Hemoglobin Evanston (Alpha 14 Trp---Arg). an Unstable Alpha- Chain Variant Expressed As Alpha-Thalassemia

Total Page:16

File Type:pdf, Size:1020Kb

Hemoglobin Evanston (Alpha 14 Trp---Arg). an Unstable Alpha- Chain Variant Expressed As Alpha-Thalassemia Hemoglobin Evanston (alpha 14 Trp----Arg). An unstable alpha- chain variant expressed as alpha-thalassemia. G R Honig, … , R A Spritz, M Guis J Clin Invest. 1984;73(6):1740-1749. https://doi.org/10.1172/JCI111382. Research Article A new hematologic syndrome with phenotypic features of mild Hb H disease was identified in three children from two unrelated black American families. Erythrocytes from each of these children contained Hb H (beta 4) and Hb Barts (gamma 4), as well as a slowly migrating hemoglobin fraction that made up 7-10% of the total hemoglobin. The parents of the affected children all showed mild thalassemia-like changes, with one of the parents in each family also expressing the variant hemoglobin; in the latter individuals the mutant alpha-chains made up less than 2% of the total, and were present mainly or exclusively in combination with delta-chains in the form of a slowly migrating Hb A2. Purified Hb Evanston showed an increased oxygen affinity, but its Bohr effect, cooperativity, and 2,3-diphosphoglycerate effect were normal. The mutant hemoglobin appeared to have normal stability to heat and to isopropanol, and the stability of its alpha-chain in an extended time course synthesis study also appeared to be similar to that of alpha A. However, the results from short- term globin synthesis studies, and from mRNA translation in vitro, suggest that the two types of alpha-chains were synthesized at relatively equal rates, with a major fraction of the newly synthesized variant alpha-chains undergoing rapid catabolism. The hematologic data taken in combination with DNA hybridization and globin synthesis findings […] Find the latest version: https://jci.me/111382/pdf Hemoglobin Evanston (a14 Trp -- Arg) An Unstable a-Chain Variant Expressed as a-Thalassemia George R. Honig, Mir Shamsuddin, Loyda N. Vida, Myrtho Mompoint, and Eric Valcourt Division of Hematology, the Children's Memorial Hospital, Chicago, Illinois 60614 Lemuel J. Bowie and Elizabeth C. Jones Evanston Hospital, Evanston, Illinois 60201 Patricia A. Powers and Richard A. Spritz University of Wisconsin, Department of Genetics, Madison, Wisconsin 53706 Margot Guis, Stephen H. Embury, John Conboy, Yuet W. Kan, and William C. Mentzer University of California, San Francisco, California 94110 Susan C. Weil, Roli K. Hirata, Jami Waloch, John F. O'Riordan, and Thomas K. Goldstick Northwestern University, Departments of Medicine, Pathology, and Chemical Engineering, Chicago, Illinois 60611 Atypctract. A new hematologic syndrome with to heat and to isopropanol, and the stability of its phenotypic features of mild Hb H disease was identified a-chain in an extended time course synthesis study also in three children from two unrelated black American appeared to be similar to that of aA. However, the results families. Erythrocytes from each of these children con- from short-term globin synthesis studies, and from mRNA tained Hb H (04) and Hb Barts (74), as well as a slowly translation in vitro, suggest that the two types of a-chains migrating hemoglobin fraction that made up 7-10% of were synthesized at relatively equal rates, with a major the total hemoglobin. The parents ofthe affected children fraction of the newly synthesized variant a-chains un- all showed mild thalassemia-like changes, with one of the dergoing rapid catabolism. The hematologic data taken parents in each family also expressing the variant he- in combination with DNA hybridization and globin syn- moglobin; in the latter individuals the mutant a-chains thesis findings indicate that the proposita in each of these made up <2% of the total, and were present mainly or families has the genotype -,a Al/,aEv. These observations exclusively in combination with 5-chains in the form of suggest that two separate mechanisms are contributing a slowly migrating Hb A2. Purified Hb Evanston showed to the a-thalassemia-like expression of Hb Evanston: (a) an increased oxygen affinity, but its Bohr effect, coop- the newly synthesized aEV-chains are unstable and are erativity, and 2,3-diphosphoglycerate effect were normal. subject to early proteolytic destruction; and (b) the mutant The mutant hemoglobin appeared to have normal stability a-allele is linked to an a-globin gene deletion. A preliminary report of this work was presented at the 1982 meeting Introduction of the American Society of Hematology. Address correspondence to Dr. Honig, University of Illinois, College The a-thalassemia syndromes result from deficient synthesis of of Medicine, Department of Pediatrics, 840 S. Wood St., Chicago, IL, the a-globin chains ofhemoglobin. The most frequent underlying 60612. cause for this group of disorders is the deletion of one or more Received for publication 7 November 1983 and in revised form 3 of the normal complement of four a-globin genes (1, 2). The February 1984. a-thalassemia phenotype has also been observed in association J. Clin. Invest. with certain a-chain structural mutants, and it has further been © The American Society for Clinical Investigation, Inc. shown that the thalassemia-like expression of these abnormal 0021-9738/84/06/1740/10 $1.00 hemoglobins may arise by several different mechanisms. In one Volume 73, June 1984, 1740-1749 group of these variants the mRNA products of the mutant 1740 Honig et al. a-globin genes appear to be unstable, causing the mRNA's to moglobins for oxygen equilibrium studies were isolated by DEAE-cel- be degraded and thereby prematurely terminating their function lulose chromatography in the oxy-form, and were concentrated by sed- as templates for globin chain synthesis (3, 4). Other a-globin imentation at 100,000 gfor 16 h. The hemoglobin solutions were dialyzed gene mutations that produce thalassemia-like hematologic against 0.05 M Bis-Tris buffer in 0.10 M NaCI, and adjusted to a final changes are expressed by the synthesis of highly unstable concentration of I mg/ml (equivalent to '60 MM in heme). An enzymatic reducing system (24, 25) was added to each of the samples to minimize a-chains, which undergo proteolytic destruction and are rapidly methemoglobin formation, and the oxygen equilibrium curves were removed from the erythroid cells (4-6). In a third group of determined at 300C. The data were digitized electronically (Tektronix a-chain variants, the mutant a-globin genes exist in linkage to Graphics Tablet; Tektronix, Inc., Beaverton, OR) and were characterized an a-globin gene deletion, so that the linked a-thalassemia de- by using the Hill equation, which was fitted by nonlinear regression terminant is expressed in conjunction with the hemoglobin over the range of 20 to 97% saturation. The smoothness of the sum-of- structural variant (7-12). squared-residuals function allowed the use of a Gauss-method nonlinear In this report we describe a newly identified a-chain mutant regression algorithm (26). that appears to have thalassemia-like expression as a result of Fluorometric studies of the purified hemoglobins were performed two separate mechanisms, i.e., as the result of an instability of with short path-length cuvettes and by a front surface technique (27). the newly synthesized variant a-chain, and because of the linkage For these determinations the hemoglobins were prepared in Tris-glycine buffer, pH 7.0, at a concentration of 90 uM. The measurements were of its gene with an a-globin gene deletion. made with a Perkin-Elmer MPF44B recording spectrofluorometer (Per- kin-Elmer Corp., Instrument Div., Norwalk, CT) with a temperature- Methods controlled cell holder. Globin synthesis determinations. In studies that used intact reticu- Hematologic measurements. Erythrocyte and hemoglobin measurements locytes, erythroid cell suspensions were prepared from freshly drawn were made with a model S Coulter counter (Coulter Electronics, Inc., blood samples and were supplemented with glucose, hemin, and a mixture Hialeah, FL), which was calibrated daily using a commercial standard. of amino acids excluding leucine, in a Tris-buffered medium at pH 7.4 Other hematologic determinations were by standard laboratory (28). L-[4,5-3H]leucine with a specific activity of 52 Ci/mmol (New methods (13). England Nuclear, Boston, MA) was added at a concentration of 10 MCi/ Hemoglobin studies. Stroma-free hemoglobin solutions were prepared ml. The cell suspensions were incubated in a shaking water-bath at 370C from washed erythrocytes as previously described (14). Electrophoresis for various times, as indicated for the individual experiments. of hemoglobins and globin proteins, and measurements of electrophoretic For studies of cell-free globin chain synthesis, polysomal RNA was mobilities were as described by Schneider and Barwick (15). Hemoglobin isolated from the reticulocytes that were contained in 5-6 ml of blood, (Hb)' A2 measurements were made by DEAE-cellulose microcolumn as previously described (6). The cell-free translation experiments using chromatography (16) and the alkali-resistant hemoglobin fraction was the purified RNA were carried out at 300C for 60 min, in an incubation estimated by the method of Singer et al. (17). Isolation and quantification mixture containing micrococcal nuclease-treated rabbit reticulocyte lysate of individual hemoglobins was by the DEAE-cellulose column chro- (29) (Bethesda Research Laboratories, Gaithersburg, MD), and supple- matography procedure of Abraham et al. (18) using glycine-containing mented with L-[35S]methionine (>600 Ci/mmole; Amersham Corp., buffers. Globin chain separations were by CM-cellulose column chro- Arlington Heights, IL). The newly synthesized globin chains were sep- matography with buffers prepared in 8 M urea (19) or by high perfor- arated by electrophoresis in 12% polyacrylamide gels containing 2% mance liquid chromatography (HPLC) according to Shelton et al. (20). Triton X-100 and 6 M urea (30). The radioactive protein bands were For hemoglobin stability testing stroma-free lysates were heated at 500C visualized by fluorography with ENHANCE (New England Nuclear), in phosphate buffer (21) or at 370C in buffer containing isopropanol according to the manufacturer's specifications.
Recommended publications
  • The Developmental Genetics of Hemoglobin Synthesis in Chironomus Darrel Starr English Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 The developmental genetics of hemoglobin synthesis in Chironomus Darrel Starr English Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Genetics Commons Recommended Citation English, Darrel Starr, "The developmental genetics of hemoglobin synthesis in Chironomus " (1968). Retrospective Theses and Dissertations. 3660. https://lib.dr.iastate.edu/rtd/3660 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 6 8-14,785 ENGLISH, Barrel Starr, 1936- THE DEVELOPMENTAL GENETICS OF HEMOGLOBIN SYNTHESIS IN CHIRONOMUS. Iowa State University, Ph.D., 1968 Biology- Genetics University Microfilms, Inc., Ann Arbor, Michigan THE DEVELOPMENTAL GENETICS OF HEMOGLOBIN SYNTHESIS IN CHIRONOMUS by Darrel Starr English A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Genetics Approved: Signature was redacted for privacy. In Charge of MajdA Work Signature was redacted for privacy. Head ^ Major Department Signature was redacted for privacy.
    [Show full text]
  • A Distant Gene Deletion Affects Beta-Globin Gene Function in an Atypical Gamma Delta Beta-Thalassemia
    A distant gene deletion affects beta-globin gene function in an atypical gamma delta beta-thalassemia. P Curtin, … , A D Stephens, H Lehmann J Clin Invest. 1985;76(4):1554-1558. https://doi.org/10.1172/JCI112136. Research Article We describe an English family with an atypical gamma delta beta-thalassemia syndrome. Heterozygosity results in a beta-thalassemia phenotype with normal hemoglobin A2. However, unlike previously described cases, no history of neonatal hemolytic anemia requiring blood transfusion was obtained. Gene mapping showed a deletion that extended from the third exon of the G gamma-globin gene upstream for approximately 100 kilobases (kb). The A gamma-globin, psi beta-, delta-, and beta-globin genes in cis remained intact. The malfunction of the beta-globin gene on a chromosome in which the deletion is located 25 kb away suggests that chromatin structure and conformation are important for globin gene expression. Find the latest version: https://jci.me/112136/pdf A Distant Gene Deletion Affects ,8-Globin Gene Function in an Atypical '6y5-Thalassemia Peter Curtin, Mario Pirastu, and Yuet Wai Kan Howard Hughes Medical Institute and Department ofMedicine, University of California, San Francisco, California 94143 John Anderson Gobert-Jones Department ofPathology, West Suffolk County Hospital, Bury St. Edmunds IP33-2QZ, Suffolk, England Adrian David Stephens Department ofHaematology, St. Bartholomew's Hospital, London ECIA-7BE, England Herman Lehmann Department ofBiochemistry, University ofCambridge, Cambridge CB2-lQW, England Abstract tologic picture of f3-thalassemia minor in adult life. Globin syn- thetic studies reveal a ,3 to a ratio of -0.5, but unlike the usual We describe an English family with an atypical 'yS6-thalassemia fl-thalassemia heterozygote, the levels of HbA2 (and HbF) are syndrome.
    [Show full text]
  • 8.5 X12.5 Doublelines.P65
    Cambridge University Press 978-0-521-87519-6 - Disorders of Hemoglobin: Genetics, Pathophysiology, and Clinical Management, Second Edition Edited by Martin H. Steinberg, Bernard G. Forget, Douglas R. Higgs and David J. Weatherall Index More information anti-inflammatory therapy, 762–763 thalassemia-related complications, 779 sulfasalazine, nuclear factor (NF)-kB, 762 transplant-related complications, 778–779 targeting ET-1, 762–763 ␤S-linked haplotypes, African/Indo-European, anti-oxidant therapy targeting erythrocyte, 638–640 765–766 burst forming unit-erythroid (BFU-E), 10, 29 deferiprone, 765 oral glutamine, 765 calcium-activated potassium channel (Gardos oral N-acetyl-cysteine, 765–766 pathway), 167–168 anti-oxidant therapy targeting vascular, 763–765 capillary electrophoresis, 660 Index Apo A-I mimetics, 764 capillary IEF, 660 NO, 763–764 carbon monoxide poisoning, 613–616 statins, 764 clinical features, 615 xanthine oxidase inhibitors, 764–765 diagnosis, treatment, 615–616 anti-thrombotic therapy epidemiology, 613–614 ␤-thalassemia, 761–762 cardiac, arterial abnormalities, 151 sickle cell disease, 761–762 cardiac abnormalities, ATRX syndrome, 305 aortagonad-mesonephros (AGM), 6 cardiovascular disease, 652 Apo A-I mimetics, 764 cation content, cellular hydration, 164–172 apoptosis, vasculature permeability, 193–194 calcium-activated potassium channel, 167–168 assays, assay systems, 7, 142 cation permeability alterations, 166–167 ATMDS. See ␣ thalassemia-myelodysplastic cell calcium, calcium pump activity, 167 syndromes cell sodium,
    [Show full text]
  • Strategies for Increasing Oxidative Stability of (Fresh) Meat Color
    O X I D A T I V E P R O C E S S E S I N M E A T Strategies for Increasing Oxidative Stability of (Fresh) Meat Color CAMERON FAUSTMAN*, W.K.M. CHAN, M.P. LYNCH and S.T. JOO Introduction moglobin and myoglobin) and for electron transport during respiration (cytochromes) in the living animal. Skeletal Fresh meat color is determined by the oxidation status muscles which obtain energy primarily by aerobic means of myoglobin. Several reviews of myoglobin chemistry and contain relatively high concentrations of heme proteins when meat color stability, including cured and/or cooked meat compared to those which depend primarily on anaerobic color, have been published (Livingston and Brown, 1981; glycolysis. Giddings, 1977; Faustman and Cassens, 1990a; Renerre, Of the heme proteins found in post-mortem skeletal 1990; Cornforth, 1994). The purpose of this presentation is muscle, myoglobin is the most important for considerations to emphasize recent research findings which impact the oxi- of meat color. The majority of hemoglobin found in the liv- dative stability of myoglobin in fresh meat. Specific atten- ing animal is lost during slaughter as a result of exsan- tion is given to metmyoglobin reduction and antioxidant ap- guination. Some blood is retained in meat (Fleming et al., proaches for minimizing oxymyoglobin oxidation. 1960) and Warriss and Rhodes (1977) estimated the aver- Maintenance of oxymyoglobin and thus a desirable age residual blood content of butcher’s meat to be 0.3%. appearance in fresh meat has significant economic impact. Han et al. (1994) recently published a procedure for deter- Liu et al.
    [Show full text]
  • Relationship Between Beef Colour and Myoglobin
    Relationship between beef colour and myoglobin Author: S.H.J.M . Dobbelstein Registration number: 790608185120 Subject code: P052-754 (24 stp) P052-274 (1 stp) Supervisors: Dr. Ir. E.U. Thoden van Velzen (A&F) Dr. Ir.J.P.H . Linssen (WUR) Examiner: Prof. Dr. Ir. M.A.J.S. van Boekel Report 474 Preface This thesis is part of my Master in Food Technology at Wageningen UR. This subject was carried out at the Quality in Chains department of Agrotechnology & Food Innovations (A&F) in co­ opération with the Product Design and Quality Management Group of Wageningen UR. I worked on this thesis from January till August 2005 at A&F. During my study I became interested in Meat Science and the subject of this thesis fits perfecdy to my interests. During my stay at A&F I had all freedom and responsibility to conduct my research. This made I really enjoyed working on this thesis. Moreover, it increased my knowledge of Meat Science very much. I would like to thank Ulphard Thoden van Velzen, my supervisor at A&F, and Jozef Linssen, my supervisor at the University, for their help during this study. I also want to thank Ronald Holtmaat from ProMessa (Deventer, NL) who kindly provided the meat for this study. Furthermore I would like to thank Aart Zegveld, Dianne Somhorst and Janny Slotboom who helped me with my practical work at A&F. ©Agrotechnology &Foo d Innovations B.V .Membe r of Wageningen UR Abstract The most important quality attribute of fresh beef is its colour.
    [Show full text]
  • Oxygen Equilibria of Hemoglobin A2 and Hemoglobin Lepore
    Oxygen Equilibria of Hemoglobin A2 and Hemoglobin Lepore Grace G. Eddison, … , Robin W. Briehl, Helen M. Ranney J Clin Invest. 1964;43(12):2323-2331. https://doi.org/10.1172/JCI105106. Research Article Find the latest version: https://jci.me/105106/pdf Journal of Clinical Investigation Vol. 43, No. 12, 1964 Oxygen Equilibria of Hemoglobin A2 and Hemoglobin Lepore * GRACE G. EDDISON,t ROBIN W. BRIEHL,$ AND HELEN M. RANNEY (From the Departments of Medicine and Physiology of the Albert Einstein College of Medi- cine and the Bronx Municipal Hospital Center, New York, N. Y.) Human hemoglobin provides a model for studies the oxygen equilibria of erythrocytes obtained concerned with the relationships of structure and from an adult in whom hemoglobin F comprised biologic function of proteins. Older evidence for 69%o of the total pigment resembled the oxygen conformational differences between oxygenated equilibria of normal adult blood rather than that and deoxygenated normal hemoglobin (1) has of cord blood. These workers (8) suggested that recently been confirmed and extended by X-ray differences between the fetal and adult red cell crystallographic studies (2) and by comparison of other than the type of hemoglobin must be con- the dissociation (3) and of the hybridization (4) cerned in the oxygenation function of whole blood of the oxygenated and deoxygenated pigments. obtained from newborn infants. Normal and abnormal human hemoglobins have Although hemolysates containing large pro- been utilized in the past by other workers for in- portions of hemoglobins F or A can be studied di- vestigation of relationships between structure and rectly, isolation procedures must be utilized to oxygen equilibria.
    [Show full text]
  • Myoglobin from Equine Skeletal Muscle
    Myoglobin from equine skeletal muscle Catalog Number M0630 Storage Temperature –20 C CAS RN 100684-32-0 Precautions and Disclaimer This product is for R&D use only, not for drug, Product Description household, or other uses. Please consult the Safety Molecular mass:1 17.6 kDa Data Sheet for information regarding hazards and safe Extinction coefficient:2 EmM = 12.92 (555 nm) handling practices. pI:3 7.3 (major component) and 6.8 (minor component) Preparation Instructions Myoglobin from horse skeletal muscle is a single chain This protein is soluble in water (10 mg/ml), yielding a heme protein containing 153 amino acid residues. It clear, red brown solution. posesses no disulfide bridges or free -SH groups. Myoglobin contains 8 variously sized right-handed References helical regions, joined by non-ordered or random coil 1. Darbre, P.D. et al., Comparison of the myoglobin of regions. These 8 helices (A, B, C, D, E, F, G, and H) the zebra (Equus burchelli) with that of the horse are folded back on top of one another, and the heme is (Equus cabalus). Biochim. Biophys. Acta, 393(1), situated between helices E and F. The heme is almost 201-204 (1975). totally buried. Only the edge carrying the two 2. Bowen, W.J., The absorption spectra and extinction hydrophylic propionic acid groups is exposed. The coefficients of myoglobin. J. Biol. Chem., 179, 235- heme is held in position by a coordinating complex 245 (1949). between the central Fe(II) atom and 2 histidine residues 3. Radola, B.J., Isoelectric focusing in layers of (on helices E and F, respectively).
    [Show full text]
  • Regulations Governing the Classification of Medical Devices (Draft)
    Regulations Governing the Classification of Medical Devices (Draft) Article 1 These Regulations are enacted pursuant to Paragraph 2, Article 3 of the Medical Devices Act (hereinafter “this Act”). Article 2 Medical devices are classified into the following categories according to their function, intended use, operating instructions, and working principle, depending on the applicable medical specialty: 1. Clinical chemistry and clinical toxicology devices 2. Hematology and pathology devices 3. Immunology and microbiology devices 4. Anesthesiology devices 5. Cardiovascular devices 6. Dental devices 7. Ear, nose, and throat devices 8. Gastroenterology and urology devices 9. General and plastic surgery devices 10. General hospital and personal use devices 11. Neurological devices 12. Obstetrical and gynecological devices 13. Ophthalmic devices 14. Orthopedic devices 15. Physical medicine devices 16. Radiology devices Article 3 Medical devices are classified into the following classes according to their risk level: 1. Class I: Low risk 2. Class II: Medium risk 3. Class III: High risk 1 Article 4 Product items of the medical device classification are specified in the Annex. In addition to rules stated in the Annex, medical devices whose function, intended use, or working principle are special may have their classification determined according to the following rules: 1. If two or more categories, classes, or product items are applicable to the same medical device, the highest class of risk level is assigned. 2. The accessory to a medical device, intended specifically by the manufacturer for use with a particular medical device, is classified the same as the particular medical device, unless otherwise specified in the Annex. 3.
    [Show full text]
  • 1 Hemoglobin Catalyzes ATP-Synthesis in Human
    Hemoglobin catalyzes ATP-synthesis in human erythrocytes: A murburn model Abhinav Parashar*, Vivian David Jacob, Daniel Andrew Gideon, Kelath Murali Manoj* *Corresponding authors, Satyamjayatu: The Science & Ethics Foundation, Snehatheeram, Kulappully, Shoranur-2, Kerala, India-679122. [email protected] Abstract: Blood hemoglobin (Hb) is the most abundant globular protein in humans, known to transport oxygen. Erythrocytes have ~10-3 M concentration levels of ATP in steady-state and we estimate that this high cannot be formed from 10-4 - 10-7 M levels of precursors via substrate- level phosphorylation of glycolysis. To account for this discrepancy, we propose that Hb serves as a ‘murzyme’ (a redox enzyme working along the principles of murburn concept), catalyzing the synthesis of the major amounts of ATP found in erythrocytes. This proposal is along the lines of our earlier works demonstrating DROS (diffusible reactive oxygen species) mediated ATP- synthesis as a thermodynamically and kinetically viable mechanism for physiological oxidative phosphorylation. We support the new hypothesis for Hb with theoretical arguments, experimental findings of reputed peers and in silico explorations. Using in silico methods, we demonstrate that adenoside nucleotide and 2,3-bisphosphoglycerate (2,3-BPG) binding sites are located suitably on the monomer/tetramer, thereby availing facile access to the superoxide emanating from the heme center. Our proposal explains earlier reported in situ experimental findings/suggestions of 2,3-BPG and ADP binding at the same locus on Hb. The binding energy is in the order of 2,3-BPG > NADH > ATP > ADP > AMP and agrees with earlier reports, potentially explaining the bioenergetic physiology of erythrocytes.
    [Show full text]
  • As Well As Whale Metmyoglobin in 0.1 M Deuterated Phosphate at Pd 7 and at 31'C
    NUCLEAR MAGNETIC RESONANCE STUDIES OF HEMOGLOBINS, III. EVIDENCE 1OR THE NONEQUIVALENCE OF a- AND (3-CHAINS IN AZIDE DERIVATIVES OF AME'TIIEMOGLOBINS* BY DONALD G. DAVIS, SAMUEL CHARACIHEt AND) CHIEN Ho DEPARTMENT OF BIOPHYSICS AND MICRtOBIOLOGY, UNJVI;RSI'IY' OlF Pl-ITT'SlBURGH, PITTSBURGH, PENNSYLVANIA Communicated by George Scatchard, June 12, 1969 Abstract.-Nuclear magnetic resonance spectroscopy (100-MN1Hz proton) was used to study the low-spin (S = 1/2) azide derivatives of human adult (a2(32), human fetal (C2Y2), Zurich (a2,f263 HiS - Arg), and horse (a2'(32') methemoglobins, as well as whale metmyoglobin in 0.1 M deuterated phosphate at pD 7 and at 31'C. The experimental results indicate that the azide-bound heme groups of the a- and (-chains in human adult methemoglobin and of the a- and 'y-chains in fetal methemoglobin are not equivalent. The affinity of the (3- or e-chain for azide ion appears larger than that of the a-chain. The nuclar magnetic resonance spectrum of hemoglobin Zfirich shows that the environment of the azide-heme complex in the abnormal (-chain is altered by the substitution of arginine for histidine in the (3-63 position, while the a-heme environment remains unaffected. Introduction.-The chief physiologic function of hemoglobin is to transport molecular oxygen from lung to tissues by virtue of its ability to combine revers- ibly with oxygen. Hemoglobin is a protein molecule consisting of four subunits (normally two a-chains and two (3-chains). Each of the four subunits has a heme group, and these heme groups are the "active centers" of hemoglobin.
    [Show full text]
  • Hematology Notes Blood/ Hematology Danil Hammoudi.MD
    Hematology notes Blood/ Hematology Danil Hammoudi.MD HTTP://Sinoemedicalassociation.or/AP2/ Page | 1 Blood is a connective tissue whose matrix is fluid. It is composed of: 1. red corpuscles, 2. white cells, 3. platelets, 4. blood plasma. It is transported throughout the body within blood vessels. • Blood is sometimes considered to be a fluid connective tissue because of the mesenchymal origin of its cells and a low ratio of cells to liquid intercellular substance, the blood plasma. • In human adults about 5 liter of blood contribute 7-8 % to the body weight of the individual. • The contribution of red blood cells (erythrocytes) to the total volume of the blood (haematocrit) is about 43%. • Erythrocytes are the dominant (99%) but not the only type of cells in the blood. • We also find leukocytes and, in addition, blood platelets. Erythrocytes, leukocytes and blood platelets are also being referred to as the formed elements of the blood. • Erythrocytes and blood platelets perform their functions exclusively in the blood stream. • In contrast, leukocytes reside only temporarily in the blood. • Leukocytes can leave the blood stream through the walls of capillaries and venules and enter either connective or lymphoid tissues. Hematology notes Page | 2 Hematology notes Page | 3 Blood facts • Approximately 8% of an adult's body weight is made up of blood. • Females have around 4-5 litres, while males have around 5-6 litres. This difference is mainly due to the differences in body size between men and women. • Its mean temperature is 38 degrees Celcius. • It has a pH of 7.35-7.45, making it slightly basic (less than 7 is considered acidic).
    [Show full text]
  • AMSA Meat Color Measurement Guidelines
    AMSA Meat Color Measurement Guidelines Revised December 2012 American Meat Science Association http://www.meatscience.org AMSA Meat Color Measurement Guidelines Revised December 2012 American Meat Science Association 201 West Springfield Avenue, Suite 1202 Champaign, Illinois USA 61820 800-517-2672 [email protected] http://www.meatscience.org CONTENTS Technical Writing Committee .................................................................................................................... v Preface ..............................................................................................................................................................vi Section I: Introduction ................................................................................................................................. 1 Section II: Myoglobin Chemistry ............................................................................................................... 3 A. Fundamental Myoglobin Chemistry ................................................................................................................ 3 B. Dynamics of Myoglobin Redox Form Interconversions ........................................................................... 3 C. Visual, Practical Meat Color Versus Actual Pigment Chemistry ........................................................... 5 D. Factors Affecting Meat Color ............................................................................................................................... 6 E. Muscle
    [Show full text]