Histone Modifications During the Life Cycle of the Brown Alga Ectocarpus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years. -
Biology and Systematics of Heterokont and Haptophyte Algae1
American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed. -
Histone H3K4 Demethylation Is Negatively Regulated by Histone H3 Acetylation in Saccharomyces Cerevisiae
Histone H3K4 demethylation is negatively regulated by histone H3 acetylation in Saccharomyces cerevisiae Vicki E. Maltbya, Benjamin J. E. Martina, Julie Brind’Amourb,1, Adam T. Chruscickia,1, Kristina L. McBurneya, Julia M. Schulzec, Ian J. Johnsona, Mark Hillsd, Thomas Hentrichc, Michael S. Koborc, Matthew C. Lorinczb, and LeAnn J. Howea,2 Departments of aBiochemistry and Molecular Biology and bMedical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; cCenter for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada V5Z 4H4; and dTerry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3 Edited by Kevin Struhl, Harvard Medical School, Boston, MA, and approved September 12, 2012 (received for review February 6, 2012) Histone H3 lysine 4 trimethylation (H3K4me3) is a hallmark of of lysine-specific HDMs have been identified: amine oxidases, transcription initiation, but how H3K4me3 is demethylated during such as LSD1, and the JmjC (Jumonji C) domain–containing gene repression is poorly understood. Jhd2, a JmjC domain protein, demethylases. This latter class of demethylases can be split fur- was recently identified as the major H3K4me3 histone demethylase ther into several subfamilies, including the evolutionarily con- (HDM) in Saccharomyces cerevisiae. Although JHD2 is required for served JARID1 family of demethylases, which is characterized JHD2 removal of methylation upon gene repression, deletion of does not only by a JmjC domain but also by JmjN, AT-rich interactive, not result in increased levels of H3K4me3 in bulk histones, indicating C5HC2 zinc finger, and PHD finger domains (6). In the yeast S. that this HDM is unable to demethylate histones during steady-state cerevisiae, the lone member of the JARID1 family of demethy- conditions. -
Recognition of Histone Acetylation by the GAS41 YEATS Domain Promotes H2A.Z Deposition in Non-Small Cell Lung Cancer
Downloaded from genesdev.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Recognition of histone acetylation by the GAS41 YEATS domain promotes H2A.Z deposition in non-small cell lung cancer Chih-Chao Hsu,1,2,8 Jiejun Shi,3,8 Chao Yuan,1,2,7,8 Dan Zhao,4,5,8 Shiming Jiang,1,2 Jie Lyu,3 Xiaolu Wang,1,2 Haitao Li,4,5 Hong Wen,1,2 Wei Li,3 and Xiaobing Shi1,2,6 1Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; 2Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA; 3Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA; 4MOE Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; 5Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China; 6Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA Histone acetylation is associated with active transcription in eukaryotic cells. It helps to open up the chromatin by neutralizing the positive charge of histone lysine residues and providing binding platforms for “reader” proteins. The bromodomain (BRD) has long been thought to be the sole protein module that recognizes acetylated histones. Re- cently, we identified the YEATS domain of AF9 (ALL1 fused gene from chromosome 9) as a novel acetyl-lysine- binding module and showed that the ENL (eleven-nineteen leukemia) YEATS domain is an essential acetyl-histone reader in acute myeloid leukemias. -
176024V2.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/176024; this version posted August 18, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Integrative analysis of large scale transcriptome data draws a comprehensive functional 2 landscape of Phaeodactylum tricornutum genome and evolutionary origin of diatoms 3 4 Achal Rastogi1, Uma Maheswari2, Richard G. Dorrell1, Florian Maumus3, Fabio Rocha Jimenez 5 Vieira1, Adam Kustka4, James McCarthy5, Andy E. Allen5, 6, Paul Kersey2, Chris Bowler1* and 6 Leila Tirichine1* 7 8 9 1Ecole Normale Supérieure, PSL Research University, Institut de Biologie de l’Ecole Normale 10 Supérieure (IBENS), CNRS UMR 8197, INSERM U1024, 46 rue d’Ulm, F-75005 Paris, France 11 2EMBL-EBI, Wellcome Trust Genome Campus, Cambridge, CB10 1SD, United Kingdom 12 3INRA, UR1164 URGI—Research Unit in Genomics-Info, INRA de Versailles-Grignon, Route de 13 Saint-Cyr, Versailles 78026, France 14 4Earth and Environmental Sciences, Rutgers University, 101 Warren Street, 07102 Newark, 15 New Jersey, USA 16 5J. Craig Venter Institute, 10355 Science Center Drive, 92121 San Diego, California, USA 17 6Integrative Oceanography Division, Scripps Institution of Oceanography, University of 18 California San Diego, La Jolla, California, USA 19 20 * Authors for correspondence; [email protected] and [email protected] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 1 bioRxiv preprint doi: https://doi.org/10.1101/176024; this version posted August 18, 2017. -
Diversity Patterns and Activity of Uncultured Marine Heterotrophic Flagellates Unveiled with Pyrosequencing
The ISME Journal (2012) 6, 1823–1833 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing Ramiro Logares1, Stephane Audic2,3, Sebastien Santini4, Massimo C Pernice1, Colomban de Vargas3 and Ramon Massana1 1Institut de Cie`ncies del Mar (CSIC), Passeig Marı´tim de la Barceloneta, Barcelona, Spain; 2CNRS, UMR 7144, Equipe Evolution du Plancton et Pale´o-Oce´ans, Roscoff, France; 3UPMC Univ Paris 06, UMR 7144, Adaptation et Diversite´ en Milieu Marin, Roscoff, France and 4CNRS, UMR 7256, Structural and Genomic Information Laboratory, Mediterranean Institute of Microbiology, Aix-Marseille University, Marseille, France Flagellated heterotrophic microeukaryotes have key roles for the functioning of marine ecosystems as they channel large amounts of organic carbon to the upper trophic levels and control the population sizes of bacteria and archaea. Still, we know very little on the diversity patterns of most groups constituting this evolutionary heterogeneous assemblage. Here, we investigate 11 groups of uncultured flagellates known as MArine STramenopiles (MASTs). MASTs are ecologically very important and branch at the base of stramenopiles. We explored the diversity patterns of MASTs using pyrosequencing (18S rDNA) in coastal European waters. We found that MAST groups range from highly to lowly diversified. Pyrosequencing (hereafter ‘454’) allowed us to approach to the limits of taxonomic diversity for all MAST groups, which varied in one order of magnitude (tens to hundreds) in terms of operational taxonomic units (98% similarity). We did not evidence large differences in activity, as indicated by ratios of DNA:RNA-reads. -
23.3 Groups of Protists
Chapter 23 | Protists 639 cysts that are a protective, resting stage. Depending on habitat of the species, the cysts may be particularly resistant to temperature extremes, desiccation, or low pH. This strategy allows certain protists to “wait out” stressors until their environment becomes more favorable for survival or until they are carried (such as by wind, water, or transport on a larger organism) to a different environment, because cysts exhibit virtually no cellular metabolism. Protist life cycles range from simple to extremely elaborate. Certain parasitic protists have complicated life cycles and must infect different host species at different developmental stages to complete their life cycle. Some protists are unicellular in the haploid form and multicellular in the diploid form, a strategy employed by animals. Other protists have multicellular stages in both haploid and diploid forms, a strategy called alternation of generations, analogous to that used by plants. Habitats Nearly all protists exist in some type of aquatic environment, including freshwater and marine environments, damp soil, and even snow. Several protist species are parasites that infect animals or plants. A few protist species live on dead organisms or their wastes, and contribute to their decay. 23.3 | Groups of Protists By the end of this section, you will be able to do the following: • Describe representative protist organisms from each of the six presently recognized supergroups of eukaryotes • Identify the evolutionary relationships of plants, animals, and fungi within the six presently recognized supergroups of eukaryotes • Identify defining features of protists in each of the six supergroups of eukaryotes. In the span of several decades, the Kingdom Protista has been disassembled because sequence analyses have revealed new genetic (and therefore evolutionary) relationships among these eukaryotes. -
Guéguen-2021-Lipid Droplets.P
fpls-12-639276 April 19, 2021 Time: 10:44 # 1 REVIEW published: 22 April 2021 doi: 10.3389/fpls.2021.639276 Lipid Droplets in Unicellular Photosynthetic Stramenopiles Nolwenn Guéguen, Damien Le Moigne, Alberto Amato, Juliette Salvaing and Eric Maréchal* Laboratoire de Physiologie Cellulaire et Végétale, INRAE, CNRS, CEA, IRIG, CEA Grenoble, Université Grenoble Alpes, Grenoble, France The Heterokonta or Stramenopile phylum comprises clades of unicellular photosynthetic species, which are promising for a broad range of biotechnological applications, based on their capacity to capture atmospheric CO2 via photosynthesis and produce biomolecules of interest. These molecules include triacylglycerol (TAG) loaded inside specific cytosolic bodies, called the lipid droplets (LDs). Understanding TAG production and LD biogenesis and function in photosynthetic stramenopiles is therefore essential, and is mostly based on the study of a few emerging models, such as the pennate diatom Phaeodactylum tricornutum and eustigmatophytes, such as Nannochloropsis Edited by: and Microchloropsis species. The biogenesis of cytosolic LD usually occurs at the level Peter J. Lammers, of the endoplasmic reticulum. However, stramenopile cells contain a complex plastid Arizona State University, United States deriving from a secondary endosymbiosis, limited by four membranes, the outermost Reviewed by: Taraka Dale, one being connected to the endomembrane system. Recent cell imaging and proteomic Biosciences Division, Los Alamos studies suggest that at least some cytosolic LDs might be associated to the surface National Laboratory, United States of the complex plastid, via still uncharacterized contact sites. The carbon length and Inna Khozin-Goldberg, Ben-Gurion University of the Negev, number of double bonds of the acyl groups contained in the TAG molecules depend Israel on their origin. -
Deciphering the Histone Code to Build the Genome Structure
bioRxiv preprint doi: https://doi.org/10.1101/217190; this version posted November 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Deciphering the histone code to build the genome structure Kirti Prakasha,b,c,* and David Fournierd,* aPhysico-Chimie Curie, Institut Curie, CNRS UMR 168, 75005 Paris, France; bOxford Nanoimaging Ltd, OX1 1JD, Oxford, UK; cMicron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, Oxford, UK; dFaculty of Biology and Center for Computational Sciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; *Correspondence: [email protected], [email protected] Histones are punctuated with small chemical modifications that alter their interaction with DNA. One attractive hypothesis stipulates that certain combinations of these histone modifications may function, alone or together, as a part of a predictive histone code to provide ground rules for chromatin folding. We consider four features that relate histone modifications to chromatin folding: charge neutrali- sation, molecular specificity, robustness and evolvability. Next, we present evidence for the association among different histone modi- fications at various levels of chromatin organisation and show how these relationships relate to function such as transcription, replica- tion and cell division. Finally, we propose a model where the histone code can set critical checkpoints for chromatin to fold reversibly be- tween different orders of the organisation in response to a biological stimulus. DNA | nucleosomes | histone modifications | chromatin domains | chro- mosomes | histone code | chromatin folding | genome structure Introduction The genetic information within chromosomes of eukaryotes is packaged into chromatin, a long and folded polymer of double-stranded DNA, histones and other structural and non- structural proteins. -
Aquatic Microbial Ecology 79:1
Vol. 79: 1–12, 2017 AQUATIC MICROBIAL ECOLOGY Published online March 28 https://doi.org/10.3354/ame01811 Aquat Microb Ecol Contribution to AME Special 6 ‘SAME 14: progress and perspectives in aquatic microbial ecology’ OPENPEN ACCESSCCESS REVIEW Exploring the oceanic microeukaryotic interactome with metaomics approaches Anders K. Krabberød1, Marit F. M. Bjorbækmo1, Kamran Shalchian-Tabrizi1, Ramiro Logares2,1,* 1University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, 0316 Oslo, Norway 2Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, Barcelona, Spain ABSTRACT: Biological communities are systems composed of many interacting parts (species, populations or single cells) that in combination constitute the functional basis of the biosphere. Animal and plant ecologists have advanced substantially our understanding of ecological inter- actions. In contrast, our knowledge of ecological interaction in microbes is still rudimentary. This represents a major knowledge gap, as microbes are key players in almost all ecosystems, particu- larly in the oceans. Several studies still pool together widely different marine microbes into broad functional categories (e.g. grazers) and therefore overlook fine-grained species/population-spe- cific interactions. Increasing our understanding of ecological interactions is particularly needed for oceanic microeukaryotes, which include a large diversity of poorly understood symbiotic rela- tionships that range from mutualistic to parasitic. The reason for the current state of affairs is that determining ecological interactions between microbes has proven to be highly challenging. How- ever, recent technological developments in genomics and transcriptomics (metaomics for short), coupled with microfluidics and high-performance computing are making it increasingly feasible to determine ecological interactions at the microscale. -
Short Communication on the Classification of The
SHORT COMMUNICATION ON THE CLASSIFICATION OF THE GENERA Labyrinthula, Schizochytrium AND Thraustochytrium (Labyrinthulids AND Thraustochytrids) Øjvind Moestrup Biological Institute, University of Copenhagen Universitetsparken 4 , DK- 2100 Copenhagen, Denmark E-mail: [email protected] Citation as: Moestrup Øjvind, 2019. On the classification of the genera Labyrinthula, Schizochytrium and Thraustochytrium (Labyrinthulids and Thraustochytrids). Tap chi Sinh hoc, 41(2): xx–xx. https://doi.org/10.15625/0866-7160/v41n2.xxxxx Species of the genera Labyrinthula, Schizochytrium, Thraustochytrium and related organisms have recently attracted attention in biotechnology, and here is a short note on how to classify these rather special organisms. The labyrinthulids and thraustochytrids belong to the heterokonts, a large group of very diverse organisms, from microscopic unicells to metre-long brown algae. The heterokonts comprise species that were formerly classified as algae, fungi and/or protozoa. Many heterokonts are autotrophic and contain chloroplasts, and such organisms are often classified as algae (golden algae, brown algae). Labyrinthulids and thraustochytrids, however, are heterotrophic and lack chloroplasts. They were until recently known as Labyrinthulomycetes or Labyrinthulea , indeed the new classification of Adl et al. (2019) uses the first of these names. It is an unfortunate name as it gives the misleading impression that they are fungi. Honigberg et al. (1964) and others considered them protozoa. Are heterokonts algae, protozoa or fungi? And, more specifically, what are labyrinthulids and thraustochytrids? The heterokonts are thought to be a very old group (probably precambrian), and this may account for their huge morphological diversity. In the WORMS list (World Register of Marine Species) heterokonts are classified as the Infrakingdom Heterokonta . -
Phylogenomic Analyses Support the Monophyly of Excavata and Resolve Relationships Among Eukaryotic ‘‘Supergroups’’
Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic ‘‘supergroups’’ Vladimir Hampla,b,c, Laura Huga, Jessica W. Leigha, Joel B. Dacksd,e, B. Franz Langf, Alastair G. B. Simpsonb, and Andrew J. Rogera,1 aDepartment of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada B3H 1X5; bDepartment of Biology, Dalhousie University, Halifax, NS, Canada B3H 4J1; cDepartment of Parasitology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; dDepartment of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom; eDepartment of Cell Biology, University of Alberta, Edmonton, AB, Canada T6G 2H7; and fDepartement de Biochimie, Universite´de Montre´al, Montre´al, QC, Canada H3T 1J4 Edited by Jeffrey D. Palmer, Indiana University, Bloomington, IN, and approved January 22, 2009 (received for review August 12, 2008) Nearly all of eukaryotic diversity has been classified into 6 strong support for an incorrect phylogeny (16, 19, 24). Some recent suprakingdom-level groups (supergroups) based on molecular and analyses employ objective data filtering approaches that isolate and morphological/cell-biological evidence; these are Opisthokonta, remove the sites or taxa that contribute most to these systematic Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Exca- errors (19, 24). vata. However, molecular phylogeny has not provided clear evi- The prevailing model of eukaryotic phylogeny posits 6 major dence that either Chromalveolata or Excavata is monophyletic, nor supergroups (25–28): Opisthokonta, Amoebozoa, Archaeplastida, has it resolved the relationships among the supergroups. To Rhizaria, Chromalveolata, and Excavata. With some caveats, solid establish the affinities of Excavata, which contains parasites of molecular phylogenetic evidence supports the monophyly of each of global importance and organisms regarded previously as primitive Rhizaria, Archaeplastida, Opisthokonta, and Amoebozoa (16, 18, eukaryotes, we conducted a phylogenomic analysis of a dataset of 29–34).