Long Baseline Neutrino Experiment in The

Total Page:16

File Type:pdf, Size:1020Kb

Long Baseline Neutrino Experiment in The Digging for Gold: Long Baseline Neutrino Experiment in the Brian Rebel February 8, 2012 1 Tuesday, February 14, 2012 LBNE Nuggets • LBNE is the next generation of neutrino experiment after NOνA • The processes LBNE will look for are all really rare, like gold nuggets • Need to have a grand scale to even begin: massive detectors, long distances for the neutrinos to travel, intense beams • The knowledge gained will be revolutionary - maybe even answer the question as to why we are here 2 Tuesday, February 14, 2012 Outline • What are neutrinos and why study them • How to detect neutrinos • Long Baseline Neutrino Experiment (LBNE) • Summary 3 Tuesday, February 14, 2012 !"#$"%&'()*%+'"#%'#,-)%&+"'. F<1%#+.#1#"-)%&+"'D F<-&-#('#"-)%&+"'.#*'A-#;&'AD ,-)%&+"'.# 1&-# J&'("7%'<"!. O"#<4:!%54# /G+=#G1"= '"-# ';# %<-# 81.+*# Y8)+6(+"=# 86'*:.Z# ';# %<-# HI2-&39<-&-# +"# %<-# )"+2-&.-# %<-&-# 1&-# JKLL# )"+2-&.-7# # R<-3# 1&-# %35+*1663# (-"'%-(# 83# "-)%&+"'.# 5-&# *)8+*# *-"%+A-%-&# 6-;%# '2-&# ;&'A# %<-# %<-##c&--:#6-%%-&#") BνC7#F+%<#') %!%:<#4:. G+=#G1"= :;"#$% 1"(#'"63#1#<4'D. 7"554#%<-3#*1"# 51..# %<&')=<# =&-1%# 1A')"%.# ';# A1%-&+16# Galaxy NGC 4526 B.)*<# 1.# %<-# -"%+&-# I1&%<C# 9+%<')%# 8-+"=# /0)5-&"'21-#B-O56'(+"=#.%1&.C 1;;-*%-(# 83# +%4# A1:+"=# %<-A (4JJ4:&!<. <). HJPPQ# ';# %<-# -"-&=3# &-6-1.-(# +"# '"-# *61..# ';# (%<%:<7# R<')=<# -6).+2-4# %<-3# 1&- .)5-&"'21-#+.#-A+%%-(#+"#%<-#;'&A#';#"-)%&+"'. "@&'("'< +"#"1%)&-7# Supernova 1994D ,-)%&+"'.#*'A-#+"#,.J!"F)#54#'&#21&+-%+-.7#I1*<#;612'&#+.#&-61%-(#%'#1# *'&&-.5'"(+"=# *<1&=-(# 51&%+*6-7# # ^'&# -O1A56-4# %<-# -6-*%&'">%35-# /0%1&. "-)%&+"'#+.#%<-#51&%"-&#';#%<-#;1A+6+1&#-6-*%&'"7 HM')=<63#NLL#8+66+'"#"-)%&+"'.#5&'()*-(#+"#%<-#*'&-# ';# %<-# 0)"# .%&-1A# %<&')=<# 3')&# ;+"=-&"1+6# -2-&3# .-*'"(4#(13#'&#"+=<% !#<+.%'&3#';#%<-#"-)%&+"' /R<-#!%A'.5<-&- Origin Story HE+=<>I"-&=3# S'.A+*# &13.# ;&'A# .51*-# .%&+:-# /*+,C. $"# 1# 6-%%-&# %'# %<-# 1%%-"(--.# ';# 1# *'";-&-"*-4# 1%'A.# +"# %<-# 1%A'.5<-&-4# 5&'()*+"=# 1# .<'9-&# • The existence of the neutrino was first suggested by Wolfgang Pauli in I)!J$"'$. K"&!4 5&'5'.-(# 1# 6+=<%# -6-*%&+*19301663>"-)%&16# ';#51&%+*6-.4#+"*6)(+"=#"-)%&+"'.7##!55&'O+A1%-63# • Used to explain missing energy when neutrons convert (decay) to protons 51&%+*6-#+"#'&(-&#%'#-O561+"#%<-#A+..+"=#-"-&=and3 electrons#+"#*-&%1+"# NL# 1%A'.5<-&+*# "-)%&+"'.# # 9+66# 51..# %<&')=<# • Pauli proposed the neutrino in a letter &1(+'1*%+2-#(-*13.7#BX1)6+ (+(#"'%#1%%-"(#%<-#to *a conference'"; -as his& -presence"* at- a # 3')&#%<)A8"1+6#-2-&3#.-*'"(7## ball in Zurich was “indispensable” X1)6+ 8-*1).-# <+.# 5&-.-"*-# 91.# Y+"(+.5-".186-Z#•1Enrico%# Fermi1# was8 the1 first66 person# +" to # call them neutrinos /G1"1"1. a)&+*<7C##E-#*166-(#%<+.#51&%+*6-#%<-#"-)%&'"7 H!"#12-&1=-#81"1"1#9+66#-A+%#&')=<63#N#A+66+'"#"-)%&+"'.# 4 / *+,-. $"# 1"# )";'&%)"1%-# <+.%'&+*16# 1**+(-Tuesday," February%4# 14, 2012V1A-.# S<1(9+*:# -1*<# (13# ()-# %'# %<-# %+"3# 1A')"%# ';# "1%)&1663>'**)&&+"=# (+.*'2-&-(# 1# %'%1663# )"&-61%-(# "-)%&16# 51&%+*6-4# %1:-"# %'# 8-# %<- &1(+'1*%+2-#5'%1..+)A#+%#*'"%1+". "-)%&'"7##$%#91.#.''"#&-16+W-(#%<1%#+%#91.#A)*<#%''#<-123#%'#8-# %<-#51&%+*6-#%<1%#X1)6+ <1(#5&'5'.-(4#8)%#%<-#"1A-#.%)*:7 /,)*6-1&#M-1*%'&.## H!55&'O+A1%-63# T# A+66+'"# &-1*%'&# "-)%&+"'.# 9+66# /*+,L.M'#4:).N%#74 5)86+.<-(#<+.#%<-'&3#';#&1(+'1*%+2-# 51..# %<&')=<# 3')&# %<)A8"1+6# -2-&3# .-*'"(4# +;# (-*13.4#+"#9<+*<#<-#1('5%-(#X1)6+b. .)==-.%+'"#;'&#1#6+=<%# 3')# 1&-# UT# :A# BNK# A+6-.C# ;&'A# 1# ")*6-1&# "-)%&16# 51&%+*6-7# # E-# ()88-(# +%# %<-# Y"-)%&+"'Z# B6+%%6-> &-1*%'&7 "-)%&16#'"-C4#%'#(+.%+"=)+.<#+%#;&'A#S<1(9+*:b.#"-)%&'"7 ^-&Ai /!**-6-&1%'&. / *+/0 ,-)%&+"'.# 9-&-# ;+&.%# (-%-*%-(# 83# 1)2"'. 1"(# 3%4'%5 1%# H?'&-#'"#%<+.#61%-& %<-#0121""1<#M+2-&#")*6-1&#5'9-&#561"%7#M-+"-. 91.#191&(-(#%<-# NPPT#,'8-6#X&+W-7 / *+0- !# .-*'"(# Y;612'&Z# ';# "-)%&+"'4# %<-# A)'">"-)%&+"'# 91.# (+.*'2-&-(7##$"#NP[[#6%)'.6%(%#7"'4#8%!.9:;2"#<= 1"(#>":?. E'9#1&-#"-)%&+"'.#(-%-*%-(D 9<%4'@%#$%# &-*-+2-(#%<-#,'8-6#X&+W-#;'&#%<+.#(+.*'2-&37 / *+AB 0)5-&"'21#NP[\1#91.#'8.-&2-(7##,-)%&+"'.#9-&-#(-%-*%-(# / 0+"*-#"-)%&+"'#+"%-&1*%+'".#1&-#2-&3#&1&-4#"-)%&+"'#(-%-*%'&.#1&-# +"#%9'#(-%-*%'&.4#'"-#+"#V151"#1"(#'"-#+"#@<+'7 %35+*1663#2-&3 !"#$%7 / *++A ,-)%&+"'# '.*+661%+'".# 9-&-# '8.-&2-(# +"# 1%A'.5<-&+*# / ,-)%&+"'.# *1""'%# 8-# '8.-&2-(# (+&-*%634#8)%# 9-# *1"# 6'':# ;'&# %<-# "-)%&+"'.#+"#%<-#0)5-&>]1A+':1"(- -O5-&+A-"%#+"#V151"7 *<1&=-(>51&%+*6-.#%<1%#%<-3#6-12-#8-<+"(7 / -CCC.!#%<+&(#Y;612'&Z#';#"-)%&+"'4#%<-#%1)>"-)%&+"'#91.#'8.-&2-(# / $"# ?$,@0# %<-.-# *<1&=-(>51&%+*6-.# 1&-# (-%-*%-(# 83# %<-# .A166# 1%#^-&A+618 +"#%<-#_@,`R#-O5-&+A-"%7# 1A')"%# ';# 6+=<%# %<1%# %<-3# 5&'()*-(# +"# 1# .5-*+16# %35-# ';# 561.%+*# B.*+"%+661%'&C7 / -CC- ,'8-6# X&+W-# 191&(-(# %'# 3"D. E"F45. >#G 1"(# 8"5"<)5;4. H)5;4@" ;'&#%<-#(-%-*%+'"#';#.'61&#1"(#1%A'.5<-&+*#"-)%&+"'.7 / ,-)%&+"'# (-%-*%'&.# 1&-# %35+*1663# 6'*1%-(# &'(%#$#)&'(4# %'# ;+6%-&# ')%# %<-# "1%)&1663>'**)&&+"=# *'.A+*>&13.# *'A+"=# ;&'A# .51*-# # B'&# / -CC/ ?$,@0#-O5-&+A-"%#8-=+".#%'#*'66-*%#(1%17 ;&'A#%<-#1%A'.5<-&-DDC7 !"#$%& '()*!+,-*"-.)/012*#)302,-1* $4/,55+0,1What-*% is )a Neutrino?+2/( • Neutrinos make up 1/4 of the "-known* 2)/) elementary-0* ;)+24 *particles0()* 40 39;* 1>* -)302,-14@* 0()* •48Neutrinos+55)40* 1have>* + no55* Bcharge-1A -* )5)8)-0+2;* 7+20,/5)4@* $%&'?&94@-98& #@'!%&',#2495 (/5&;' (+4* <)/18)* 1-)* 1>* 0()* 8140* ,87120+-0* "%&-&'!%&'79-'<&!&0!#-'/='3#09!&4> •01Neutrinos7,/4*,-* 8have19 )very2-* little(,:( mass*)-)2:;*7(;4,/4? • Neutrinos tend to ignore other forms of matter • Can travel 1 light year in lead on average before' interacting()* !"#$ - %5.9*) 67)2,8)-0* ,4* 9)4,:-)9*01* trillion miles 4039;* 0()* 2)/)-05;* 1<4)2=)9* 7()-18)-1-*1>*-)302,-1*14/,55+0,1-4*,-* • Neutrinos are everywhere! They play many roles9 )in0 +the,5? *universe'1*9+0 )so@ *8140*1>*A(+0*A)*B-1A* we want to understand+<130*- how)302 they,-1* 14/,55+0,1-4*/18)4*>218* behave )67)2,8)-04*0(+0*2)5;*1-*34*<),-:*+<5)* 5 01* A12B* 130* (1A* 0()* -)302,-14* A)2)* Tuesday, February 14, 2012 72193/)9? C12* !"#$%* A)* A,55* 72193/)* 132* 1A-* -)302,-14@* +-9* A)* (+=)* /1-4023/0)9* !"# 9)0)/0124@*41*0(+0*A)*/+-*8+B)*+* D<)>12)* +-9* +>0)2E* /187+2,41-?* '(,4* +551A4* 34* 01* 8+B)* +* 812)* +//32+0)* 4039;*1>*-)302,-1*14/,55+0,1-4?* '()*!"#$%*)67)2,8)-0*A,55*40+20*0+B,-:*9+0+*)+25;*-)60* ;)+2?**#)302,-14*A,55*<)*72193/)9*()2)*+0*C)28,5+<@*+-9* 9,2)/0)9* 01A+294* %139+- F-9)2:213-9* G+<12+012;* ,-* !,--)410+?*H)*(+=)*+*D#)+2E*I)0)/012*()2)*,-*C)28,5+<@* +-9*+*DC+2E*I)0)/012*+0*%139+-?*J;*/187+2,-:*A(+0*A)* 1<4)2=)* ()2)* A,0(* A(+0* A)* 1<4)2=)* 0()2)* A)* A,55* <)* $%&'()*+,',&-./0&'12/34/56'%&-&'/5'7&-8/39:;' +<5)* 01* 8+B)* 72)/,4,1-* 8)+432)8)-04* 1>* 0()* "%&-&'#2-'*&9-'<&!&0!#-'/='3#09!&4>'' 7()-18)-+*1>*-)302,-1*14/,55+0,1-4? !"#$"%&'()*%+'"#%'#,-)!%&"+"#$'".%&'()*%+'"#%'#,-)%&+"'. F<1%#+.#1#"-)%&+"'D Where Do Neutrinos F<-&-#('#"-)%&+"'.#*'A-#;&'AD F<1%#+.#1#"-)%&+"'D F<-&-#('#"-)%&+"'.#*'A-#;&'AD Come From? ,-)%&+"'.# 1&-# J&'("7%'<"!. O"#<4:!%54# Big Bang/ - Gneutrinos+=#G1 from"= the start of time ,-)%&+"'.# 1&-# J&'("7%'<"!. O"#<4:!%54# /G+=#G1"= are everywhere in the universe - about 400 '"-# ';# %<-# 81.+*# Y8)+6(+"=# 86'*:.Z# ';# %<-# in the tip of yourHI 2thumb-&3 right9< now-&-# +"# %<-# )"+2-&.-# %<-&-# 1&-# JKLL# '"-# ';# %<-# 81.+*# Y8)+6(+"=# 86'*:.Z# ';# %<-# HI2)-"&3+29-&<.--&7#-##R<+"-#3#%1<&-##%3)5"+*+21-663&#.(--#"%'<%--(&-# 8#31# &-# JKLL# "-)%&+"'.# 5-&# *)8+*# *-"%+A-%-&# 6-;%# '2-&# ;&'A# %<-# Important to formation of galaxies in early )"+2-&.-7# # R<-3# 1&-# %35+*1663# (-"'%-(# 83# "-)%%<&-+"##'c.&#-5--:#&6#-*%%)-8&#+"*#)*B-ν"C7%#+FA+-%<%-#'&#)6-%;!%%#:'<2#4-:&.# ;&'A# %<-# universe G+=#G1"= %<-##c&--:#6-%%-&#") BνC7#F+%<#') %!%:<#4:. G+=#:G;1""#=$% 1"(#'"63#1#<4'D. 7"554#%<-3#*1"# :;"#$% 1"(#'"63#1#<4'D. 7"554#%<-3#*1"# 51..# %<&')=<# =&-1%# 1A')"%.# ';# A1%-&+16# Galaxy NGC 4526 51..# %<&')=<# =&-1%# 1A')"%.# ';# A1%-&+16# Galaxy NBG.C) 4*5<2#61.# %<-# -"%+&-# I1&%<C# 9+%<')%# 8-+"=# /0)5-&"'21-#B-O56'(+"=#.%1&.C 1;;-*%-(# 83# +%4#/A01):5+"-=&"# %'<2-1A-#(B-4JOJ54:6'&(!<+."<=)#..%1&.C Super Novae - 99% of the energy is HJPPQ# ';# %<-# -"-&=3# &-6-1.-(# +"# '"-# *61..# ';# B.)*<# 1.# %<-# -"%+&-# I1&%<C# 9+%<')%# 8-+"=# in neutrinos (%<%:<7# R<')=<# -6).+2-4# %<-3# 1&- .)5-&"'21-#+.#-A+%%-(#+"#%<-#;'&A#';#"-)%&+"'. 1;;-*%-(# 83# +%4# A1:+"=# %<-A (4JJ4:&!<. <). HJPPQ# ';# %<-# -"-&=3# &-6-1.-(# +"Observing# '"- neutrinos# *61. from.# 'super;# "@&'("'< +"#"1%)&-7# novae would tells us about how (%<%:<7# R<')=<# -6).+2-4# %<-3# 1&- .)5-&"'21-#+.#-A+%%-(#+"#%<-#;'&A#stars'; #die"-)%&+"'. 6 Supernova 1994D "@&'("'< +"#"1%)&-7# ,-)%&+"'.#*'A-#+"#,.J!"F)#54#'&#21&+-%+-.7#I1*<#;612'&#+.Tuesday,#&- February61%- 14, (2012#%'#1# Supe*r'no&v&a- 1.959'4D"(+"=# *<1&=-(# 51&%+*6-7# # ^'&# -O1A56-4# %<-# -6-*%&'">%35-# /0%1&. ,-)%&+"'.#*'A-#+"#,.J!"F)#54#'&#21&+-%+-.7#I1*<#;612'&#+.#&-61%-(#%'#1# "-)%&+"'#+.#%<-#51&%"-&#';#%<-#;1A+6+1&#-6-*%&'"7 HM')=<63#NLL#8+66+'"#"-)%&+"'.#5&'()*-(#+"#%<-#*'&-# *'&&-.5'"(+"=# *<1&=-(# 51&%+*6-7# # ^'&# -O1A56-4# %<-# -6-*%&'">%35-# /0%1&. ';# %<-# 0)"# .%&-1A# %<&')=<# 3')&# ;+"=-&"1+6# -2-&3# "-)%&+"'#+.#%<-#51&%"-&#';#%<-#;1A+6+1&#-6-*%&'"7 HM')=<63#NLL#8+66+'"#"-)%&+"'.#5&'()*-(#+"#%<-#*'&-# .-*'"(4#(13#'&#"+=<% ';# %<-# 0)"# .%&-1A# %<&')=<# 3')&# ;+"=-&"1+6# -2-&3# .-*'"(4#(13#'&#"!+=#<<% +.%'&3#';#%<-#"-)%&+"' /R<-#!%A'.5<-&- HE+=<>I"-&=3# S'.A+*# &13.# ;&'A# .51*-# .%&+:-# !#<+.%'&3#';#%<-#"-)%&+"' /*+,C. $"# 1#/6R-<%%--#&!# %'A#'%<.5-#<1-%&%--"(--.# ';# 1# *'";-&-"*-4# 1%'A.# +"# %<-# 1%A'.5<-&-4# 5&'()*+"=# 1# .<'9-&# I)!J$"'$. K"H&E!4+=5<&>'I5"'-.-&(=#3#1#S6'+=.<A%#+*-#6-&*1%&3+*.1#66;3&>'"A-)#%&.156#1*-# .%&+:-# ';#51&%+*6-.4#+"*6)(+"=#"-)%&+"'.7##!55&'O+A1%-63# 51&%+*6-#+"#'&(-&#%'#-O561+"#%<-#A+..+"=#-"-&=3#+"#*-&%1+"# /*+,C. $"# 1# 6-%%-&# %'# %<-# 1%%-"(--.# ';# 1# *'";-&-"*-4# 1%'A.# +"# %<-# 1%A'.5<-&-4# 5&'()*+"=# 1# .<'9-&# NL# 1%A'.5<-&+*# "-)%&+"'.# # 9+66# 51..# %<&')=<# &1(+'1*%+2-#(-*13.7#BX1)6+ (+(#"'%#1%%-"(#%<-#*'";-&-"*-# 3')&#%<)A8"1+6#-2-&3#.-*'"(7## I)!J$"'$. K"&!4 5&'5'.-(# 1# 6+=<%# -6-*%&+*1663>"-)%&16# ';#51&%+*6-.4#+"*6)(+"=#"-)%&+"'.7##!55&'O+A1%-63# 8-*1).-# <+.# 5&-.-"*-# 91.# Y+"(+.5-".186-Z# 1%# 1# 8166# +"# X1)6+ /G1"1"1.
Recommended publications
  • A Measurement of the 2 Neutrino Double Beta Decay Rate of 130Te in the CUORICINO Experiment by Laura Katherine Kogler
    A measurement of the 2 neutrino double beta decay rate of 130Te in the CUORICINO experiment by Laura Katherine Kogler A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Stuart J. Freedman, Chair Professor Yury G. Kolomensky Professor Eric B. Norman Fall 2011 A measurement of the 2 neutrino double beta decay rate of 130Te in the CUORICINO experiment Copyright 2011 by Laura Katherine Kogler 1 Abstract A measurement of the 2 neutrino double beta decay rate of 130Te in the CUORICINO experiment by Laura Katherine Kogler Doctor of Philosophy in Physics University of California, Berkeley Professor Stuart J. Freedman, Chair CUORICINO was a cryogenic bolometer experiment designed to search for neutrinoless double beta decay and other rare processes, including double beta decay with two neutrinos (2νββ). The experiment was located at Laboratori Nazionali del Gran Sasso and ran for a period of about 5 years, from 2003 to 2008. The detector consisted of an array of 62 TeO2 crystals arranged in a tower and operated at a temperature of ∼10 mK. Events depositing energy in the detectors, such as radioactive decays or impinging particles, produced thermal pulses in the crystals which were read out using sensitive thermistors. The experiment included 4 enriched crystals, 2 enriched with 130Te and 2 with 128Te, in order to aid in the measurement of the 2νββ rate. The enriched crystals contained a total of ∼350 g 130Te. The 128-enriched (130-depleted) crystals were used as background monitors, so that the shared backgrounds could be subtracted from the energy spectrum of the 130- enriched crystals.
    [Show full text]
  • Daya at Antineutrinos Reactor Eebr1 2006 1, December Proposal Aabay Daya Θ 13 Using Daya Bay Collaboration
    Daya Bay Proposal December 1, 2006 A Precision Measurement of the Neutrino Mixing Angle θ13 Using Reactor Antineutrinos At Daya Bay arXiv:hep-ex/0701029v1 15 Jan 2007 Daya Bay Collaboration Beijing Normal University Xinheng Guo, Naiyan Wang, Rong Wang Brookhaven National Laboratory Mary Bishai, Milind Diwan, Jim Frank, Richard L. Hahn, Kelvin Li, Laurence Littenberg, David Jaffe, Steve Kettell, Nathaniel Tagg, Brett Viren, Yuping Williamson, Minfang Yeh California Institute of Technology Christopher Jillings, Jianglai Liu, Christopher Mauger, Robert McKeown Charles Unviersity Zdenek Dolezal, Rupert Leitner, Viktor Pec, Vit Vorobel Chengdu University of Technology Liangquan Ge, Haijing Jiang, Wanchang Lai, Yanchang Lin China Institute of Atomic Energy Long Hou, Xichao Ruan, Zhaohui Wang, Biao Xin, Zuying Zhou Chinese University of Hong Kong, Ming-Chung Chu, Joseph Hor, Kin Keung Kwan, Antony Luk Illinois Institute of Technology Christopher White Institute of High Energy Physics Jun Cao, Hesheng Chen, Mingjun Chen, Jinyu Fu, Mengyun Guan, Jin Li, Xiaonan Li, Jinchang Liu, Haoqi Lu, Yusheng Lu, Xinhua Ma, Yuqian Ma, Xiangchen Meng, Huayi Sheng, Yaxuan Sun, Ruiguang Wang, Yifang Wang, Zheng Wang, Zhimin Wang, Liangjian Wen, Zhizhong Xing, Changgen Yang, Zhiguo Yao, Liang Zhan, Jiawen Zhang, Zhiyong Zhang, Yubing Zhao, Weili Zhong, Kejun Zhu, Honglin Zhuang Iowa State University Kerry Whisnant, Bing-Lin Young Joint Institute for Nuclear Research Yuri A. Gornushkin, Dmitri Naumov, Igor Nemchenok, Alexander Olshevski Kurchatov Institute Vladimir N. Vyrodov Lawrence Berkeley National Laboratory and University of California at Berkeley Bill Edwards, Kelly Jordan, Dawei Liu, Kam-Biu Luk, Craig Tull Nanjing University Shenjian Chen, Tingyang Chen, Guobin Gong, Ming Qi Nankai University Shengpeng Jiang, Xuqian Li, Ye Xu National Chiao-Tung University Feng-Shiuh Lee, Guey-Lin Lin, Yung-Shun Yeh National Taiwan University Yee B.
    [Show full text]
  • Pos(ICRC2017)1010 ∗ † G
    Search for GeV neutrinos associated with solar flares with IceCube PoS(ICRC2017)1010 The IceCube Collaboration† † http://icecube.wisc.edu/collaboration/authors/icrc17_icecube E-mail: [email protected] Since the end of the eighties and in response to a reported increase in the total neutrino flux in the Homestake experiment in coincidence with solar flares, solar neutrino detectors have searched for solar flare signals. Hadronic acceleration in the magnetic structures of such flares leads to meson production in the solar atmosphere. These mesons subsequently decay, resulting in gamma-rays and neutrinos of O(MeV-GeV) energies. The study of such neutrinos, combined with existing gamma-ray observations, would provide a novel window to the underlying physics of the acceleration process. The IceCube Neutrino Observatory may be sensitive to solar flare neutrinos and therefore provides a possibility to measure the signal or establish more stringent upper limits on the solar flare neutrino flux. We present an original search dedicated to low energy neutrinos coming from transient events. Combining a time profile analysis and an optimized selection of solar flare events, this research represents a new approach allowing to strongly lower the energy threshold of IceCube, which is initially foreseen to detect TeV neutrinos. Corresponding author: G. de Wasseige∗ IIHE-VUB, Pleinlaan 2, 1050 Brussels, Belgium 35th International Cosmic Ray Conference 10-20 July, 2017 Bexco, Busan, Korea ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ Search for GeV neutrinos associated with solar flares with IceCube G.
    [Show full text]
  • Solar Neutrino Spectroscopy
    Solar Neutrino Spectroscopy Michael Wurm∗ PRISMA Cluster of Excellence and Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany April 24, 2017 Abstract More than forty years after the first detection of neutrinos from the Sun, the spectroscopy of solar neutrinos has proven to be an on-going success story. The long-standing puzzle about the observed solar neutrino deficit has been resolved by the discovery of neutrino flavor oscillations. Today's experiments have been able to solidify the standard MSW-LMA oscillation scenario by performing precise measurements over the whole energy range of the solar neutrino spectrum. This article reviews the enabling experimental technologies: On the one hand mutli- kiloton-scale water Cherenkov detectors performing measurements in the high-energy regime of the spectrum, on the other end ultrapure liquid-scintillator detectors that allow for a low- threshold analysis. The current experimental results on the fluxes, spectra and time vari- ation of the different components of the solar neutrino spectrum will be presented, setting them in the context of both neutrino oscillation physics and the hydrogen fusion processes embedded in the Standard Solar Model. Finally, the physics potential of state-of-the-art detectors and a next-generation of ex- periments based on novel techniques will be assessed in the context of the most interesting open questions in solar neutrino physics: a precise measurement of the vacuum-matter transition curve of electron-neutrino oscillation probability that offers a definitive test of the basic MSW-LMA scenario or the appearance of new physics; and a first detection of neutrinos from the CNO cycle that will provide new information on solar metallicity and stellar physics.
    [Show full text]
  • Nov/Dec 2020
    CERNNovember/December 2020 cerncourier.com COURIERReporting on international high-energy physics WLCOMEE CERN Courier – digital edition ADVANCING Welcome to the digital edition of the November/December 2020 issue of CERN Courier. CAVITY Superconducting radio-frequency (SRF) cavities drive accelerators around the world, TECHNOLOGY transferring energy efficiently from high-power radio waves to beams of charged particles. Behind the march to higher SRF-cavity performance is the TESLA Technology Neutrinos for peace Collaboration (p35), which was established in 1990 to advance technology for a linear Feebly interacting particles electron–positron collider. Though the linear collider envisaged by TESLA is yet ALICE’s dark side to be built (p9), its cavity technology is already established at the European X-Ray Free-Electron Laser at DESY (a cavity string for which graces the cover of this edition) and is being applied at similar broad-user-base facilities in the US and China. Accelerator technology developed for fundamental physics also continues to impact the medical arena. Normal-conducting RF technology developed for the proposed Compact Linear Collider at CERN is now being applied to a first-of-a-kind “FLASH-therapy” facility that uses electrons to destroy deep-seated tumours (p7), while proton beams are being used for novel non-invasive treatments of cardiac arrhythmias (p49). Meanwhile, GANIL’s innovative new SPIRAL2 linac will advance a wide range of applications in nuclear physics (p39). Detector technology also continues to offer unpredictable benefits – a powerful example being the potential for detectors developed to search for sterile neutrinos to replace increasingly outmoded traditional approaches to nuclear nonproliferation (p30).
    [Show full text]
  • The Variation of the Solar Neutrino Fluxes Over Time in the Homestake, GALLEX(GNO) and Super-Kamiokande Experiments
    The Variation of the Solar Neutrino Fluxes over Time in the Homestake, GALLEX(GNO) and Super-Kamiokande Experiments K. Sakurai1,3, H. J. Haubold2 and T. Shirai1 1. Institute of Physics, Kanagawa University, Yokohama 221-8686, Japan 2. Office for Outer Space Affairs, United Nations, P. O. Box 500, A-1400, Vienna, Austria 3. Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan Abstract Using the records of the fluxes of solar neutrinos from the Homestake, GALLEX (GNO), and Super-Kamiokande experiments, their statistical analyses were performed to search for whether there existed a time variation of these fluxes. The results of the analysis for the three experiments indicate that these fluxes are varying quasi-biennially. This means that both efficiencies of the initial p-p and the PP-III reactions of the proton-proton chain are varying quasi-biennially together with a period of about 26 months. Since this time variation prospectively generated by these two reactions strongly suggests that the efficiency of the proton-proton chain as the main energy source of the Sun has a tendency to vary quasi-biennially due to some chaotic or non-linear process taking place inside the gravitationally stabilized solar fusion reactor. It should be, however, remarked that, at the present moment, we have no theoretical reasoning to resolve this mysterious result generally referred to as the quasi-biennial periodicity in the time variation of the fluxes of solar neutrinos. There is an urgent need to search for the reason why such a quasi-biennial periodicity is caused through some physical process as related to nuclear fusion deep inside the Sun.
    [Show full text]
  • Sudbury Neutrino Observatory Energy Calibration Using Gamma-Ray Sources By
    AN ABSTRACT OF THE DISSERTATION OF Michael Raymond Dragowsky for the degree of Doctor of Philosophy in Physics presented on 28 June 1999. Title: Sudbury Neutrino Observatory Energy Calibration using Gamma-Ray Sources. Redacted for privacy Abstract approved: _____ Kenneth S. Krane Redacted for privacy Eric B. Norman The long-standing Solar Neutrino Problem describes the disagreement between the observed and predicted solar neutrino flux. An extension to the electroweak model of particle physics predicts that neutrino flavor may change as a neutrino propagates from its source, and may account for the Solar Neutrino Problem. The Sudbury Neutrino Observatory will make two measurements of the 8B neutrino flux from the Sun. The first is independent of neutrino flavor, allowing for the first time a definitive measurement of the total 8B neutrino flux. The second measurement will be sensitive only to the 8B electron-neutrino flux. Comparison of these two measurements will allow a determination of whether the electron-neutrinos produced in the Sun change their flavor as they propagate to the Earth. Precise energy calibration is required to ensure accurate measurements. Two energy calibration sources will be described that rely on the coincident emission of a {3 particle and a 'Y-ray. The sources make use of 4 4 16N and 2 Na {3-decay. In addition to energy calibration, the 2 Na source provides an assessment of the rate of photodissociation of deuterium that is important in understanding backgrounds for both solar neutrino measurements. Sudbury
    [Show full text]
  • Solar Neutrinos
    Neutrino physics: Theory and experiment (SS2021) Solar neutrinos Teresa Marrod´anUndagoitia Max-Planck-Institut f¨urKernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany E-mail: [email protected] Contents 1 Lecture 3: Solar neutrinos2 1.1 Standard solar model.............................2 1.2 Neutrino production.............................3 1.3 Radiochemical experiments..........................5 1.4 Real time experiments............................8 1.5 Reminder: Neutrino oscillations in matter................. 14 1.6 Summary................................... 15 1 LECTURE 3: SOLAR NEUTRINOS 1. Lecture 3: Solar neutrinos This lecture discusses the emission of neutrinos by the Sun and some of the measurements performed so far. Solar neutrinos help to understand better the Sun itself but they also provide an intense source of ν's to investigate their properties. Indeed solar neutrinos have played a key role to understand neutrino oscillations. 1.1. Standard solar model Our Sun is in the most stable and long evolutionary phase of a star where hydrogen is consumed in its core (in the main sequence). A common tool to learn about the interior of the Sun is helioseismology, a methodology which employs oscillation frequencies (many modes, more than 1015) to determine the internal structure of the Sun, specifically: • density profiles • constraints on solar composition • the extension of the convective envelope ... The standard solar model (SSM) results from all these observations. Nuclear reactions in the Sun: Typically the reaction in the Sun are of the type: T1 + T2 ! T3 + T4 or T1 + T2 ! T3 + T4 + T5: (1) The temperature in the solar core is ∼ (10 -15)×106 eV corresponding to keV energies. The Coulomb barriers for nuclear reactions are however of ∼ MeV energies.
    [Show full text]
  • Neutrino Sources and Detectors
    Neutrino Detectors and Sources November 25, 2020 Contents 1 Introduction 3 2 Methods of Neutrino Detection 3 2.1 TheRadiochemicalTechnique . .... 3 2.1.1 TheHomestakeExperiment . 4 2.1.2 SAGE,GallexandGNO .............................. 4 2.1.3 Whatyouneedtoknow .............................. 4 2.2 WaterCerenkovTechnique. ..... 4 2.2.1 SuperKamiokande.................................. 7 2.2.2 SudburyNeutrinoObservatory,SNO . .... 7 2.2.3 Whatyouneedtoknow .............................. 8 2.3 Scintillation Technique . .. 8 2.3.1 KamLAND ..................................... 9 2.3.2 Whatyouneedtoknow .............................. 9 2.4 TrackingandHybridDetectors . ..... 9 2.4.1 Whatyouneedtoknow .............................. 12 3 Natural Neutrino Sources 12 3.1 RelicNeutrinos ...................................... 12 3.1.1 Whatyouneedtoknow .............................. 13 3.2 SolarNeutrinos ..................................... .. 13 3.2.1 The Solar Neutrino Detectors and the Solar Neutrino Problem . ....... 15 3.2.2 Whatyouneedtoknow .............................. 16 3.3 NeutrinosFromSupernovae . ..... 17 3.3.1 The evolution of massive stars . .. 18 3.3.2 CoreCollapse.................................... 19 3.3.3 SupernovaSN1987A ................................ 20 3.3.4 Whatyouneedtoknow .............................. 21 3.4 Other Astrophysical Neutrinos Sources . ......... 21 3.4.1 Neutrinos produced in acceleration processes . ....... 22 3.4.2 ANTARES,NESTORandBaikal . .. .. 23 3.4.3 ICECUBE...................................... 24
    [Show full text]
  • Evidence for the Existence of Neutrinos and Neutrino Mass
    Amelia Perry Advanced Particle Physics Techniques Friday 5th December 2008 The existence of neutrinos from theory of β decay Theoretical ideas: Neutrino oscillation Cerenkov radiation Experimental evidence Homestake experiment Super Kamiokande Solar neutrinos Neutrinos formed in supernovae Reactor neutrinos Atmospheric neutrinos Geological Neutrinos Cosmic background neutrinos Existence of neutrino first predicted by Pauli in 1931 when looking at plots for beta decay There are issues with the plots which break conservation laws: Expect a unique value for energy released in beta decay, instead see a range of energies In the absence of a neutrino, angular momentum is not conserved Also, images from cloud chambers showed that linear momentum was not conserved Therefore the properties of the neutrino were chosen to remove these problems It was initially suggested that the neutrino has zero mass (But later found to be incorrect) It can be seen from these results that amendments needed to be made to theory The Homestake experiment was performed in the late 1960s by Ray Davis and John N. Bahcall and used a detector filled with a chlorine-based compound which measured solar neutrino flux 37 37 - νe + Cl Ar + e The detector was situated in the Homestake Gold Mine in South Dakota It could be seen that there was a discrepancy in the number of neutrinos detected (about ⅓ to ½) compared to that predicted by the solar model The suggested theory to solve this problem, known as the solar neutrino problem, was the idea of neutrino
    [Show full text]
  • The Search for 0Νββ Decay in 130Te with CUORE-0 by Jonathan
    The Search for 0νββ Decay in 130Te with CUORE-0 by Jonathan Loren Ouellet A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Yury Kolomensky, Chair Professor Gabriel Orebi Gann Professor Eric B. Norman Spring 2015 The Search for 0νββ Decay in 130Te with CUORE-0 Copyright 2015 by Jonathan Loren Ouellet 1 Abstract The Search for 0νββ Decay in 130Te with CUORE-0 by Jonathan Loren Ouellet Doctor of Philosophy in Physics University of California, Berkeley Professor Yury Kolomensky, Chair This thesis describes the design, operation and results of an experimental search for neutri- noless double beta decay (0νββ) of 130Te using the CUORE-0 detector. The discovery of 0νββ would have profound implications for particle physics and our un- derstanding of the Universe. Its discovery would demonstrate the violation of lepton number and imply that neutrinos are Majorana fermions and therefore their own anti-particles. Com- bined with other experimental results, the discovery of 0νββ could also have implications for understanding the absolute neutrino mass scale as well as the presently unknown neutrino mass hierarchy. The CUORE experiment is a ton-scale search for 0νββ in 130Te expected to begin oper- ation in late 2015. The first stage of this experiment is a smaller 39-kg active-mass detector called CUORE-0. This detector contains 11 kg of 130Te and operates in the Laboratori Nazionali del Gran Sasso lab in Italy from 2013 { 2015. nat The results presented here are based on a TeO2 exposure of 35.2 kg·yr, or 9.8 kg·yr exposure of 130Te collected between 2013 { 2015.
    [Show full text]
  • Dark Matter with Km3net
    Dark Matter with KM3NeT Camiel Pieterse Supervisor: Prof. dr. W.J.P. Beenakker Department of High Energy Physics Radboud University Nijmegen November 2018 Contents 1 Introduction 2 2 Dark Matter 4 2.1 Evidence for Dark Matter.................................4 2.2 Dark Matter Solutions...................................7 2.2.1 Modified Newtonian Dynamics..........................7 2.2.2 MACHOs......................................8 2.2.3 Particle Dark Matter................................8 2.3 Methods of Dark Matter Detection............................9 2.4 Dark Matter Capture................................... 10 3 Neutrino Physics 15 3.1 See-saw mechanism..................................... 18 3.2 Neutrino Experiments................................... 19 3.2.1 Solar neutrino experiments............................ 20 3.2.2 Atmospheric neutrino experiments........................ 20 4 KM3NeT detector and simulation software 22 4.1 Layout and setup...................................... 23 4.2 Simulation software..................................... 26 4.3 Modifications........................................ 28 5 Results 31 5.1 Neutrino Flux........................................ 31 5.2 Angular distribution.................................... 34 5.3 Limits for KM3NeT.................................... 39 5.4 Limits for the ORCA Modifications............................ 51 6 Conclusion and Outlook 53 Appendices 57 A 58 A.1 Energy Distribution.................................... 58 A.2 Angular Distributions..................................
    [Show full text]