Studies on Distributed Approaches for Large Scale Multi-Criteria Protein Structure Comparison and Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Studies on Distributed Approaches for Large Scale Multi-Criteria Protein Structure Comparison and Analysis Studies on Distributed Approaches for Large Scale Multi-Criteria Protein Structure Comparison and Analysis Azhar Ali Shah, MPhil Thesis submitted to The University of Nottingham for the degree of Doctor of Philosophy September 2010 Abstract Protein Structure Comparison (PSC) is at the core of many important structural biology problems. PSC is used to infer the evolutionary history of distantly related proteins; it can also help in the identification of the biological function of a new protein by comparing it with other proteins whose function has already been annotated; PSC is also a key step in protein structure prediction, because one needs to reliably and efficiently compare tens or hundreds of thousands of decoys (predicted structures) in evaluation of ’native-like’ candidates (e.g. Critical Assessment of Techniques for Protein Structure Prediction (CASP) experiment). Each of these applications, as well as many others where molecular comparison plays an important role, requires a different notion of similar- ity, which naturally lead to the Multi-Criteria Protein Structure Comparison (MC-PSC) problem. ProCKSI (www.procksi.org), was the first publicly available server to provide algorithmic solutions for the MC-PSC problem by means of an enhanced structural comparison that relies on the princi- pled application of information fusion to similarity assessments derived from multiple comparison methods (e.g. USM, FAST, MaxCMO, DaliLite, CE and TMAlign). Current MC-PSC works well for moderately sized data sets and it is time consuming as it provides public service to multiple users. Many of the structural bioinformatics applications mentioned above would benefit from the ability to perform, for a dedicated user, thousands or tens of thousands of comparisons through multiple methods in real-time, a capacity beyond our current technology. This research is aimed at the investigation of Grid-styled distributed computing strategies for the solution of the enormous computational challenge inherent in MC-PSC. To this aim a novel distributed algorithm has been designed, implemented and evaluated with different load balancing strategies and selection and configuration of a variety of software tools, services and technologies on different levels of infrastructures ranging from local testbeds to production level eScience in- frastructures such as the National Grid Service (NGS). Empirical results of different experiments reporting on the scalability, speedup and efficiency of the overall system are presented and discussed along with the software engineering aspects behind the implementation of a distributed solution to the MC-PSC problem based on a local computer cluster as well as with a GRID implementation. The results lead us to conclude that the combination of better and faster parallel and distributed algorithms with more similarity comparison methods provides an unprecedented advance on pro- tein structure comparison and analysis technology. These advances might facilitate both directed and fortuitous discovery of protein similarities, families, super-families, domains, etc, and also help pave the way to faster and better protein function inference, annotation and protein structure predic- tion and assessment thus empowering the structural biologist to do a science that he/she would not have done otherwise. ii Acknowledgements Doctoral studies being a journey of a discovery wouldn’t be possible without the enabling technologies in the form of help and support of so many individuals. The first and foremost support comes from one’s guide/supervisor in the form of expert advise, interest, enthusiasm and encour- agement. It is a matter of fact that not all supervisors provide all this support and hence history shows that as a brilliant student as Einstein had to change his supervisor 1. In this regard I consider myself fortunate enough to have Professor Natalio Krasnogor as my supervisor. It always leaves me wondering how Prof. Krasnogor has managed to shape his personality to have all aspects of an ideal and perfect supervisor besides being a very kind, caring, friendly and social person! I know that, a proper answer to this question might require me to write another thesis, so I would rather leave it mysterious and would like to offer my utmost gratitude and recognition for his excellent mentorship in the form of regular constructive feedback on my verbal and written ideas and drafts while sharing and discussing various issues, outcomes and future plans of my research from the very beginning to the completion of this thesis. Besides this, I am also grateful to him for acquainting me with a great team/network of co-workers and providing all the resources needed for the experimental setup as well as financial support to attend several research and professional trainings and to present my research papers at various conferences across the globe. I know that this is not the explicit listing of what I should be thankful to Prof. Krasnogor, indeed there are many and many (let me say count- less) other things which I couldn’t mention here but am really debited to be grateful to him. Indeed it has been an honor for me to have Prof. Krasnogor as my supervisor. While writing several co-authored research papers I had the opportunity to leverage the expertise of many well known academicians and researchers who have their association/collabora- tion with ASAP group including Professor Jacek Blazewicz and Piotr Lukasiak (Poznan University, Poland), Drs. Daniel Barthel (ex-ASAPEE, now team leader in Rexroth, part of the Bosch group, Germany) and Gianluigi Folino (CNR-ICAR, University of Calabria, Italy). I am thankful for their critical comments, suggestions and help for the improvement of the publications which got accepted at targeted journals and conferences. Had it not been the much needed technical support from Technical Service Group (TSG), I would had lost several days and even months to deal with all the technical problems that arose from time to time while setting-up my local Linux cluster installed with different software packages, tools and services needed for different experiments. In this regard a big thank you to TSG especially Nick Reynolds, William Armitage and Viktor Huddleston. In addition to TSG, I would also like to thank Drs. Pawel Widera, German Terrazas Angulo, James Smaldon and Amr Soghier for their help with Linux, Latex and other software related issues. I would also like to acknowledge the use of the CNR-ICAR cluster in Italy and the UK National Grid Service (NGS) in carrying out this work. I am also thankful to all the academic and admin staff members at School of Computer Science in general and members and admin team of the ASAP group in particular for their cooper- ation in various activities during the complete period of my research. A similar token of gratitude goes to all the members of academic staff and admin team at Institute of Information and Com- munication Technology (ICT), University of Sindh (where I hold an academic position and was granted study leave and scholarship for PhD) for their help and support in various administrative aspects. Special thanks to Drs. Abdul Wahab Ansari, Imdad Ali Ismaili, Khalil Khombati and 1It is said that, "In 1901 Einstein transitioned his thesis supervision from "H.F. Weber" to "Alfred Kleiner"; and changed his dissertation topic from thermoelectric to molecular kinetics". iii iv Vice-Chancellor, Mr. Mazhar-ul Haq Siddiqui. I would also like to acknowledge The Univer- sity of Sindh for funding my study through scholarship (SU/PLAN/F.SCH/794). Many thanks to all my friends who in some or other way provided the social fabric needed to a foreigner living far away from his family. All the friends studying at Nottingham as well as so many other Uni- versities in England and other countries (connect through different egroups such as ((sindhischol- ars,scholars_uk,hec_overseas)@yahoogroups.com) had been of great help. Finally, thanks to those for whom thanks is a too small word to say and I would rather like to dedicate this complete thesis which is the outcome of my endeavors as well as their patience, prayers and support i.e my: late father, mother, in-laws, wife, kids, siblings (specially my elder brother Noor Muhammad Shah for his utmost love, guidance, encouragement and support) and rel- atives. I think, being the very first person from our family to have a PhD, I have earned something for us to be proud of! PS: 5th July 2010: at the midnight I was informed of a great loss in my life – my mother left this earth – weeping and crying I caught a flight for back home but was too late to see her – a bad side of doing PhD abroad! May God rest her soul in peace! Azhar Ali Shah Nottingham, England, September 2010. For Asfar, Maryam, Maidah, Shazia, Ada N.M Shah and my (late) parents. v vi Contents Abstract ii Acknowledgements iii List of Figures ix List of Tables xi Glossary of Acronyms xii 1 Introduction 1 1.1 Introduction 1 1.2 Challenges of MC-PSC 5 1.3 Research Objectives 11 1.4 General Methodology 11 1.5 Thesis Organization 12 1.6 List of Contributions 17 1.7 Publications 19 1.8 Conclusions 21 2 Survey of Web and Grid Technologies in Life Sciences 22 2.1 Introduction 22 2.2 Web Technologies 29 2.2.1 Semantic Web Technologies 29 2.2.2 Web Service Technologies 34 2.2.3 Agent-based Semantic Web Services 36 2.3 Grid Technologies 37 2.3.1 BioGird Infrastructure 41 2.3.2 Grid-enabled Applications and Tools 42 2.3.3 Grid-based BioPortals 44 2.3.4 BioGrid Application Development Toolkits 46
Recommended publications
  • Easybuild Documentation Release 20210907.0
    EasyBuild Documentation Release 20210907.0 Ghent University Tue, 07 Sep 2021 08:55:41 Contents 1 What is EasyBuild? 3 2 Concepts and terminology 5 2.1 EasyBuild framework..........................................5 2.2 Easyblocks................................................6 2.3 Toolchains................................................7 2.3.1 system toolchain.......................................7 2.3.2 dummy toolchain (DEPRECATED) ..............................7 2.3.3 Common toolchains.......................................7 2.4 Easyconfig files..............................................7 2.5 Extensions................................................8 3 Typical workflow example: building and installing WRF9 3.1 Searching for available easyconfigs files.................................9 3.2 Getting an overview of planned installations.............................. 10 3.3 Installing a software stack........................................ 11 4 Getting started 13 4.1 Installing EasyBuild........................................... 13 4.1.1 Requirements.......................................... 14 4.1.2 Using pip to Install EasyBuild................................. 14 4.1.3 Installing EasyBuild with EasyBuild.............................. 17 4.1.4 Dependencies.......................................... 19 4.1.5 Sources............................................. 21 4.1.6 In case of installation issues. .................................. 22 4.2 Configuring EasyBuild.......................................... 22 4.2.1 Supported configuration
    [Show full text]
  • Bioperl What’S Bioperl?
    Bioperl What’s Bioperl? Bioperl is not a new language It is a collection of Perl modules that facilitate the development of Perl scripts for bioinformatics applications. Bioperl and perl Bioperl Modules Perl Modules Perls script input Perl Interpreter output Bioperl and Perl Why bioperl for bioinformatics? Perl is good at file manipulation and text processing, which make up a large part of the routine tasks in bioinformatics. Perl language, documentation and many Perl packages are freely available. Perl is easy to get started in, to write small and medium-sized programs. Where to get help Type perldoc <modulename> in terminal Search for particular module in https://metacpan.org Bioperl Document Object-oriented and Process-oriented programming Process-oriented: Yuan Hao eats chicken Name object: $name Action method: eat Food object: $food Object-oriented: $name->eat($food) Modularize the program Platform and Related Software Required Perl 5.6.1 or higher Version 5.8 or higher is highly recommended make for Mac OS X, this requires installing the Xcode Developer Tools Installation On Linux or Max OS X Install from cpanminus: perlbrew install-cpanm cpanm Bio::Perl Install from source code: git clone https://github.com/bioperl/bioperl-live.git cd bioperl-live perl Build.PL ./Build test (optional) ./Build install Installation On Windows Install MinGW (MinGW is incorporated in Strawberry Perl, but must it be installed through PPM for ActivePerl) : ppm install MinGW Install Module::Build, Test::Harness and Test::Most through CPAN: Type cpan to enter the CPAN shell. At the cpan> prompt, type install CPAN Quit (by typing ‘q’) and reload CPAN.
    [Show full text]
  • The Bioperl Toolkit: Perl Modules for the Life Sciences
    Downloaded from genome.cshlp.org on January 25, 2012 - Published by Cold Spring Harbor Laboratory Press The Bioperl Toolkit: Perl Modules for the Life Sciences Jason E. Stajich, David Block, Kris Boulez, et al. Genome Res. 2002 12: 1611-1618 Access the most recent version at doi:10.1101/gr.361602 Supplemental http://genome.cshlp.org/content/suppl/2002/10/20/12.10.1611.DC1.html Material References This article cites 14 articles, 9 of which can be accessed free at: http://genome.cshlp.org/content/12/10/1611.full.html#ref-list-1 Article cited in: http://genome.cshlp.org/content/12/10/1611.full.html#related-urls Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here To subscribe to Genome Research go to: http://genome.cshlp.org/subscriptions Cold Spring Harbor Laboratory Press Downloaded from genome.cshlp.org on January 25, 2012 - Published by Cold Spring Harbor Laboratory Press Resource The Bioperl Toolkit: Perl Modules for the Life Sciences Jason E. Stajich,1,18,19 David Block,2,18 Kris Boulez,3 Steven E. Brenner,4 Stephen A. Chervitz,5 Chris Dagdigian,6 Georg Fuellen,7 James G.R. Gilbert,8 Ian Korf,9 Hilmar Lapp,10 Heikki Lehva¨slaiho,11 Chad Matsalla,12 Chris J. Mungall,13 Brian I. Osborne,14 Matthew R. Pocock,8 Peter Schattner,15 Martin Senger,11 Lincoln D. Stein,16 Elia Stupka,17 Mark D. Wilkinson,2 and Ewan Birney11 1University Program in Genetics, Duke University, Durham, North Carolina 27710, USA; 2National Research Council of
    [Show full text]
  • Vasco Da Rocha Figueiras Algoritmos Para Genómica Comparativa
    Universidade de Aveiro Departamento Electrónica, Telecomunicações 2010 e Informática Vasco da Rocha Algoritmos para Genómica Comparativa Figueiras Universidade de Aveiro Departamento de Electrónica, Telecomunicações 2010 e Informática Vasco da Rocha Algoritmos para Genómica Comparativa Figueiras Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Engenharia Electrónica e Telecomunicações, realizada sob a orientação científica do Doutor José Luís Oliveira, Professor associado da Universidade de Aveiro. o júri presidente Prof. Doutor Armando José Formoso de Pinho Professor Associado do Departamento de Electrónica, Telecomunicações e Informática da Universidade de Aveiro Prof. Doutor Rui Pedro Sanches de Castro Lopes Professor Coodenador do Departamento de Informática e Comunicações do Instituto Politécnico de Bragança orientador Prof. Doutor José Luis Guimarães de Oliveira Professor Associado do Departamento de Electrónica, Telecomunicações e Informática da Universidade de Aveiro agradecimentos Durante o desenvolvimento desta dissertação, recebi muito apoio de colegas e amigos. Agora que termino o trabalho não posso perder a oportunidade de agradecer a todas as pessoas que me ajudaram nesta etapa. Um agradecimento ao meu orientador Professor Doutor José Luís Oliveira e ao Doutor Miguel Monsanto Pinheiro, pela oportunidade de aprendizagem. À minha família pelo apoio incondicional, incentivo e carinho. Aos meus colegas e amigos por toda a ajuda e pelos momentos de convívio e de descontracção, que quebraram tantas dificuldades, ao longo desta etapa. A ti, Rita por todo o carinho, paciência e amor. palavras-chave Bioinformática, sequenciação, BLAST, alinhamento de sequências, genómica comparativa. resumo Com o surgimento da Genómica e da Proteómica, a Bioinformática conduziu a alguns dos avanços científicos mais relevantes do século XX.
    [Show full text]
  • Perl for Bioinformatics Perl and Bioperl I
    Perl for Bioinformatics Perl and BioPerl I Jason Stajich July 13, 2011 Perl for Bioinformatics Slide 1/83 Outline Perl Intro Basics Syntax and Variables More complex: References Routines Reading and Writing Regular Expressions BioPerl Intro Useful modules Data formats Databases in BioPerl Sequence objects details Trees Multiple Alignments BLAST and Sequence Database searching Other general Perl modules Perl for Bioinformatics Perl Intro Slide 2/83 Outline Perl Intro Basics Syntax and Variables More complex: References Routines Reading and Writing Regular Expressions BioPerl Intro Useful modules Data formats Databases in BioPerl Sequence objects details Trees Multiple Alignments BLAST and Sequence Database searching Other general Perl modules Perl for Bioinformatics Perl Intro Basics Slide 3/83 Why Perl for data processing & bioinformatics Fast text processing Regular expressions Extensive module libraries for pre-written tools Large number of users in community of bioinformatics Scripts are often faster to write than full compiled programs Cons Syntax sometimes confusing to new users; 'There's more than one way to do it' can also be confusing. (TMTOWTDI) Cons Not a true object-oriented language so some abstraction is clunky and hacky Scripting languages (Perl, Python, Ruby) generally easier to write simply than compiled ones (C, C++, Java) as they are often not strongly typed and less memory management control. Perl for Bioinformatics Perl Intro Basics Slide 4/83 Perl packages CPAN - Comprehensive Perl Archive http://www.cpan.org Perl
    [Show full text]
  • Pipenightdreams Osgcal-Doc Mumudvb Mpg123-Alsa Tbb
    pipenightdreams osgcal-doc mumudvb mpg123-alsa tbb-examples libgammu4-dbg gcc-4.1-doc snort-rules-default davical cutmp3 libevolution5.0-cil aspell-am python-gobject-doc openoffice.org-l10n-mn libc6-xen xserver-xorg trophy-data t38modem pioneers-console libnb-platform10-java libgtkglext1-ruby libboost-wave1.39-dev drgenius bfbtester libchromexvmcpro1 isdnutils-xtools ubuntuone-client openoffice.org2-math openoffice.org-l10n-lt lsb-cxx-ia32 kdeartwork-emoticons-kde4 wmpuzzle trafshow python-plplot lx-gdb link-monitor-applet libscm-dev liblog-agent-logger-perl libccrtp-doc libclass-throwable-perl kde-i18n-csb jack-jconv hamradio-menus coinor-libvol-doc msx-emulator bitbake nabi language-pack-gnome-zh libpaperg popularity-contest xracer-tools xfont-nexus opendrim-lmp-baseserver libvorbisfile-ruby liblinebreak-doc libgfcui-2.0-0c2a-dbg libblacs-mpi-dev dict-freedict-spa-eng blender-ogrexml aspell-da x11-apps openoffice.org-l10n-lv openoffice.org-l10n-nl pnmtopng libodbcinstq1 libhsqldb-java-doc libmono-addins-gui0.2-cil sg3-utils linux-backports-modules-alsa-2.6.31-19-generic yorick-yeti-gsl python-pymssql plasma-widget-cpuload mcpp gpsim-lcd cl-csv libhtml-clean-perl asterisk-dbg apt-dater-dbg libgnome-mag1-dev language-pack-gnome-yo python-crypto svn-autoreleasedeb sugar-terminal-activity mii-diag maria-doc libplexus-component-api-java-doc libhugs-hgl-bundled libchipcard-libgwenhywfar47-plugins libghc6-random-dev freefem3d ezmlm cakephp-scripts aspell-ar ara-byte not+sparc openoffice.org-l10n-nn linux-backports-modules-karmic-generic-pae
    [Show full text]
  • Web & Grid Technologies in Bioinformatics, Computational And
    Current Bioinformatics, 2008, 3, 000-000 1 Web & Grid Technologies in Bioinformatics, Computational and Systems Biology: A Review Azhar A. Shah1, Daniel Barthel1, Piotr Lukasiak2,3, Jacek Blazewicz2,3 and Natalio Krasnogor*,1 1School of Computer Science, University of Nottingham, Jubilee Campus, NG81BB, Nottingham, UK 2Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland 3Institute of Bioorganic Chemistry, Laboratory of Bioinformatics, Polish Academy of Sciences, Noskowskiego 12/14, 61- 704 Poznan, Poland Abstract: The acquisition of biological data, ranging from molecular characterization and simulations (e.g. protein fold- ing dynamics), to systems biology endeavors (e.g. whole organ simulations) all the way up to ecological observations (e.g. as to ascertain climate change’s impact on the biota) is growing at unprecedented speed. The use of computational and networking resources is thus unavoidable. As the datasets become bigger and the acquisition technology more refined, the biologist is empowered to ask deeper and more complex questions. These, in turn, drive a runoff effect where large re- search consortia emerge that span beyond organizations and national boundaries. Thus the need for reliable, robust, certi- fied, curated, accessible, secure and timely data processing and management becomes entrenched within, and crucial to, 21st century biology. Furthermore, the proliferation of biotechnologies and advances in biological sciences has produced a strong drive for new informatics solutions, both at the basic science and technological levels. The previously unknown situation of dealing with, on one hand, (potentially) exabytes of data, much of which is noisy, has large experimental er- rors or theoretical uncertainties associated with it, or on the other hand, large quantities of data that require automated computationally intense analysis and processing, have produced important innovations in web and grid technology.
    [Show full text]
  • BINF 634 Bioinformatics Programming
    UNIVERSITA’ DEGLI Teacher: Matteo Re STUDI DI MILANO Metodi e linguaggi per il trattamento dei dati PERL scripting S introduction • PERL programming • Problem solving and Debugging • To read and write documentation • Data manipulation: filtering and transformation • Pattern matching and data mining (examples) • Example application: Computational Biology • Analysis and manipulation of biological sequences • Interaction with biological batabases (NCBI, EnsEMBL, UCSC) • BioPERL Objectives Guidelines • Operating system • During class appointments we will use windows • PERL installation WIN: http://www.activestate.com/activeperl/downloads UNIX, MacOS: available by default • Text editor PERL are saved as text files. Many options available… Vim (UNIX like OS) Notepad (Windows) Sequence file – FASTA format >gi|40457238|HIV-1 isolate 97KE128 from Kenya gag gene, partial cds CTTTTGAATGCATGGGTAAAAGTAATAGAAGAAAGAGGTTTCAGTCCAGAAGTAATACCCATGTTCTCAG CATTATCAGAAGGAGCCACCCCACAAGATTTAAATACGATGCTGAACATAGTGGGGGGACACCAGGCAGC TATGCAAATGCTAAAGGATACCATCAATGAGGAAGCTGCAGAATGGGACAGGTTACATCCAGTACATGCA GGGCCTATTCCGCCAGGCCAGATGAGAGAACCAAGGGGAAGTGACATAGCAGGAACTACTAGTACCCCTC AAGAACAAGTAGGATGGATGACAAACAATCCACCTATCCCAGTGGGAGACATCTATAAAAGATGGATCAT CCTGGGCTTAAATAAAATAGTAAGAATGTATAGCCCTGTTAGCATTTTGGACATAAAACAAGGGCCAAAA GAACCCTTTAGAGACTATGTAGATAGGTTCTTTAAAACTCTCAGAGCCGAACAAGCTT >gi|40457236| HIV-1 isolate 97KE127 from Kenya gag gene, partial cds TTGAATGCATGGGTGAAAGTAATAGAAGAAAAGGCTTTCAGCCCAGAAGTAATACCCATGTTCTCAGCAT TATCAGAAGGAGCCACCCCACAAGATTTAAATATGATGCTGAATATAGTGGGGGGACACCAGGCAGCTAT
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,407,013 B2 Rogan (45) Date of Patent: Mar
    USOO8407013B2 (12) United States Patent (10) Patent No.: US 8,407,013 B2 Rogan (45) Date of Patent: Mar. 26, 2013 (54) AB INITIOGENERATION OF SINGLE COPY Claverie, J-M.. “Computational Methods of the Identification of GENOMIC PROBES Genes in Vertebrate Genomic Sequences.” Hum Molec Genet, 1997. 6.10:1735-1744. Craig, J.M., et al., “Removal of Repetitive Sequences from FISH (76) Inventor: Peter K. Rogan, London (CA) Probes Using PCR-Assisted Affinity Chromatography.” Hum Genet, 1997, 100/3-4:472-476. (*) Notice: Subject to any disclaimer, the term of this Delcher, A.L., et al., “Alignment of Whole Genomes.” Nucl Acids patent is extended or adjusted under 35 Res, 1999, 27/11:2369-2376. U.S.C. 154(b) by 0 days. Devereux, J., et al., A Comprehensive Set of Sequence Analysis Programs for the VAX, NuclAcids Res, 1984, 12/1:387-395. Dover, G., et al., “Molecular Drive.” Trends in Genetics, 2002, (21) Appl. No.: 13/469,531 18.11:587-589. Edgar, R.C., et al., “PILER: Identification and Classification of (22) Filed: May 11, 2012 Genomic Repeats.” Bioinformatics, 2005, 21(S1):i152-i158. Eisenbarth, I., et al., "Long-Range Sequence Composition Mirrors (65) Prior Publication Data Linkage Disequilibrium Pattern in a 1.13 Mb Region of Human Chromosome 22, Human Molec Genet, 2001, 10/24:2833-2839. US 2012/O253689 A1 Oct. 4, 2012 Faranda, S., et al., “The Human Genes Encoding Renin-Binding Related U.S. Application Data Protein and Host Cell Factor are Closely Linked in Xq28 and Tran scribed in the Same Direction.
    [Show full text]
  • Program Performance Review
    CALIFORNIA STATE UNIVERSITY, FULLERTON Program Performance Review Master of Science in Computer Science Department of Computer Science 3/15/2013 This is a self-study report of the Master of Science in Computer Science for Program Performance Review Program Performance Review Master of Science in Computer Science, 2011 – 2012 I. Department/Program Mission, Goals and Environment A. The mission of the MS in Computer Science Program is to enable each graduate to lay a solid foundation in the scientific, engineering, and other aspects of computing that prepare the graduate regardless of his/her background for a successful career that can advance the creation and application of computing technologies in the flat world. The learning goals of the MS in computer science program are as follows: 1. Students will have a solid foundation necessary to function effectively in a responsible technical or management position in global development environment and/or to pursue a Ph.D. in related areas. • Ability to identify, formulate, and solve computer science related problems. • Ability to understand professional and ethical responsibility in computer science related fields. • Ability to understand major contemporary issues in Computer Science. • Ability to apply process thinking and statistical thinking in solving and analyzing a complex problem. 2. Students will learn the technical skills necessary to design, implement, verify, and validate solutions in computer systems and applications. • Ability to design, implement, and test a computer system, component, or algorithm to meet specified needs. • Ability to evaluate the performance of a computing solution. • Ability to use the techniques, skills, and modern tools necessary for computer science related practices.
    [Show full text]
  • Technical Notes All Changes in Fedora 13
    Fedora 13 Technical Notes All changes in Fedora 13 Edited by The Fedora Docs Team Copyright © 2010 Red Hat, Inc. and others. The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. The original authors of this document, and Red Hat, designate the Fedora Project as the "Attribution Party" for purposes of CC-BY-SA. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version. Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law. Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries. For guidelines on the permitted uses of the Fedora trademarks, refer to https:// fedoraproject.org/wiki/Legal:Trademark_guidelines. Linux® is the registered trademark of Linus Torvalds in the United States and other countries. Java® is a registered trademark of Oracle and/or its affiliates. XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries. All other trademarks are the property of their respective owners. Abstract This document lists all changed packages between Fedora 12 and Fedora 13.
    [Show full text]
  • IT-SC Beginning Perl for Bioinformatics James Tisdall Publisher: O'reilly First Edition October 2001 ISBN: 0-596-00080-4, 384 Pages
    IT-SC Beginning Perl for Bioinformatics James Tisdall Publisher: O'Reilly First Edition October 2001 ISBN: 0-596-00080-4, 384 pages This book shows biologists with little or no programming experience how to use Perl, the ideal language for biological data analysis. Each chapter focuses on solving particular problems or class of problems, so you'll finish the book with a solid understanding of Perl basics, a collection of programs for such tasks as parsing BLAST and GenBank, and the skills to tackle more advanced bioinformatics programming. $ IT-SC IT-SC 2 Preface What Is Bioinformatics? About This Book Who This Book Is For Why Should I Learn to Program? Structure of This Book Conventions Used in This Book Comments and Questions Acknowledgments 1. Biology and Computer Science 1.1 The Organization of DNA 1.2 The Organization of Proteins 1.3 In Silico 1.4 Limits to Computation 2. Getting Started with Perl 2.1 A Low and Long Learning Curve 2.2 Perl's Benefits 2.3 Installing Perl on Your Computer 2.4 How to Run Perl Programs 2.5 Text Editors 2.6 Finding Help 3. The Art of Programming 3.1 Individual Approaches to Programming 3.2 Edit—Run—Revise (and Save) 3.3 An Environment of Programs 3.4 Programming Strategies 3.5 The Programming Process 4. Sequences and Strings 4.1 Representing Sequence Data 4.2 A Program to Store a DNA Sequence 4.3 Concatenating DNA Fragments 4.4 Transcription: DNA to RNA 4.5 Using the Perl Documentation 4.6 Calculating the Reverse Complement in Perl 4.7 Proteins, Files, and Arrays 4.8 Reading Proteins in Files 4.9 Arrays 4.10 Scalar and List Context 4.11 Exercises 5.
    [Show full text]