recommended publications
  • Occurrence of Nitrogen-Fixing Cyanobacteria During Different Stages of Paddy Cultivation
    Bangladesh J. Plant Taxon. 18(1): 73-76, 2011 (June) ` - Short communication © 2011 Bangladesh Association of Plant Taxonomists OCCURRENCE OF NITROGEN-FIXING CYANOBACTERIA DURING DIFFERENT STAGES OF PADDY CULTIVATION * KAUSHAL KISHORE CHOUDHARY Department of Botany, B.R.A. Bihar University, Muzaffarpur-842001, Bihar, India Keywords: Cyanobacteria; Diversity; Nitrogen-fixing; Rice fields; North Bihar. Rapid decline in soil fertility and productivity due to excessive application of chemical fertilizer particularly nitrogen and its increasing cost has induced to develop alternate biological sources of nitrogenous fertilizers (Boussiba, 1991). Biological fertilizers maintain the nitrogen status of the soils and helps in optimum crop production to meet the demand of increasing human populations while maintaining the agricultural practices sustainable. With establishment of agronomic potential of cyanobacteria (Singh, 1950), these photosynthetic prokaryotes were applied and studied for enrichment of different living ecosystems with nitrogenous compounds. Cyanobacteria are endowed with a specialized structure ‘heterocyst’ with ‘nitrogenase complex’ capable of converting unavailable sources of molecular nitrogen into nitrogenous compounds (Ernst et al., 1992). The ability of cyanobacteria to fix atmospheric nitrogen is increasing concern worldwide to exploit this tiny living system for nitrogenous fertilizers for sustainable agriculture practices. Advances in cyanobacteria have revealed their significant contribution in promoting the fertility of the soil and water including marine by adding nitrogen and phosphorus. Cyanobacteria contribute phosphorus to the soil by mobilizing the insoluble organic phosphates present in the soil with enzyme ‘phosphatses’ (Whitton et al., 1991). Moreover, cyanobacteria enhance the water holding capacity by adding polysaccharidic material to the soil (Richert et al., 2005) that increases the soil aggregation property.
    [Show full text]
  • Biodiversity and Distribution of Cyanobacteria at Dronning Maud Land, East Antarctica
    ACyctaan oBboatcatneriicaa eMasat lAacnittaarnctai c3a3. 17-28 Málaga, 201078 BIODIVERSITY AND DISTRIBUTION OF CYANOBACTERIA AT DRONNING MAUD LAND, EAST ANTARCTICA Shiv Mohan SINGH1, Purnima SINGH2 & Nooruddin THAJUDDIN3* 1National Centre for Antarctic and Ocean Research, Headland Sada, Vasco-Da-Gama, Goa 403804, India. 2Department of Biotechnology, Purvanchal University, Jaunpur, India. 3Department of Microbiology, Bharathidasan University, Tiruchirappalli – 620 024, Tamilnadu, India. *Author for correspondence: [email protected] Recibido el 20 febrero de 2008, aceptado para su publicación el 5 de junio de 2008 Publicado "on line" en junio de 2008 ABSTRACT. Biodiversity and distribution of cyanobacteria at Dronning Maud Land, East Antarctica.The current study describes the biodiversity and distribution of cyanobacteria from the natural habitats of Schirmacher land, East Antarctica surveyed during 23rd Indian Antarctic Expedition (2003–2004). Cyanobacteria were mapped using the Global Positioning System (GPS). A total of 109 species (91 species were non-heterocystous and 18 species were heterocystous) from 30 genera and 9 families were recorded; 67, 86 and 14 species of cyanobacteria were identified at altitudes of sea level >100 m, 101–150 m and 398–461 m, respectively. The relative frequency and relative density of cyanobacterial populations in the microbial mats showed that 11 species from 8 genera were abundant and 6 species (Phormidium angustissimum, P. tenue, P. uncinatum Schizothrix vaginata, Nostoc kihlmanii and Plectonema terebrans) could be considered as dominant species in the study area. Key words. Antarctic, cyanobacteria, biodiversity, blue-green algae, Schirmacher oasis, Species distribution. RESUMEN. Biodiversidad y distribución de las cianobacterias de Dronning Maud Land, Antártida Oriental. En este estudio se describe la biodiversidad y distribución de las cianobacterias presentes en los hábitats naturales de Schirmacher, Antártida Oriental, muestreados durante la 23ª Expedición India a la Antártida (2003-2004).
    [Show full text]
  • Some Algae from Clipperton Island and the Danger Islands
    Some Algae from Clipperton Island and the Danger Islands Item Type article Authors Dawson, E. Yale Download date 25/09/2021 22:34:01 Link to Item http://hdl.handle.net/1834/20635 SOME ALGAE FROM CLIPPERTON ISLAND AND THE DANGER ISLANDS By E. Yale Dawson Fig. 1. Rhizoclonium proftmdum sp. nov., from the type collection. A, Habit of a young plant attached to two filaments of older plants, shuwing rhizoids, altachment~ and branches, X 20. B, Detail of a single mature cell showing stratitied walls and reticu­ late chloroplast, X 75. SOME ALGAE FROM CLIPPERTON ISLAND AND THE DANGER ISLANDS By E. YALE DAwso:\, Through the cooperation of Dr. Carl L. Huhbs the writer has received through the Scripps Institution of Oceanography two interesting collection~ of tropical Paci fie benthic algae, one from remote Clipperton Island, the easternmost coral atoll in the Pacific, and one from a depth of about 200 feet at Pukapuka in the Danger Island~, l"nion Group, about 400 mile~ northea~t of Samoa. These are reported on helow in turn. I am grateful to Dr. Isabella Ahbott for reading and criticizing this paper. Clipperton Island The algal vegetation of this solitary atoll is known only from the papers of Taylor (1939) and Dawson (1957). These reports list only 17 entities, including 6 species of Cyanophyta and 3 unsatisfactorily identified species of other groups. The present collections, made principally hy Messrs. C. Limbaugh, T. Chess, A. Hambly and Miss M.·H. Sachet on the recent Scripps Institution Expedition (August.September, 1958), are more ample than any previously available, and permit us to add 30 marine species and 14 terrestrial and fresh water species, making a total of 61 known from the atoll.
    [Show full text]
  • DOMAIN Bacteria PHYLUM Cyanobacteria
    DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub
    [Show full text]
  • Lobban & N'yeurt 2006
    Micronesica 39(1): 73–105, 2006 Provisional keys to the genera of seaweeds of Micronesia, with new records for Guam and Yap CHRISTOPHER S. LOBBAN Division of Natural Sciences, University of Guam, Mangilao, GU 96923 AND ANTOINE D.R. N’YEURT Université de la Polynésie française, Campus d’Outumaoro Bâtiment D B.P. 6570 Faa'a, 98702 Tahiti, French Polynesia Abstract—Artificial keys to the genera of blue-green, red, brown, and green marine benthic algae of Micronesia are given, including virtually all the genera reported from Palau, Guam, Commonwealth of the Northern Marianas, Federated States of Micronesia and the Marshall Islands. Twenty-two new species or genera are reported here for Guam and 7 for Yap; 11 of these are also new for Micronesia. Note is made of several recent published records for Guam and 2 species recently raised from varietal status. Finally, a list is given of nomenclatural changes that affect the 2003 revised checklist (Micronesica 35-36: 54–99). An interactive version of the keys is included in the algal biodiversity website at www.uog.edu/ classes/botany/474. Introduction The seaweeds of Micronesia have been studied for over a century but no one has yet written a comprehensive manual for identifying them, nor does it seem likely that this will happen in the foreseeable future. In contrast, floras have recently been published for Hawai‘i (Abbott 1999, Abbott & Huisman 2004) and the South Pacific (Payri et al. 2000, Littler & Littler 2003). A few extensive or intensive works on Micronesia (e.g., Taylor 1950, Trono 1969a, b, Tsuda 1972) gave descriptions of the species in the style of a flora for particular island groups.
    [Show full text]
  • Microspatial Variation in Marine Biofilm Abundance on Intertidal Rock Surfaces
    AQUATIC MICROBIAL ECOLOGY Vol. 42: 187–197, 2006 Published February 28 Aquat Microb Ecol Microspatial variation in marine biofilm abundance on intertidal rock surfaces Neil Hutchinson1, 3,*, Sanjay Nagarkar1, Jonathan C. Aitchison2, Gray A. Williams1 1Swire Institute of Marine Science, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR 2The Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR 3Present address: Amakusa Marine Biological Laboratory, Kyushu University, Tomioka 2231, Reihoku-Amakusa, Kumamoto 863-2507, Japan ABSTRACT: The effect of substrate surface roughness on small-scale patchiness and the ability of molluscan grazers to feed on intertidal biofilms was examined in a factorial experiment. Granite slabs were treated to create 4 different levels of surface roughness, and biofilm and macroalgae were allowed to recruit. Biofilm cover varied greatly with slab roughness, and was spatially patchy at a scale of millimetres. Diatoms dominated the biofilm, but were less abundant on surfaces with the smallest pits. Cover of diatoms and cyanobacteria was affected by surface roughness, with increased abundance around surface features. Different species of grazer varied in their success at removing certain diatoms and cyanobacteria from slabs of varying roughness, due to either the morphology of the different food types or grazer radula structure. Cover of macroalgal species on the slabs of differ- ent roughness also varied, and one species, Hypnea sp., did not recruit on smooth slabs. Rock rough- ness, therefore, affects both the biofilm and algal species that recruit and their abundance. Grazers were able to remove algae from slabs of all roughness with no apparent species-specific differences in their ability.
    [Show full text]
  • Morphological Diversity of Benthic Nostocales (Cyanoprokaryota/Cyanobacteria) from the Tropical Rocky Shores of Huatulco Region, Oaxaca, México
    Phytotaxa 219 (3): 221–232 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.219.3.2 Morphological diversity of benthic Nostocales (Cyanoprokaryota/Cyanobacteria) from the tropical rocky shores of Huatulco region, Oaxaca, México LAURA GONZÁLEZ-RESENDIZ1,2*, HILDA P. LEÓN-TEJERA1 & MICHELE GOLD-MORGAN1 1 Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM). Coyoacán, Có- digo Postal 04510, P.O. Box 70–474, México, Distrito Federal (D.F.), México 2 Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM). * Corresponding author (e–mail: [email protected]) Abstract The supratidal and intertidal zones are extreme biotopes. Recent surveys of the supratidal and intertidal fringe of the state of Oaxaca, Mexico, have shown that the cyanoprokaryotes are frequently the dominant forms and the heterocytous species form abundant and conspicuous epilithic growths. Five of the eight special morphotypes (Brasilonema sp., Myochrotes sp., Ophiothrix sp., Petalonema sp. and Calothrix sp.) from six localities described and discussed in this paper, are new reports for the tropical Mexican coast and the other three (Kyrtuthrix cf. maculans, Scytonematopsis cf. crustacea and Hassallia littoralis) extend their known distribution. Key words: Marine environment, stressful environment, Scytonemataceae, Rivulariaceae Introduction The rocky shore is a highly stressful habitat, due to the lack of nutrients, elevated temperatures and high desiccation related to tidal fluctuation (Nagarkar 2002). Previous works on this habitat report epilithic heterocytous species that are often dominant especially in the supratidal and intertidal fringes (Whitton & Potts 1979, Potts 1980; Nagarkar & Williams 1999, Nagarkar 2002, Diez et al.
    [Show full text]
  • Freshwater Algae in Britain and Ireland - Bibliography
    Freshwater algae in Britain and Ireland - Bibliography Floras, monographs, articles with records and environmental information, together with papers dealing with taxonomic/nomenclatural changes since 2003 (previous update of ‘Coded List’) as well as those helpful for identification purposes. Theses are listed only where available online and include unpublished information. Useful websites are listed at the end of the bibliography. Further links to relevant information (catalogues, websites, photocatalogues) can be found on the site managed by the British Phycological Society (http://www.brphycsoc.org/links.lasso). Abbas A, Godward MBE (1964) Cytology in relation to taxonomy in Chaetophorales. Journal of the Linnean Society, Botany 58: 499–597. Abbott J, Emsley F, Hick T, Stubbins J, Turner WB, West W (1886) Contributions to a fauna and flora of West Yorkshire: algae (exclusive of Diatomaceae). Transactions of the Leeds Naturalists' Club and Scientific Association 1: 69–78, pl.1. Acton E (1909) Coccomyxa subellipsoidea, a new member of the Palmellaceae. Annals of Botany 23: 537–573. Acton E (1916a) On the structure and origin of Cladophora-balls. New Phytologist 15: 1–10. Acton E (1916b) On a new penetrating alga. New Phytologist 15: 97–102. Acton E (1916c) Studies on the nuclear division in desmids. 1. Hyalotheca dissiliens (Smith) Bréb. Annals of Botany 30: 379–382. Adams J (1908) A synopsis of Irish algae, freshwater and marine. Proceedings of the Royal Irish Academy 27B: 11–60. Ahmadjian V (1967) A guide to the algae occurring as lichen symbionts: isolation, culture, cultural physiology and identification. Phycologia 6: 127–166 Allanson BR (1973) The fine structure of the periphyton of Chara sp.
    [Show full text]
  • Seagrass Communities of the Gulf Coast of Florida: Status and Ecology
    CLINTON J. DAWES August 2004 RONALD C. PHILLIPS GEROLD MORRISON CLINTON J. DAWES University of South Florida Tampa, Florida, USA RONALD C. PHILLIPS Institute of Biology of the Southern Seas Sevastopol, Crimea, Ukraine GEROLD MORRISON Environmental Protection Commission of Hillsborough County Tampa, Florida, USA August 2004 COPIES This document may be obtained from the following agencies: Tampa Bay Estuary Program FWC Fish and Wildlife Research Institute 100 8th Avenue SE 100 8th Avenue SE Mail Station I-1/NEP ATTN: Librarian St. Petersburg, FL 33701-5020 St. Petersburg, FL 33701-5020 Tel 727-893-2765 Fax 727-893-2767 Tel 727-896-8626 Fax 727-823-0166 www.tbep.org http://research.MyFWC.com CITATION Dawes, C.J., R.C. Phillips, and G. Morrison. 2004. Seagrass Communities of the Gulf Coast of Florida: Status and Ecology. Florida Fish and Wildlife Conservation Commission Fish and Wildlife Research Institute and the Tampa Bay Estuary Program. St. Petersburg, FL. iv + 74 pp. AUTHORS Clinton J. Dawes, Ph.D. Distinguished University Research Professor University of South Florida Department of Biology Tampa, FL 33620 [email protected] Ronald C. Phillips, Ph.D. Associate Institute of Biology of the Southern Seas 2, Nakhimov Ave. Sevastopol 99011 Crimea, Ukraine [email protected] Gerold Morrison, Ph.D. Director, Environmental Resource Management Environmental Protection Commission of Hillsborough County 3629 Queen Palm Drive Tampa, FL 33619 813-272-5960 ext 1025 [email protected] ii TABLE of CONTENTS iv Foreword and Acknowledgements 1 Introduction 6 Distribution, Status, and Trends 15 Autecology and Population Genetics 28 Ecological Roles 42 Natural and Anthropogenic Effects 49 Appendix: Taxonomy of Florida Seagrasses 55 References iii FOREWORD The waters along Florida’s Gulf of Mexico coastline, which stretches from the tropical Florida Keys in the south to the temperate Panhandle in the north, contain the most extensive and diverse seagrass meadows in the United States.
    [Show full text]
  • (Cyanobacterial Genera) 2014, Using a Polyphasic Approach
    Preslia 86: 295–335, 2014 295 Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach Taxonomické hodnocení cyanoprokaryot (cyanobakteriální rody) v roce 2014 podle polyfázického přístupu Jiří K o m á r e k1,2,JanKaštovský2, Jan M a r e š1,2 & Jeffrey R. J o h a n s e n2,3 1Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, CZ-37982 Třeboň, Czech Republic, e-mail: [email protected]; 2Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic; 3Department of Biology, John Carroll University, University Heights, Cleveland, OH 44118, USA Komárek J., Kaštovský J., Mareš J. & Johansen J. R. (2014): Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. – Preslia 86: 295–335. The whole classification of cyanobacteria (species, genera, families, orders) has undergone exten- sive restructuring and revision in recent years with the advent of phylogenetic analyses based on molecular sequence data. Several recent revisionary and monographic works initiated a revision and it is anticipated there will be further changes in the future. However, with the completion of the monographic series on the Cyanobacteria in Süsswasserflora von Mitteleuropa, and the recent flurry of taxonomic papers describing new genera, it seems expedient that a summary of the modern taxonomic system for cyanobacteria should be published. In this review, we present the status of all currently used families of cyanobacteria, review the results of molecular taxonomic studies, descriptions and characteristics of new orders and new families and the elevation of a few subfamilies to family level.
    [Show full text]
  • Phylogenetic Position Reevaluation of Kyrtuthrix and Description of a New Species K
    Phytotaxa 278 (1): 001–018 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.278.1.1 Phylogenetic position reevaluation of Kyrtuthrix and description of a new species K. huatulcensis from Mexico´s Pacific coast HILDA LEÓN-TEJERA1*, LAURA GONZÁLEZ-RESENDIZ1, JEFFREY R. JOHANSEN2, CLAUDIA SEGAL- KISCHINEVZKY3, VIVIANA ESCOBAR-SÁNCHEZ3 & LUISA ALBA-LOIS3 1Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM). Coyoacán, Có- digo Postal 04510, P.O. Box 70–474, México, Ciudad de México, México. 2John Carroll University, Cleveland, Ohio, USA 3Departamento de Biología Celular, Facultad de Ciencias, UNAM, Ciudad de México, México. *Corresponding author ([email protected]) ABSTRACT Benthic marine heterocytous cyanoprokaryotes of Mexico´s tropical coast are being recognized as an important and con- spicuous component of the supralittoral and intertidal zones usually described as an extreme and low diversity biotope. Although Kyrtuthrix has been reported from different coasts worldwide, its complex morphology has led to differing taxo- nomic interpretations and positioning. Ten marine supra and intertidal populations of Kyrtuthrix were analyzed using a de- tailed morphological approach, complemented with ecological and geographical information as well as DNA sequence data of the 16S rRNA gene and associated 16S–23S ITS. Kyrtuthrix huatulcensis is described as a new species, different from K. dalmatica Ercegovic and K. maculans (Gomont) Umezaki based primarily on morphological data. Our material has smaller dimensions in thalli, filaments, trichomes and cells, and possesses differences in qualitative characters as well.
    [Show full text]
  • Calcified Rivulariaceans from the Ordovician of the Tarim Basin
    Palaeogeography, Palaeoclimatology, Palaeoecology 448 (2016) 371–381 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Calcified rivulariaceans from the Ordovician of the Tarim Basin, Northwest China, Phanerozoic lagoonal examples, and possible controlling factors Lijing Liu a, Yasheng Wu a,⁎, Jiang Hongxia a,RobertRidingb a Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China b Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996-1410, USA article info abstract Article history: A distinctive association of rivulariacean-like calcified microfossils is recognized in back-reef lagoon facies on the Received 21 June 2015 Bachu-Tazhong Platform in the Lianglitag Formation (Katian Stage, Upper Ordovician) of the Tarim Basin, based Received in revised form 19 August 2015 on investigation of 4500 thin sections from 35 well drill cores. The genera include Hedstroemia, Ortonella, Accepted 25 August 2015 Zonotrichites, Cayeuxia, and Garwoodia, most of which have features comparable with present-day calcified Available online 16 September 2015 cyanobacteria such as Rivularia, Calothrix and Dichothrix (Rivulariaceae, Nostocales). A similar association is pres- Keywords: ent in lagoonal and other restricted nearshore shallow-marine carbonate environments during much of the Pa- Calcified cyanobacteria leozoic and Mesozoic. This suggests the sustained presence of a rivulariacean-dominated cyanobacterial Lagoon association characteristic of back-reef/lagoonal environments. At the present-day, uncalcified Rivularia, Calothrix N2-fixation and Dichothrix remain common in back-reef, lagoon, mangrove-swamp, rocky shore, salt-marsh, and saline lake Phanerozoic environments. The ability of these cyanobacteria to grow in environments low in inorganic nitrate and phosphate Phosphate could help to explain this distribution.
    [Show full text]