Peroxisomal Β-Oxidation Regulates Histone Acetylation and DNA Methylation in Arabidopsis

Total Page:16

File Type:pdf, Size:1020Kb

Peroxisomal Β-Oxidation Regulates Histone Acetylation and DNA Methylation in Arabidopsis Peroxisomal β-oxidation regulates histone acetylation and DNA methylation in Arabidopsis Lishuan Wanga,1, Chunlei Wangb,1, Xinye Liuc, Jinkui Chenga, Shaofang Lia, Jian-Kang Zhud,e,2, and Zhizhong Gonga,2 aState Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, 100193 Beijing, China; bCollege of Horticulture, Gansu Agricultural University, 730070 Lanzhou, China; cMinistry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024 Shijiazhuang, China; dShanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, China; and eDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 Contributed by Jian-Kang Zhu, April 4, 2019 (sent for review March 12, 2019; reviewed by Bao Liu and Jim Peacock) Epigenetic markers, such as histone acetylation and DNA methylation, DNA methylation is a conserved epigenetic marker important determine chromatin organization. In eukaryotic cells, metabolites in genome organization, gene expression, genomic imprinting, from organelles or the cytosol affect epigenetic modifications. How- paramutation, and X chromosome inactivation in organisms (3, ever, the relationships between metabolites and epigenetic modifica- 11–13). DNA methylation patterns are coordinately determined tions are not well understood in plants. We found that peroxisomal by methylation and demethylation reactions in plants and ani- acyl-CoA oxidase 4 (ACX4), an enzyme in the fatty acid β-oxidation mals (13, 14). The active removal of 5mC in Arabidopsis is car- pathway, is required for suppressing the silencing of some endoge- ried out by a subfamily of bifunctional DNA glycosylases/lyases nous loci, as well as Pro35S:NPTII in the ProRD29A:LUC/C24 transgenic represented by REPRESSOR OF SILENCING 1 (ROS1) and line. The acx4 mutation reduces nuclear histone acetylation and in- DEMETER (DME) (15, 16). ROS1 family proteins bind DNA non- creases DNA methylation at the NOS terminator of Pro35S:NPTII and specifically (17) and need other factors to find target genomic regions at some endogenous genomic loci, which are also targeted by the (13). Among these, ROS4/INCREASED DNA METHYLATION 1 demethylation enzyme REPRESSOR OF SILENCING 1 (ROS1). Further- (IDM1) is a plant homeodomain finger-containing histone more, mutations in multifunctional protein 2 (MFP2) and 3-ketoacyl- acetyltransferase that catalyzes the acetylation of histone H3 CoA thiolase-2 (KAT2/PED1/PKT3), two enzymes in the last two steps lysine 18 (H3K18) and lysine 23 (H3K23) to create a favorable PLANT BIOLOGY of the β-oxidation pathway, lead to similar patterns of DNA hyper- chromatin environment for the recruitment of ROS1 at some methylation as in acx4. Thus, metabolites from fatty acid β-oxidation loci (1, 18). ROS4/IDM1, together with other factors, such as ROS5/ in peroxisomes are closely linked to nuclear epigenetic modifications, IDM2, IDM3, methyl-CPG-binding domain 7 (MBD7), Harbinger which may affect diverse cellular processes in plants. Significance β-oxidation | acetyl-CoA | histone acetylation | DNA methylation | gene silencing Small-molecule metabolites from cell organelles or cytosol exert their influence on decision making processes in eukaryotic cells. istone acetylation is important for neutralizing the positive However, the mechanisms underlying the regulation of cellular Hcharges of lysine residues and promoting chromatin relaxation; processes by these metabolites are not well understood. Among it is also required for transcription, DNA replication, histone these small metabolites, acetyl-CoA, a most critical one, is pro- – methylation, and other histone modifications (1 4). Histones are duced in the cytosol and different cell organelles. In plants, acetyl- acetylated by acetyltransferases, which transfer acetyl groups CoA produced from fatty acid β-oxidation in peroxisomes plays from acetyl-CoA to histone lysine residues. critical roles in various developmental stages. Here we found that Acetyl-CoA is a central metabolite that can be produced via defects in β-oxidation in peroxisomes affect both histone acety- several metabolic pathways involved in pyruvate, citrate, acetate, lation and DNA methylation in the nucleus. Our work provides β and fatty acid -oxidation metabolism (5). In mammals, acetyl- evidence for retrograde signaling from peroxisomes to regulate CoA in mitochondria is produced from different pathways, in- nuclear epigenetic modifications in higher eukaryotes. cluding the fatty acid β-oxidation (6). In cytosol and nucleus, adenosine triphosphate (ATP)-citrate lyase (ACLY) cleaves Author contributions: L.W., C.W., J.-K.Z., and Z.G. designed research; L.W. and C.W. per- citrate exported from mitochondria to regenerate acetyl-CoA formed research; L.W., C.W., X.L., J.C., and S.L. analyzed data; and L.W., J.-K.Z., and Z.G. that can be used for other biosynthetic processes, such as fatty wrote the paper. acid synthesis and histone acetylation (6). In mouse, conditional Reviewers: B.L., Northeast Normal University; and J.P., Commonwealth Scientific and In- loss of carnitine palmitoyltransferase 1A (CPT1A), which is required dustrial Research Organisation. for the transfer of fatty acid into mitochondria for β-oxidation, The authors declare no conflict of interest. impairs dermal lymphatic formation via histone acetylation in an Published under the PNAS license. ACLY-dependent manner (7). A pyruvate dehydrogenase com- Data deposition: Sequence data referred to in this article have been deposited in the plex can be translocated from mitochondria to nuclei to generate GenBank/EMBL database (accession nos. AT2G36490 for ROS1, AT3G14980 for ROS4/ IDM1, AT5G66750 for DDM1, AT4G11130 for RDR2, AT3G51840 for ACX4, AT3G06860 acetyl-CoA and mediate histone acetylation in mammalian cells for MFP2, AT2G33150 for KAT2, AT1G64230 for UBC28, and AT3G18780 for ACTIN2). in certain conditions (2, 8). In Arabidopsis, the mutations in cytosolic Primary datasets for the whole-genome bisulfite sequences of Col-0, ros1-4, acx4-4, acetyl-CoA carboxylase (ACC1), which converts cytosolic acetyl- acx4-1, mfp2-2, and kat2-3 mutant plants have been deposited in the Gene Expression CoA to malonyl-CoA for elongating the plastid-produced fatty Omnibus (GEO) database (accession no. GSE98214). Histone acetylation ChIP-seq data also have been deposited in the GEO database (accession no. GSE98214). Whole-genome bi- acids, lead to high accumulation of cytosolic acetyl-CoA, spe- sulfite sequencing data of C24 WT, ros1-1, and ros4 plants were obtained from the GEO cifically resulting in increased H3K27 acetylation (H3K27ac) (9). database (accession no. SRP042060). These results underscore the importance of acetyl-CoA in 1L.W. and C.W. contributed equally to this work. histone acetylation in nuclei in both mammals and plants. However, 2To whom correspondence may be addressed. Email: [email protected] or gongzz@cau. in plant cells, plastids, mitochondria, peroxisomes, and cytosol can edu.cn. produce acetyl-CoA (10). Whether impairment of metabolism in This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. plant organelles will affect the nuclear epigenetic modifications is 1073/pnas.1904143116/-/DCSupplemental. still being unraveled. www.pnas.org/cgi/doi/10.1073/pnas.1904143116 PNAS Latest Articles | 1of10 Downloaded by guest on October 1, 2021 transposon-derived protein 1 (HDP1), and HDP2, forms a complex to regulate active DNA demethylation (19–23). MET18 is a com- ponent in the cytosolic iron-sulfur cluster assembly pathway in- volved in the transfer of the Fe-S cluster to ROS1, which is necessary for its function (24). The expression of ROS1 is positively regulated by promoter DNA methylation, which requires a protein complex composed of Su(var)3–9 homologs (SUVHs) and SUVH- interacting DNAJ (SDJ) proteins (25–28). To identify the components required to prevent transgene si- lencing and normal DNA methylation patterns in Arabidopsis,we performed a forward genetic screen for kanamycin (Kan)-sensitive mutants using the ProRD29A:LUC/Pro35S:NPTII transgenic C24 line (18). Several ROS1 alleles, multiple components of the RdDM pathway,ROS4/IDM1,ROS5/IDM2, and MBD7, were identified in this screening (1, 18, 22, 23). Here we identified an antisilencing factor, acyl-CoA oxidase 4 (ACX4), in the fatty acid β-oxidation pathway. In acx4 mutants, overall levels of H3Ac and H4Ac are reduced, and DNA methylation is increased at some genomic loci, resulting in enhanced transcriptional silencing of reporter and some endogenous genes. The mfp2 and kat2 mutants have similar DNA hypermethylation phenotypes to acx4. Our results uncover a con- nection between fatty acid β-oxidation and epigenetic regulation in plants. Fig. 1. Characterization of the acx4 mutant. (A) The acx4 mutation silenced Results Pro35S:NPTII, as indicated by Kan sensitivity. The acx4-4, ros1-1, and ros4 ACX4 Is a Suppressor of Transcriptional Silencing. To decipher the mutants were grown on MS medium or on MS medium supplemented mechanism that blocks transcriptional gene silencing, we per- with 50 mg/L Kan. (B) The acx4 mutation does not affect the expression of formed a forward genetic screen using an ethyl methanesulfo- ProRD29A:LUC. The acx4-4, ros1-1, and
Recommended publications
  • Quantitative Proteomics Methods for the Analysis of Histone Post-Translational Modifications
    Université de Montréal Quantitative Proteomics Methods for the Analysis of Histone Post-translational Modifications par Nebiyu Ali Abshiru Département de Chimie Faculté des arts et des sciences Thèse présentée à la Faculté des études supérieures et postdoctorales en vue de l’obtention du grade de philosophiae doctor (Ph.D.) en chimie Septembre 2015 ©Nebiyu Ali Abshiru, 2015 i Résumé Les histones sont des protéines nucléaires hautement conservées chez les cellules des eucaryotes. Elles permettent d’organiser et de compacter l’ADN sous la forme de nucléosomes, ceux-ci representant les sous unités de base de la chromatine. Les histones peuvent être modifiées par de nombreuses modifications post-traductionnelles (PTMs) telles que l’acétylation, la méthylation et la phosphorylation. Ces modifications jouent un rôle essentiel dans la réplication de l’ADN, la transcription et l’assemblage de la chromatine. L’abondance de ces modifications peut varier de facon significative lors du developpement des maladies incluant plusieurs types de cancer. Par exemple, la perte totale de la triméthylation sur H4K20 ainsi que l’acétylation sur H4K16 sont des marqueurs tumoraux spécifiques a certains types de cancer chez l’humain. Par conséquent, l’étude de ces modifications et des événements determinant la dynamique des leurs changements d’abondance sont des atouts importants pour mieux comprendre les fonctions cellulaires et moléculaires lors du développement de la maladie. De manière générale, les modifications des histones sont étudiées par des approches biochimiques telles que les immuno-buvardage de type Western ou les méthodes d’immunoprécipitation de la chromatine (ChIP). Cependant, ces approches présentent plusieurs inconvénients telles que le manque de spécificité ou la disponibilité des anticorps, leur coût ou encore la difficulté de les produire et de les valider.
    [Show full text]
  • Histone H3K4 Demethylation Is Negatively Regulated by Histone H3 Acetylation in Saccharomyces Cerevisiae
    Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae Vicki E. Maltbya, Benjamin J. E. Martina, Julie Brind’Amourb,1, Adam T. Chruscickia,1, Kristina L. McBurneya, Julia M. Schulzec, Ian J. Johnsona, Mark Hillsd, Thomas Hentrichc, Michael S. Koborc, Matthew C. Lorinczb, and LeAnn J. Howea,2 Departments of aBiochemistry and Molecular Biology and bMedical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; cCenter for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4; and dTerry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3 Edited by Kevin Struhl, Harvard Medical School, Boston, MA, and approved September 12, 2012 (received for review February 6, 2012) Histone H3 lysine 4 trimethylation (H3K4me3) is a hallmark of of lysine-specific HDMs have been identified: amine oxidases, transcription initiation, but how H3K4me3 is demethylated during such as LSD1, and the JmjC (Jumonji C) domain–containing gene repression is poorly understood. Jhd2, a JmjC domain protein, demethylases. This latter class of demethylases can be split fur- was recently identified as the major H3K4me3 histone demethylase ther into several subfamilies, including the evolutionarily con- (HDM) in Saccharomyces cerevisiae. Although JHD2 is required for served JARID1 family of demethylases, which is characterized JHD2 removal of methylation upon gene repression, deletion of does not only by a JmjC domain but also by JmjN, AT-rich interactive, not result in increased levels of H3K4me3 in bulk histones, indicating C5HC2 zinc finger, and PHD finger domains (6). In the yeast S. that this HDM is unable to demethylate histones during steady-state cerevisiae, the lone member of the JARID1 family of demethy- conditions.
    [Show full text]
  • Recognition of Histone Acetylation by the GAS41 YEATS Domain Promotes H2A.Z Deposition in Non-Small Cell Lung Cancer
    Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A.Z deposition in non-small cell lung cancer Chih-Chao Hsu,1,2,8 Jiejun Shi,3,8 Chao Yuan,1,2,7,8 Dan Zhao,4,5,8 Shiming Jiang,1,2 Jie Lyu,3 Xiaolu Wang,1,2 Haitao Li,4,5 Hong Wen,1,2 Wei Li,3 and Xiaobing Shi1,2,6 1Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; 2Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; 3Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA; 4MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; 5Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China; 6Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA Histone acetylation is associated with active transcription in eukaryotic cells. It helps to open up the chromatin by neutralizing the positive charge of histone lysine residues and providing binding platforms for “reader” proteins. The bromodomain (BRD) has long been thought to be the sole protein module that recognizes acetylated histones. Re- cently, we identified the YEATS domain of AF9 (ALL1 fused gene from chromosome 9) as a novel acetyl-lysine- binding module and showed that the ENL (eleven-nineteen leukemia) YEATS domain is an essential acetyl-histone reader in acute myeloid leukemias.
    [Show full text]
  • Deciphering the Histone Code to Build the Genome Structure
    bioRxiv preprint doi: https://doi.org/10.1101/217190; this version posted November 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Deciphering the histone code to build the genome structure Kirti Prakasha,b,c,* and David Fournierd,* aPhysico-Chimie Curie, Institut Curie, CNRS UMR 168, 75005 Paris, France; bOxford Nanoimaging Ltd, OX1 1JD, Oxford, UK; cMicron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK; dFaculty of Biology and Center for Computational Sciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; *Correspondence: [email protected], [email protected] Histones are punctuated with small chemical modifications that alter their interaction with DNA. One attractive hypothesis stipulates that certain combinations of these histone modifications may function, alone or together, as a part of a predictive histone code to provide ground rules for chromatin folding. We consider four features that relate histone modifications to chromatin folding: charge neutrali- sation, molecular specificity, robustness and evolvability. Next, we present evidence for the association among different histone modi- fications at various levels of chromatin organisation and show how these relationships relate to function such as transcription, replica- tion and cell division. Finally, we propose a model where the histone code can set critical checkpoints for chromatin to fold reversibly be- tween different orders of the organisation in response to a biological stimulus. DNA | nucleosomes | histone modifications | chromatin domains | chro- mosomes | histone code | chromatin folding | genome structure Introduction The genetic information within chromosomes of eukaryotes is packaged into chromatin, a long and folded polymer of double-stranded DNA, histones and other structural and non- structural proteins.
    [Show full text]
  • EIN2 Mediates Direct Regulation of Histone Acetylation in the Ethylene Response
    EIN2 mediates direct regulation of histone acetylation in the ethylene response Fan Zhanga,b,1, Likai Wanga,b,1, Bin Qic, Bo Zhaoa,b, Eun Esther Koa,b, Nathaniel D. Riggana,b, Kevin China,b, and Hong Qiaoa,b,2 aInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712; bDepartment of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712; and cDepartment of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 Edited by Steven E. Jacobsen, University of California, Los Angeles, CA, and approved August 10, 2017 (received for review May 15, 2017) Ethylene gas is essential for developmental processes and stress of EBF1 and EBF2 (19, 20). In the nucleus, the EIN2-C transduces responses in plants. Although the membrane-bound protein EIN2 is signals to the transcription factors EIN3 and EIL1, which are key for critical for ethylene signaling, the mechanism by which the ethylene activation of expression of all ethylene-response genes (21, 22). We signal is transduced remains largely unknown. Here we show the recently discovered that acetylation at H3K23 and H3K14Ac is in- levels of H3K14Ac and H3K23Ac are correlated with the levels of volved in ethylene-regulated gene activation in a manner that de- EIN2 protein and demonstrate EIN2 C terminus (EIN2-C) is sufficient to pends on both EIN2 and EIN3 (23, 24). rescue the levels of H3K14/23Ac of ein2-5 at the target loci, using Here we show that the levels of H3K14/23Ac are positively CRISPR/dCas9-EIN2-C.
    [Show full text]
  • New Developments in Epigenetics and Potential Clinical Applications
    NEW DEVELOPMENTS IN EPIGENETICS AND POTENTIAL CLINICAL APPLICATIONS Susan E. Bates, M.D. Columbia University Medical Center, New York, NY and J.J.P Bronx VA Medical Center, Bronx, NY TARGETING THE EPIGENOME What do we mean? “Targeting the Epigenome” - Meaning that we identify proteins that impact transcriptional controls that are important in cancer. “Epigenetics” – Meaning the right genes expressed at the right time, in the right place and in the right quantities. This process is ensured by an expanding list of genes that themselves must be expressed at the right time and right place. Think of it as a coordinated chromatin dance involving DNA, histone proteins, transcription factors, and over 700 proteins that modify them. Transcriptional Control: DNA Histone Tail Modification Nucleosomal Remodeling Non-Coding RNA HISTONE PROTEIN FAMILY 146 bp DNA wrap around an octomer of histone proteins H2A, H2B, H3, H4 are core histone families H1/H5 are linker histones >50 variants of the core histones Some with unique functions Post translational modification of “histone tails” key to gene expression Post-translational modifications include: – Acetylation – Methylation – Ubiquitination – Phosphorylation – Citrullation – SUMOylation – ADP-ribosylation THE HISTONE CODE Specific histone modifications determine function H3K9Ac, H3K27Ac, H3K36Ac H3K4Me3 – Gene activation H3K36Me2 – Inappropriate gene activation H3K27Me3 – Gene repression; Inappropriate gene repression H2AX S139Phosphorylation – associated with DNA double strand break, repair http://www.slideshare.net/jhowlin/eukaryotic-gene-regulation-part-ii-2013 KEY MODIFICATION - SPECIFIC FUNCTIONS H3K36Me: ac Active transcription, me H3K27Me: RNA elongation me Key Silencing ac ac me me Residue me me H3K4Me: H3K4 ac me Key Activating me me me Residue me H3K9 me H3K36 H3K9Ac:: H3K27 Activating Residue H3K18 H4K20 Activation me me me ac Modified from Mosammaparast N, et al.
    [Show full text]
  • Transcription Shapes Genome-Wide Histone Acetylation Patterns
    ARTICLE https://doi.org/10.1038/s41467-020-20543-z OPEN Transcription shapes genome-wide histone acetylation patterns Benjamin J. E. Martin 1, Julie Brind’Amour 2, Anastasia Kuzmin1, Kristoffer N. Jensen2, Zhen Cheng Liu1, ✉ Matthew Lorincz 2 & LeAnn J. Howe 1 Histone acetylation is a ubiquitous hallmark of transcription, but whether the link between histone acetylation and transcription is causal or consequential has not been addressed. 1234567890():,; Using immunoblot and chromatin immunoprecipitation-sequencing in S. cerevisiae, here we show that the majority of histone acetylation is dependent on transcription. This dependency is partially explained by the requirement of RNA polymerase II (RNAPII) for the interaction of H4 histone acetyltransferases (HATs) with gene bodies. Our data also confirms the targeting of HATs by transcription activators, but interestingly, promoter-bound HATs are unable to acetylate histones in the absence of transcription. Indeed, HAT occupancy alone poorly predicts histone acetylation genome-wide, suggesting that HAT activity is regulated post- recruitment. Consistent with this, we show that histone acetylation increases at nucleosomes predicted to stall RNAPII, supporting the hypothesis that this modification is dependent on nucleosome disruption during transcription. Collectively, these data show that histone acetylation is a consequence of RNAPII promoting both the recruitment and activity of histone acetyltransferases. 1 Department of Biochemistry and Molecular Biology, Life Sciences Institute, Molecular
    [Show full text]
  • EIN2 Mediates Direct Regulation of Histone Acetylation in the Ethylene Response
    EIN2 mediates direct regulation of histone acetylation in the ethylene response Fan Zhanga,b,1, Likai Wanga,b,1, Bin Qic, Bo Zhaoa,b, Eun Esther Koa,b, Nathaniel D. Riggana,b, Kevin China,b, and Hong Qiaoa,b,2 aInstitute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712; bDepartment of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712; and cDepartment of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309 Edited by Steven E. Jacobsen, University of California, Los Angeles, CA, and approved August 10, 2017 (received for review May 15, 2017) Ethylene gas is essential for developmental processes and stress of EBF1 and EBF2 (19, 20). In the nucleus, the EIN2-C transduces responses in plants. Although the membrane-bound protein EIN2 is signals to the transcription factors EIN3 and EIL1, which are key for critical for ethylene signaling, the mechanism by which the ethylene activation of expression of all ethylene-response genes (21, 22). We signal is transduced remains largely unknown. Here we show the recently discovered that acetylation at H3K23 and H3K14Ac is in- levels of H3K14Ac and H3K23Ac are correlated with the levels of volvedinethylene-regulatedgeneactivationinamannerthatde- EIN2 protein and demonstrate EIN2 C terminus (EIN2-C) is sufficient to pends on both EIN2 and EIN3 (23, 24). rescue the levels of H3K14/23Ac of ein2-5 at the target loci, using Here we show that the levels of H3K14/23Ac are positively CRISPR/dCas9-EIN2-C. Chromatin immunoprecipitation followed by correlated with the EIN2 protein levels and demonstrate that deep sequencing (ChIP-seq) and ChIP-reChIP-seq analyses revealed that EIN2-C is sufficient to rescue the levels of H3K14Ac and EIN2-C associates with histone partially through an interaction with H3K23Ac in ein2-5 at loci targeted using CRISPR/dCas9-EIN2-C.
    [Show full text]
  • Learning Chroma\N States from Chip-‐Seq Data
    Learning Chroman States from ChIP-seq data Luca Pinello GC Yuan Lab Outline • Chroman structure, histone modificaons and combinatorial paerns • How to segment the genome in chroman states • How to use ChromHMM step by step • Further references 2 Epigene-cs and chroman structure • All (almost) the cells of our body share the same genome but have very different gene expression programs…. 3 h?p://jpkc.scu.edu.cn/ywwy/zbsw(E)/edetail12.htm The code over the code • The chroman structure and the accessibility are mainly controlled by: 1. Nucleosome posioning, 2. DNA methylaon, 3. Histone modificaons. 4 Histone Modificaons Specific histone modificaons or combinaons of modificaons confer unique biological func-ons to the region of the genome associated with them: • H3K4me3: promoters, gene acva.on • H3K27me3: promoters, poised enhancers, gene silencing • H2AZ: promoters • H3K4me1: enhancers • H3K36me3: transcribed regions • H3K9me3: gene silencing • H3k27ac: acve enhancers 5 Examples of *-Seq Measuring the genome genome fragmentation assembler DNA DNA reads “genome” ChIP-seq to measure histone data fragments Measuring the regulome (e.g., protein-binding of the genome) Chromatin Immunopreciptation genomic (ChIP) + intervals fragmentation Protein - peak caller bound by DNA bound DNA reads proteins REVIEWS fragments a also informative, as this ratio corresponds to the fraction ChIP–chip of nucleosomes with the particular modification at that location, averaged over all the cells assayed. One of the difficulties in conducting a ChIP–seq con- trol experiment is the large amount of sequencing that ChIP–seq may be necessary. For input DNA and bulk nucleosomes, many of the sequenced tags are spread evenly across the genome.
    [Show full text]
  • Histone Modifications During the Life Cycle of the Brown Alga Ectocarpus
    Bourdareau et al. Genome Biology (2021) 22:12 https://doi.org/10.1186/s13059-020-02216-8 RESEARCH Open Access Histone modifications during the life cycle of the brown alga Ectocarpus Simon Bourdareau1, Leila Tirichine2, Bérangère Lombard3, Damarys Loew3, Delphine Scornet1, Yue Wu2, Susana M. Coelho1,4* and J. Mark Cock1* * Correspondence: susana.coelho@ tuebingen.mpg.de; cock@sb-roscoff. Abstract fr 1CNRS, Sorbonne Université, UPMC Background: Brown algae evolved complex multicellularity independently of the University Paris 06, Algal Genetics animal and land plant lineages and are the third most developmentally complex Group, UMR 8227, Integrative phylogenetic group on the planet. An understanding of developmental processes in Biology of Marine Models, Station Biologique de Roscoff, CS 90074, this group is expected to provide important insights into the evolutionary events F-29688 Roscoff, France necessary for the emergence of complex multicellularity. Here, we focus on Full list of author information is mechanisms of epigenetic regulation involving post-translational modifications of available at the end of the article histone proteins. Results: A total of 47 histone post-translational modifications are identified, including a novel mark H2AZR38me1, but Ectocarpus lacks both H3K27me3 and the major polycomb complexes. ChIP-seq identifies modifications associated with transcription start sites and gene bodies of active genes and with transposons. H3K79me2 exhibits an unusual pattern, often marking large genomic regions spanning several genes. Transcription start sites of closely spaced, divergently transcribed gene pairs share a common nucleosome-depleted region and exhibit shared histone modification peaks. Overall, patterns of histone modifications are stable through the life cycle. Analysis of histone modifications at generation-biased genes identifies a correlation between the presence of specific chromatin marks and the level of gene expression.
    [Show full text]
  • Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells Title During Mouse Spermatogenesis
    NAOSITE: Nagasaki University's Academic Output SITE Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells Title during Mouse Spermatogenesis. Song, Ning; Liu, Jie; An, Shucai; Nishino, Tomoya; Hishikawa, Yoshitaka; Author(s) Koji, Takehiko Citation Acta Histochemica et Cytochemica, 44(4), pp.183-190; 2011 Issue Date 2011-08-27 URL http://hdl.handle.net/10069/26169 Copyright (c) 2011 By the Japan Society of Histochemistry and Right Cytochemistry This document is downloaded at: 2020-09-18T06:01:32Z http://naosite.lb.nagasaki-u.ac.jp Advance Publication Acta Histochem. Cytochem. 44 (4): 183–190, 2011 doi:10.1267/ahc.11027 AHCActa0044-59911347-5800JapanTokyo,AHC1102710.1267/ahc.11027Regular Histochemica Society JapanArticle of Histochemistry et Cytochemica and Cytochemistry Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis Ning Song1, Jie Liu2, Shucai An3, Tomoya Nishino1, Yoshitaka Hishikawa1 and Takehiko Koji1 1Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan, 2Department of Prosthodontics, College of Stomatology, Jiamusi University, Jiamusi, China and 3Department of General Surgery, First Affiliated Hospital, Medical College of Jiamusi University, Jiamusi, China 00 Received June 7, 2011; accepted June 29, 2011; published online July 20, 2011 © 2011Histone The Japanmodification Society has of beenHistochemistry implicated and in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localiza- tion of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on acetylation at lysine 9 (H3K9ac), lysine 18 (H3K18ac), and lysine 23 (H3K23ac); tri-methylation at lysine 4 (H3K4me3) and lysine 27 (H3K27me3); and phosphorylation at serine 10 (H3S10phos).
    [Show full text]
  • Histone Methylation Regulation in Neurodegenerative Disorders
    International Journal of Molecular Sciences Review Histone Methylation Regulation in Neurodegenerative Disorders Balapal S. Basavarajappa 1,2,3,4,* and Shivakumar Subbanna 1 1 Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; [email protected] 2 New York State Psychiatric Institute, New York, NY 10032, USA 3 Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA 4 New York University Langone Medical Center, Department of Psychiatry, New York, NY 10016, USA * Correspondence: [email protected]; Tel.: +1-845-398-3234; Fax: +1-845-398-5451 Abstract: Advances achieved with molecular biology and genomics technologies have permitted investigators to discover epigenetic mechanisms, such as DNA methylation and histone posttransla- tional modifications, which are critical for gene expression in almost all tissues and in brain health and disease. These advances have influenced much interest in understanding the dysregulation of epigenetic mechanisms in neurodegenerative disorders. Although these disorders diverge in their fundamental causes and pathophysiology, several involve the dysregulation of histone methylation- mediated gene expression. Interestingly, epigenetic remodeling via histone methylation in specific brain regions has been suggested to play a critical function in the neurobiology of psychiatric disor- ders, including that related to neurodegenerative diseases. Prominently, epigenetic dysregulation currently brings considerable interest as an essential player in neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), Amyotrophic lateral sclerosis (ALS) and drugs of abuse, including alcohol abuse disorder, where it may facilitate connections between genetic and environmental risk factors or directly influence disease-specific Citation: Basavarajappa, B.S.; Subbanna, S.
    [Show full text]