Digging for Gold: Long Baseline Experiment in the

Brian Rebel February 8, 2012 1

Tuesday, February 14, 2012 LBNE Nuggets

• LBNE is the next generation of neutrino experiment after NOνA • The processes LBNE will look for are all really rare, like gold nuggets • Need to have a grand scale to even begin: massive detectors, long distances for the to travel, intense beams • The knowledge gained will be revolutionary - maybe even answer the question as to why we are here 2

Tuesday, February 14, 2012 Outline

• What are neutrinos and why study them • How to detect neutrinos • Long Baseline Neutrino Experiment (LBNE) • Summary

3

Tuesday, February 14, 2012 !"#$"%&'()*%+'"#%'#,-)%&+"'.

F<1%#+.#1#"-)%&+"'D F<-&-#('#"-)%&+"'.#*'A-#;&'AD ,-)%&+"'.# 1&-# J&'("7%'<"!. O"#<4:!%54# /G+=#G1"= '"-# ';# %<-# 81.+*# Y8)+6(+"=# 86'*:.Z# ';# %<-# HI2-&39<-&-# +"# %<-# )"+2-&.-# %<-&-# 1&-# JKLL# )"+2-&.-7# # R<-3# 1&-# %35+*1663# (-"'%-(# 83# "-)%&+"'.# 5-&# *)8+*# *-"%+A-%-&# 6-;%# '2-&# ;&'A# %<-# %<-##c&--:#6-%%-&#") BνC7#F+%<#') %!%:<#4:. G+=#G1"= :;"#$% 1"(#'"63#1#<4'D. 7"554#%<-3#*1"# 51..# %<&')=<# =&-1%# 1A')"%.# ';# A1%-&+16# Galaxy NGC 4526 B.)*<# 1.# %<-# -"%+&-# I1&%%35-# /0%1&. "-)%&+"'#+.#%<-#51&%"-&#';#%<-#;1A+6+1&#-6-*%&'"7 HM')=<63#NLL#8+66+'"#"-)%&+"'.#5&'()*-(#+"#%<-#*'&-# ';# %<-# 0)"# .%&-1A# %<&')=<# 3')&# ;+"=-&"1+6# -2-&3# .-*'"(4#(13#'&#"+=<% !#<+.%'&3#';#%<-#"-)%&+"' /R<-#!%A'.5<-&- Origin Story HE+=<>I"-&=3# S'.A+*# &13.# ;&'A# .51*-# .%&+:-# /*+,C. $"# 1# 6-%%-&# %'# %<-# 1%%-"(--.# ';# 1# *'";-&-"*-4# 1%'A.# +"# %<-# 1%A'.5<-&-4# 5&'()*+"=# 1# .<'9-&# • The existence of the neutrino was first suggested by Wolfgang Pauli in I)!J$"'$. K"&!4 5&'5'.-(# 1# 6+=<%# -6-*%&+*19301663>"-)%&16# ';#51&%+*6-.4#+"*6)(+"=#"-)%&+"'.7##!55&'O+A1%-63# • Used to explain missing energy when neutrons convert (decay) to protons 51&%+*6-#+"#'&(-&#%'#-O561+"#%<-#A+..+"=#-"-&=and3 electrons#+"#*-&%1+"# NL# 1%A'.5<-&+*# "-)%&+"'.# # 9+66# 51..# %<&')=<# • Pauli proposed the neutrino in a letter &1(+'1*%+2-#(-*13.7#BX1)6+ (+(#"'%#1%%-"(#%<-#to *a conference'"; -as his& -presence"* at- a # 3')&#%<)A8"1+6#-2-&3#.-*'"(7## ball in Zurich was “indispensable” X1)6+ 8-*1).-# <+.# 5&-.-"*-# 91.# Y+"(+.5-".186-Z#•1Enrico%# Fermi1# was8 the1 first66 person# +" to # call them neutrinos /G1"1"1. a)&+*<7C##E-#*166-(#%<+.#51&%+*6-#%<-#"-)%&'"7 H!"#12-&1=-#81"1"1#9+66#-A+%#&')=<63#N#A+66+'"#"-)%&+"'.# 4 / *+,-. $"# 1"# )";'&%)"1%-# <+.%'&+*16# 1**+(-Tuesday," February%4# 14, 2012V1A-.# S<1(9+*:# -1*<# (13# ()-# %'# %<-# %+"3# 1A')"%# ';# "1%)&1663>'**)&&+"=# (+.*'2-&-(# 1# %'%1663# )"&-61%-(# "-)%&16# 51&%+*6-4# %1:-"# %'# 8-# %<- &1(+'1*%+2-#5'%1..+)A#+%#*'"%1+". "-)%&'"7##$%#91.#.''"#&-16+W-(#%<1%#+%#91.#A)*<#%''#<-123#%'#8-# %<-#51&%+*6-#%<1%#X1)6+ <1(#5&'5'.-(4#8)%#%<-#"1A-#.%)*:7 /,)*6-1&#M-1*%'&.## H!55&'O+A1%-63# T# A+66+'"# &-1*%'&# "-)%&+"'.# 9+66# /*+,L.M'#4:).N%#74 5)86+.<-(#<+.#%<-'&3#';#&1(+'1*%+2-# 51..# %<&')=<# 3')&# %<)A8"1+6# -2-&3# .-*'"(4# +;# (-*13.4#+"#9<+*<#<-#1('5%-(#X1)6+b. .)==-.%+'"#;'#6+=<%# 3')# 1&-# UT# :A# BNK# A+6-.C# ;&'A# 1# ")*6-1&# "-)%&16# 51&%+*6-7# # E-# ()88-(# +%# %<-# Y"-)%&+"'Z# B6+%%6-> &-1*%'&7 "-)%&16#'"-C4#%'#(+.%+"=)+.<#+%#;&'A#S<1(9+*:b.#"-)%&'"7 ^-&Ai /!**-6-&1%'&. / *+/0 ,-)%&+"'.# 9-&-# ;+&.%# (-%-*%-(# 83# 1)2"'. 1"(# 3%4'%5 1%# H?'&-#'"#%<+.#61%-& %<-#0121""1<#M+2-&#")*6-1'9-ȱ"%7#M-+"-. 91.#191&(-(#%<-# NPPT#,'8-6#X&+W-7 / *+0- !# .-*'"(# Y;612'&Z# ';# "-)%&+"'4# %<-# A)'">"-)%&+"'# 91.# (+.*'2-&-(7##$"#NP[[#6%)'.6%(%#7"'4#8%!.9:;2"#<= 1"(#>":?. E'9#1&-#"-)%&+"'.#(-%-*%-(D 9<%4'@%#$%# &-*-+2-(#%<-#,'8-6#X&+W-#;'&#%<+.#(+.*'2-&37 / *+AB 0)5-&"'21#NP[\1#91.#'8.-&2-(7##,-)%&+"'.#9-&-#(-%-*%-(# / 0+"*-#"-)%&+"'#+"%-&1*%+'".#1&-#2-&3#&1&-4#"-)%&+"'#(-%-*%'&.#1&-# +"#%9'#(-%-*%'&.4#'"-#+"#V151"#1"(#'"-#+"#@<+'7 %35+*1663#2-&3 !"#$%7 / *++A ,-)%&+"'# '.*+661%+'".# 9-&-# '8.-&2-(# +"# 1%A'.5<-&+*# / ,-)%&+"'.# *1""'%# 8-# '8.-&2-(# (+&-*%634#8)%# 9-# *1"# 6'':# ;'&# %<-# "-)%&+"'.#+"#%<-#0)5-&>]1A+':1"(- -O5-&+A-"%#+"#V151"7 *<1&=-(>51&%+*6-.#%<1%#%<-3#6-12-#8-<+"(7 / -CCC.!#%<+&(#Y;612'&Z#';#"-)%&+"'4#%<-#%1)>"-)%&+"'#91.#'8.-&2-(# / $"# ?$,@0# %<-.-# *<1&=-(>51&%+*6-.# 1&-# (-%-*%-(# 83# %<-# .A166# 1%#^-&A+618 +"#%<-#_@,`R#-O5-&+A-"%7# 1A')"%# ';# 6+=<%# %<1%# %<-3# 5&'()*-(# +"# 1# .5-*+16# %35-# ';# 561.%+*# B.*+"%+661%'&C7 / -CC- ,'8-6# X&+W-# 191&(-(# %'# 3"D. E"F45. >#G 1"(# 8"5"<)5;4. H)5;4@" ;'&#%<-#(-%-*%+'"#';#.'61"(#1%A'.5<-&+*#"-)%&+"'.7 / ,-)%&+"'# (-%-*%'&.# 1&-# %35+*1663# 6'*1%-(# &'(%#$#)&'(4# %'# ;+6%-&# ')%# %<-# "1%)&1663>'**)&&+"=# *'.A+*>&13.# *'A+"=# ;&'A# .51*-# # B'&# / -CC/ ?$,@0#-O5-&+A-"%#8-=+".#%'#*'66-*%#(1%17 ;&'A#%<-#1%A'.5<-&-DDC7 !"#$%& '()*!+,-*"-.)/012*#)302,-1*

$4/,55+0,1What-*% is )a Neutrino?+2/( • Neutrinos make up 1/4 of the "-known* 2)/) elementary-0* ;)+24 *particles0()* 40 39;* 1>* -)302,-14@* 0()* •48Neutrinos+55)40* 1have>* + no55* Bcharge-1A -* )5)8)-0+2;* 7+20,/5)4@* $%&'?&94@-98& #@'!%&',#2495 (/5&;' (+4* <)/18)* 1-)* 1>* 0()* 8140* ,87120+-0* "%&-&'!%&'79-'<&!&0!#-'/='3#09!&4> •01Neutrinos7,/4*,-* 8have19 )very2-* little(,:( mass*)-)2:;*7(;4,/4? • Neutrinos tend to ignore other forms of matter • Can travel 1 light year in lead on average before' interacting()* !"#$ - %5.9*) 67)2,8)-0* ,4* 9)4,:-)9*01* trillion miles 4039;* 0()* 2)/)-05;* 1<4)2=)9* 7()-18)-1-*1>*-)302,-1*14/,55+0,1-4*,-* • Neutrinos are everywhere! They play many roles9 )in0 +the,5? *universe'1*9+0 )so@ *8140*1>*A(+0*A)*B-1A* we want to understand+<130*- how)302 they,-1* 14/,55+0,1-4*/18)4*>218* behave )67)2,8)-04*0(+0*2)5;*1-*34*<),-:*+<5)* 5 01* A12B* 130* (1A* 0()* -)302,-14* A)2)* Tuesday, February 14, 2012 72193/)9?

C12* !"#$%* A)* A,55* 72193/)* 132* 1A-* -)302,-14@* +-9* A)* (+=)* /1-4023/0)9* !"# 9)0)/0124@*41*0(+0*A)*/+-*8+B)*+* D<)>12)* +-9* +>0)2E* /187+2,41-?* '(,4* +551A4* 34* 01* 8+B)* +* 812)* +//32+0)* 4039;*1>*-)302,-1*14/,55+0,1-4?*

'()*!"#$%*)67)2,8)-0*A,55*40+20*0+B,-:*9+0+*)+25;*-)60* ;)+2?**#)302,-14*A,55*<)*72193/)9*()2)*+0*C)28,5+<@*+-9* 9,2)/0)9* 01A+294* %139+- F-9)2:213-9* G+<12+012;* ,-* !,--)410+?*H)*(+=)*+*D#)+2E*I)0)/012*()2)*,-*C)28,5+<@* +-9*+*DC+2E*I)0)/012*+0*%139+-?*J;*/187+2,-:*A(+0*A)* 1<4)2=)* ()2)* A,0(* A(+0* A)* 1<4)2=)* 0()2)* A)* A,55* <)* $%&'()*+,',&-./0&'12/34/56'%&-&'/5'7&-8/39:;' +<5)* 01* 8+B)* 72)/,4,1-* 8)+432)8)-04* 1>* 0()* "%&-&'#2-'*&9-'<&!&0!#-'/='3#09!&4>'' 7()-18)-+*1>*-)302,-1*14/,55+0,1-4? !"#$"%&'()*%+'"#%'#,-)!%&"+"#$'".%&'()*%+'"#%'#,-)%&+"'.

F<1%#+.#1#"-)%&+"'D Where Do Neutrinos F<-&-#('#"-)%&+"'.#*'A-#;&'AD F<1%#+.#1#"-)%&+"'D F<-&-#('#"-)%&+"'.#*'A-#;&'AD Come From? ,-)%&+"'.# 1&-# J&'("7%'<"!. O"#<4:!%54# Big Bang/ - Gneutrinos+=#G1 from"= the start of time ,-)%&+"'.# 1&-# J&'("7%'<"!. O"#<4:!%54# /G+=#G1"= are everywhere in the universe - about 400 '"-# ';# %<-# 81.+*# Y8)+6(+"=# 86'*:.Z# ';# %<-# in the tip of yourHI 2thumb-&3 right9< now-&-# +"# %<-# )"+2-&.-# %<-&-# 1&-# JKLL# '"-# ';# %<-# 81.+*# Y8)+6(+"=# 86'*:.Z# ';# %<-# HI2)-"&3+29-&<.--&7#-##R<+"-#3#%1<&-##%3)5"+*+21-663&#.(--#"%'<%--(&-# 8#31# &-# JKLL# "-)%&+"'.# 5-&# *)8+*# *-"%+A-%-&# 6-;%# '2-&# ;&'A# %<-# Important to formation of galaxies in early )"+2-&.-7# # R<-3# 1&-# %35+*1663# (-"'%-(# 83# "-)%%<&-+"##'c.&#-5--:#&6#-*%%)-8&#+"*#)*B-ν"C7%#+FA+-%<%-#'&#)6-%;!%%#:'<2#4-:&.# ;&'A# %<-# universe G+=#G1"= %<-##c&--:#6-%%-&#") BνC7#F+%<#') %!%:<#4:. G+=#:G;1""#=$% 1"(#'"63#1#<4'D. 7"554#%<-3#*1"# :;"#$% 1"(#'"63#1#<4'D. 7"554#%<-3#*1"# 51..# %<&')=<# =&-1%# 1A')"%.# ';# A1%-&+16# Galaxy NGC 4526 51..# %<&')=<# =&-1%# 1A')"%.# ';# A1%-&+16# Galaxy NBG.C) 4*5<2#61.# %<-# -"%+&-# I1&%%35-# /0%1&. ,-)%&+"'.#*'A-#+"#,.J!"F)#54#'&+-%+-.7#I1*<#;612'&#+.#&-61%-(#%'#1# "-)%&+"'#+.#%<-#51&%"-&#';#%<-#;1A+6+1&#-6-*%&'"7 HM')=<63#NLL#8+66+'"#"-)%&+"'.#5&'()*-(#+"#%<-#*'&-# *'&&-.5'"(+"=# *<1&=-(# 51&%+*6-7# # ^'&# -O1A56-4# %<-# -6-*%&'">%35-# /0%1&. ';# %<-# 0)"# .%&-1A# %<&')=<# 3')&# ;+"=-&"1+6# -2-&3# "-)%&+"'#+.#%<-#51&%"-&#';#%<-#;1A+6+1&#-6-*%&'"7 HM')=<63#NLL#8+66+'"#"-)%&+"'.#5&'()*-(#+"#%<-#*'&-# .-*'"(4#(13#'&#"+=<% ';# %<-# 0)"# .%&-1A# %<&')=<# 3')&# ;+"=-&"1+6# -2-&3# .-*'"(4#(13#'&#"!+=#<<% +.%'&3#';#%<-#"-)%&+"' /R<-#!%A'.5<-&- HE+=<>I"-&=3# S'.A+*# &13.# ;&'A# .51*-# .%&+:-# !#<+.%'&3#';#%<-#"-)%&+"' /*+,C. $"# 1#/6R-<%%--#&!# %'A#'%<.5-#<1-%&%--"(--.# ';# 1# *'";-&-"*-4# 1%'A.# +"# %<-# 1%A'.5<-&-4# 5&'()*+"=# 1# .<'9-&# I)!J$"'$. K"H&E!4+=5<&>'I5"'-.-&(=#3#1#S6'+=.'"A-)#%&.156#1*-# .%&+:-# ';#51&%+*6-.4#+"*6)(+"=#"-)%&+"'.7##!55&'O+A1%-63# 51&%+*6-#+"#'&(-&#%'#-O561+"#%<-#A+..+"=#-"-&=3#+"#*-&%1+"# /*+,C. $"# 1# 6-%%-&# %'# %<-# 1%%-"(--.# ';# 1# *'";-&-"*-4# 1%'A.# +"# %<-# 1%A'.5<-&-4# 5&'()*+"=# 1# .<'9-&# NL# 1%A'.5<-&+*# "-)%&+"'.# # 9+66# 51..# %<&')=<# &1(+'1*%+2-#(-*13.7#BX1)6+ (+(#"'%#1%%-"(#%<-#*'";-&-"*-# 3')&#%<)A8"1+6#-2-&3#.-*'"(7## I)!J$"'$. K"&!4 5&'5'.-(# 1# 6+=<%# -6-*%&+*1663>"-)%&16# ';#51&%+*6-.4#+"*6)(+"=#"-)%&+"'.7##!55&'O+A1%-63# 8-*1).-# <+.# 5&-.-"*-# 91.# Y+"(+.5-".186-Z# 1%# 1# 8166# +"# X1)6+ /G1"1"1. 51&%+*6-#+"#'&(-&#%'#-O561+"#%<-#A+..+"=#-"-&=3#+"#*-&%1+"# NL# 1%A'.5<-&+*# "-)%&+"'.# # 9+66# 51..# %<&')=<# a)&+*<7C##E-#*166-(#%<+.#51&%+*6-#%<-#"-)%&'"7 H!"#12-&1=-#81"1"1#9+66#-A+%#&')=<63#N#A+66+'"#"-)%&+"'.# &1(+'1*%+2-#(-*13.7#BX1)6+ (+(#"'%#1%%-"(#%<-#*'";-&-"*-# 3')&#%<)A8"1+6#-2-&3#.-*'"(7## / *+,-. $"# 1"# )";'&%)"1%-# <+.%'&+*16# 1**+(-"%4# V1A-.# S<1(9+*:# -1*<# (13# ()-# %'# %<-# %+"3# 1A')"%# ';# "1%)&1663>'**)&&+"=# X1)6+ 8-*1).-# <+.# 5&-.-"*-# 91.# Y+"(+.5-".186-Z# 1%# 1# 8166# +"# /G1"1"1(.+.*'2-&-(# 1# %'%1663# )"&-61%-(# "-)%&16# 51&%+*6-4# %1:-"# %'# 8-# %<- &1(+'1*%+2-#5'%1..+)A#+%#*'"%1+". a)&+*<7C##E-#*166-(#%<+.#51&%+*6-#%<-#"-)%&'"7 "-)%&'"7##$%#91.#.''"#&-16+W-(#%<1%#+%#91.#A)*<#%''#<-123#%'#8-# H!"#12-&1=-#81"1"1#9+66#-A+%#&')=<63#N#A+66+'"#"-)%&+"'.# /,)*6-1&#M-1*%'&.## / *+,-. $"# 1"# )";'&%)"1%-# <+.%'&+*16# 1**+(-"%4# V1A-.# S<1(9+*:# -1*<#%(<1-3#5#1(&)%+-*6#-%#'%<#1%<%#-X#1%)+6"+ 3<#11(A#5&'')5"'%.#-'(;4##8")1%%#)%<&-1#6"631>A'*-*#.)%&)&*+:"7=# (+.*'2-&-(# 1# %'%1663# )"&-61%-(# "-)%&16# 51&%+*6-4# %1:-"# %'# 8-# %<- H!55&'O+A1%-63# T# A+66+'"# &-1*%'&# "-)%&+"'.# 9+66# &1(+'/1**+%,+2L-.#M5''#%41:.)..+N)%A##7+%#4*5')"8%61+.+<"-.(#<+.#%<-'&3#';#&1(+'1*%+2-# 51..# %<&')=<# 3')&# %<)A8"1+6# -2-&3# .-*'"(4# +;# "-)%&'"7##$%#91.#.''"#&-16+W-(#%<1%#+%#91.#A)*<#%''#<-123#%'#8-# (-*13.4#+"#9 &-1*%'&7 "-)%&16#'"-C4#%'H#(!+.5%5+"&=')O++.A<#1+%%#-;&6'3A# T#S# NPPT#,'8-6#X&+W&--71*%'&7 "-)%&16#'"-C4#%'#(+.%+"=)+.<#+%#;&'A#S<1(9+*:b.#"-)%&'"7 ^-&Ai /!**/-*6-+&01-%'&!.# .-*'"(# Y;612'&Z# ';# "-)%&+"'4# %<-# A)'">"-)%&+"'# 91.# / *+/0 ,-)%&+"'.# 9-&-# ;+&.%# (-%-*%-(# 83# 1)2"'. 1"(# 3%4'%5 1%# (+.*'2-&-(7##$"#NP[[#6%)'.6%(%#7"'4#8%!.9:;2"#<= 1"(#>":?. H?'&-#'"#%<+.#61%-& E'9#1&-#"-)%&+"'.#(-%-*%-(D %<-#0121""1<#M+2-&#")*6-1'9-ȱ"%7#M-+"-. 91.#191&(-(#%<-# 9<%4'@%#$%# &-*-+2-(#%<-#,'8-6#X&+W-#;'&#%<+.#(+.*'2-&37 NPPT#,'8-6#X&+W-7 / *+AB 0)5-&"'21#NP[\1#91.#'8.-&2-(7##,-)%&+"'.#9-&-#(-%-*%-(# / 0+"*-#"-)%&+"'#+"%-&1*%+'".#1&-#2-&3#&1&-4#"-)%&+"'#(-%-*%'&.#1&-# %35+*1663#2-&3 !"#$%7 / *+0- !# .-*'"(# Y;612'&Z# ';# "-)%&+"'4# %<-# A)'">"-)%&+"'# 91.# +"#%9'#(-%-*%'&.4#'"-#+"#V151"#1"(#'"-#+"#@<+'7 / ,-)%&+"'.# *1""'%# 8-# '8.-&2-(# (+&-*%634#8)%# 9-# *1"# 6'':# ;'&# %<-# (+.*'2-&-(7##$"#NP[[#6%)'.6%(%#7"'4#8%!.9:;2"#<= 1"(#>":?. / *++A ,-)%&+"'# '.*+661%+'".# 9-&-# '8.-&2-(# +"# 1%A'.5<-&+*# "-)%E&+"''.9#+"##%1<-�-)#5"-&>-]1)A%+'&:+1""('-.-#O(5--&+A%-"*%#+%"-#V1(5D1"7 *<1&=-(>51&%+*6-.#%<1%#%<-3#6-12-#8-<+"(7 9<%4'@%#$%# &-*-+2-(#%<-#,'8-6#X&+W-#;'&#%<+.#(+.*'2-&37 / $"# ?$,@0# %<-.-# *<1&=-(>51&%+*6-.# 1&-# (-%-*%-(# 83# %<-# .A166# / 0+"*-/#-"C-C)%C&.+!"#'%#<++"&(%-#Y&;161*2%'+'&Z"#.'#;#1"&--)#%2&-+"&'34##&%<1-&-#%41#)">-")-%)&%+&"+"''##(9-1%.-#*'%8'.&-.-&(-## / *+AB 0)5-&"'21#NP[\1#91.#'8.-&2-(7##,-)%&+"'.#9-&-#(-%-*%-(# 1%#^-&A+618 +"#%<-#_@,`R#-O5-&+A-"%7# 1A')"%# ';# 6+=<%# %<1%# %<-3# 5&'()*-(# +"# 1# .5-*+16# %35-# ';# 561.%+*# +"#%9'#(-%-*%'&.4#'"-#+"#V151"#1"(#'"-#+"#@<+'7 %35+*1663#2-&3 !"#$%7 B.*+"%+661%'&C7 / ,-)%/&+"-'C.C#-*1,"'"8'-%6## 8X&-+W#-'#81.9-1&2&(--((##(%'+&#-3*%"6D3.4#E8")F%#459. ->##G*11""#(6#'8':"#5;"'<&)#5%;<-4.# / *++A ,-)%&+"'# '.*+661%+'".# 9-&-# '8.-&2-(# +"# 1%A'.5<-&+*# H)5;4@" ;'&#%<-#(-%-*%+'"#';#.'61"(#1%A'.5<-&+*#"-)%&+"'.7 / ,-)%&+"'# (-%-*%'&.# 1&-# %35+*1663# 6'*1%-(# &'(%#$#)&'(4# %'# ;+6%-&# *<1&=-(>51&%+*6-.#%<1%#%<-3#6-12-#8-<+"(7 ')%# %<-# "1%)&1663>'**)&&+"=# *'.A+*>&13.# *'A+"=# ;&'A# .51*-# # B'&# "-)%&+"'.#+"#%<-#0)5-&>]1A+':1"(- -O5-&+A-"%#+"#V151"7 / -CC/ ?$,@0#-O5-&+A-"%#8-=+".#%'#*'66-*%#(1%17 ;&'A#%<-#1%A'.5<-&-DDC7 / -CCC.!#%<+&(#Y;612'&Z#';#"-)%&+"'4#%<-#%1)>"-)%&+"'#91.#'8.-&2-(# / $"# ?$,@0# %<-.-# *<1&=-(>51&%+*6-.# 1&-# (-%-*%-(# 83# %<-# .A166# 1%#^-&A+618 +"#%<-#_@,`R#-O5-&+A-"%7# 1A')"%# ';# 6+=<%# %<1%# %<-3# 5&'()*-(# +"# 1# .5-*+16# %35-# ';# 561.%+*# B.*+"%+661%'&C7 / -CC- ,'8-6# X&+W-# 191&(-(# %'# 3"D. E"F45. >#G 1"(# 8"5"<)5;4. H)5;4@" ;'&#%<-#(-%-*%+'"#';#.'61"(#1%A'.5<-&+*#"-)%&+"'.7 / ,-)%&+"'# (-%-*%'&.# 1&-# %35+*1663# 6'*1%-(# &'(%#$#)&'(4# %'# ;+6%-&# ')%# %<-# "1%)&1663>'**)&&+"=# *'.A+*>&13.# *'A+"=# ;&'A# .51*-# # B'&# / -CC/ ?$,@0#-O5-&+A-"%#8-=+".#%'#*'66-*%#(1%17 ;&'A#%<-#1%A'.5<-&-DDC7 !"#$"%&'()*%+'"#%'#,-)%&+"'. !"#$"%&'()*%+'"#%'#,-)%&+"'.

F<1%#+.#1#"-)%&+"'D F<-&-#(F'<#1"%#-+.#)1#%"&-+")%'&+".'#D*'A-#;&'AD F<-&-#('#"-)%&+"'.#*'A-#;&'AD ,-)%&+"'.# 1&-# J&'("7%'<"!. O"#<4:!%54# /G+=#G1"= ,-)%&+"'.# 1&-# J&'("7%'<"!. O"#<4:!%54# /G+=#G1"= '"-# ';# %<-# 81.+*# Y8)+6(+"=# 86'*:.Z# ';# %<-# HI2-&39<-&-# +"# %<-# )"+2-&.-# %<-&-# 1&-# JKLL# '"-# ';# %<-# 81.+*# Y8)+6(+"=# 86'*:.Z# ';# %<-# )"+2-&.-7# # R<-3# 1&-# %35+*1663# (-"'%-(# 83# "-)%&+"'.# 5-&# *)8+*# *-"%+A-%-&# 6-;%# '2-&# ;&'A# %<-# HI2-&39<-&-# +"%<#-##%c<&---#:#6)-%"%-+&2#"-)&B.ν-C7##F%+%<<#-'&)-%#!%1:<&#-4:#. JKLL# G+=#G1"= )"+2-&.-7# # R<-3# 1&-# %35+*1663# (-"'%-(# 83# "-)%&+"'.# 5-&# *:);8"+#*$#%*1-""(#%'+"A63#-1%#-<4&'#D6.-7;"%5#5'4#2%<--&3##*;1&"'#A# %<-# %<-##c&--:#6-%%-&#") B C7#F+%<#') %!%:<#4:. 51..# %<&')=<# =&-1%# 1A')"%.# ';# A1%-&+16# Galaxy NGC 4526 ν G+=#G1"= B.)*<# 1.# %<-# -"%+&-# I1&%%*3651-#..# ';# /0%1&. (%<%:<7# R<')=<# -6).+2-4# %<-3# 1&- "-)%&+"'#+.#%<-#51&%"-&#';#%<-#;1A+6+1&#-6-*%&'"7 HM')=<63#NLL#8+66+'"#"-)%&+"'.#5&'()*-(#+"#%<-#*'&-# .)5-&"'21-#+.#-A+%%-(#+"#%<-#;'&A#';#"-)Where%&+"'. Do Neutrinos';# %<- # 0)"# .%&-1A# %<&')=<# 3')&# ;+"=-&"1+6# -2-&3# "@&'("'< +"#"1%)&-7# Come From?.-*'"(4#(13#'&#"+=<% Supernova 1994D ,-)%&+"'.#*'A-#+"#,.J!"F)#54#'&+-%+-.7#I1*<#;612'&#+.#&-61%-(#%'#1# !#<+.%'&3#';#%<-#"-)%&+"' /R<-#!%A'.5<-&- *'&&-.5'"(+"=# *<1&=-(# 51&%+*6-7# # ^'&# -O1A56-4# %<-# -6-*%&'">%35-# /0%1&. HE+=<>I"-&=3# S'.A+*# &13.# ;&'A# .51*-# .%&+:-# "-)%&+"'#+.#%<-#51&%"-&#';#%<-#;1A+6+1&#-6-*%&'"7 HM')=<63#NLL#8+6/6+*'+",#C". -$")# %1&#+6"-%'%-.&##5%'&#'%(<-)# *1-%%-("#(+-"-#.%#<'-;##1*#'*&'-";#-&-"*-4# 1%'A.# +"# %<-# 1%A'.5<-&-4# 5&'()*+"=# 1# .<'9-&# I)!J$"'$. K"&!4 5&'5'.-(# 1# 6+=<%# -6-*%&+*1663>"-)%&16# ';#51&%+*6-.4#+"*6)(+"=#"-)%&+"'.7##!55&'O+A1%-63# ';# %<-# 0)"# .%&-15A1&%#+*%6-<#&+"'#')&=(-<&##%'3#-'O)56&1#+";#+%"<-=#A-&+.".+1"=+6##-"--2&=-3&#+3"##*-&%1+"# NL# 1%A'.5<-&+*# "-)%&+"'.# # 9+66# 51..# %<&')=<# .-*'"(4#(13#'&#"+=&1<(+%'1*%+2-#(-*13.7#BX1)6+ (+(#"'%#1%%-"(#%<-#*'";-&-"*-# 3')&#%<)A8"1+6#-2-&3#.-*'"(7## Stars - 100 billion neutrinosX1)6+ produced in The atmosphere - high energy 8-*1).-# <+.# 5&-.-"*-# 91.# Y+"(+.5-".186-Z# 1%# 1# 81fusion66# + "reactions# in the go through your /Gcosmic1" particles1"1. strike molecules in thumbnail every second, day or night the atmosphere creating neutrinos. a)&+*<7C##E-#*166-(#%<+.#51&%+*6-#%<-#"-)%&'"7 10 atmospheric neutrinos pass /R<-#!%A'.5<-&- Neutrinos offer a way to see inside of the throughH! "your#1 thumbnail2-&1 each=- second#81"1"1#9+66#-A+%#&')=<63#N#A+66+'"#"-)%&+"'.# !#<+.%'&3#';#%<-#"-)%&+"' / *+,-. $"# 1"# )";'&%)"1%-# <+.%'&+*16# 1**+(-"%4# V1A-sun. and# S understand<1(9 how+* it: shines# 7 Tuesday, February 14, 2012 -1*<# (13# ()-# %'# %<-# %+"3# 1A')"%# ';# "1%)&1663>'**)&&+"=# (+.H*'E2-+&=-<(#>1I# "%'-%1&66=3#3)#"&S-61'%.-(A# "+-*)#%&&116#351.&#%+*;6-&4'# %A1:#-".# 5%'1# 8*--# #%<-.%&+:-# &1(+'1*%+2-#5'%1..+)A#+%#*'"%1+". /*+,C. $"# 1# 6-%%-&# %'# %<-# 1%%-"(--.# ';# 1# *'";-&-"*-4# "-)1%%&''"A7##.$%##9+"1.##%.<''-"##&1-1%6A+W-'(#.%5<1<%#-+% -14.##5A&)'*<(#)%'*'#+<"-=12#31#%#'.#8<-'# 9-&# %<-#51&%+*6-#%<1%#X1)6+ <1(#5&'5'.-(4#8)%#%<-#"1A-#.%)*:7 /,)*6-1&#M-1*%'&.## I)!J$"'$. K"&!4 5&'5'.-(# 1# 6+=<%# -6-*%&+*1663>"-)%&16# ';#51&%+*6-.4#+"*6)(+"=#"-)%&+"'.7##!55&'O+A1%-63# H!55&'O+A1%-63# T# A+66+'"# &-1*%'&# "-)%&+"'.# 9+66# 51&%+*6-#+"#'&(-&#%'#-O561+"#%<-#A+..+"=#-"-&=3#+"#*-&%1+"# /*+N,LL.#M'1#%4:A).'N.%5#7<4-5&)+*86#+.<"--(#)<%+.&#+%"<-''.&3##'#;#9&1+(6+6'#1*5%+12-.#.# %<&')=<# 51..# %<&')=<# 3')&# %<)A8"1+6# -2-&3# .-*'"(4# +;# (-*13.4#+"#9<+*<#<-#1('5%-(#X1)6+b. .)==-.%+'"#;'#6+=<%# 3')# 1&-# UT# :A# BNK# A+6-.C# ;&'A# 1# ")*6-1&# &1(+'1*%+2-#(-*13.7#BX1)6+ (+(#"'%#1%%-"(#%<-#*'";-&-"*-# "-)3%'&1)6# &5#1%&<%+*)6-A7# 8# E"-1# +(6#)-882--(+%##.%<--*#'Y""-()%7&#+"#'Z# B6+%%6-> &-1*%'&7 X1)6+ "-)%&16#'"-C4#%'#(+.%+"=)+.<#+%#;&'A#S<1(9+*:b.#"-)%&'"7 ^-&Ai 8-*1).-# <+.# 5&-.-"*-# 91.# Y+"(+.5-".186-Z# 1%# 1# 8166# +"# /G1"1"1. /!**-6-&1%'&. / *+/0 ,-)%&+"'.# 9-&-# ;+&.%# (-%-*%-(# 83# 1)2"'. 1"(# 3%4'%5 1%# a)&+*<7C##E-#*166-(#%<+.#51&%+*6-#%<-#"-)%&'"7 H?'&-#'"#%<+.#61%-& H!"#12-&1=-#81"1%<"-#10#1921"+6"6#1-<#AM+2+%-#&#&"'))*6-=1<ʍ'#9N-#&#A561+6"6%+7'#M"-#+""--. )9%1&.+#1"9'1.&(#-(#%<-# / *+,-. $"# 1"# )";'&%)"1%-# <+.%'&+*16# 1**+(-"%4# V1A-.# S<1(9+*:# -1*<# (13# ()-# %'#NP%P'**)&&+"=# (+.*'2-&-(# 1# %'%1663# )"&-61%-(# "-)%&16# 51&%+*6-4# %1:-"# %'# 8-# %<- &1(+'1*%+2-#5'%1/..*++)0A- #!+%##.*-'*'""%(1# +Y";61.2'&Z# ';# "-)%&+"'4# %<-# A)'">"-)%&+"'# 91.# (+.*'2-&-(7##$"#NP[[#6%)'.6%(%#7"'4#8%!.9:;2"#<= 1"(#>":?. E'9#1&-#"-)%&+"'.#(-%-*%-(D "-)%&'"7##$%#91.#.''"#&-16+W-(#%<1%#+%#91.#A)*<#%''#<-123#%'#8-# 9<%4'@%#$%# &-*-+2-(#%<-#,'8-6#X&+W-#;'&#%<+.#(+.*'2-&37 %<-#51&%+*6-#%<1%#X1)6+ <1(#5&'5'.-(4#8)%#%<-#"1A-#.%)*:7 //*,+)AB*60-)15&-#&"M'-211#*NP%['\&1.#9##1.#'8.-&2-(7##,-)%&+"'.#9-&-#(-%-*%-(# / 0+"*-#"-)%&+"'#+"%-&1*%+'".#1&-#2-&3#&1&-4#"-)%&+"'#(-%-*%'&.#1&-# +"#%H9!'#5(-5%&-'*%O'&+.A4#'1"%--#+"63#V#15T1#"A#1"+(66#+''""-##+"&#@-<1+'*7%'&# "-)%&+"'.# 9+66# %35+*1663#2-&3 !"#$%7 / ,-)%&+"'.# *1""'%# 8-# '8.-&2-(# (+&-*%634#8)%# 9-# *1"# 6'':# ;'&# %<-# /*+,L.M'#4:).N%#74 5)86+.<-(#<+.#%<-'&3#';#&1(+'1*%+2-# / *++A ,-)%&+"'# '.*+661%+'".# 9-&-# '8.-&2-(# +"# 1%A'.5<-&+*# "-)5%1&+".'..##+"%#<%<&-'#0))=5-<&>#]31A'+)':&1#"%(<-)-AO5-8&+"A1-"+6%##+"-#2V1-5&13"7# .-*'"(4# +;# *<1&=-(>51&%+*6-.#%<1%#%<-3#6-12-#8-<+"(7 (-*13.4#+"#9<+*<#<-#1('5%-(#X1)6+b. .)==-.%+'"#;'#6+=<%# / -C3C'C.)!##%<1+&&(-#Y#;61U2'T&Z##':;#A"-)#%&B+"N'K4#%#<-A#%1+)6->".-C)#%&+";&''#9A1.##'81.#-&"2-)(#*6-1&# / $"# ?$,@0# %<-.-# *<1&=-(>51&%+*6-.# 1&-# (-%-*%-(# 83# %<-# .A166# "-)%&16# 51&%+*6-7# # E-# ()88-(# +%# %<-# Y"-)%&+"'Z# B6+%%6-> 1%#^-&A+618 +"#%<-#_@,`R#-O5-&+A-"%7# 1A')"%# ';# 6+=<%# %<1%# %<-3# 5&'()*-(# +"# 1# .5-*+16# %35-# ';# 561.%+*# &-1*%'&7 B.*+"%+661%'&C7 "-)%&16#'"-C4#%'#(+.%+"=)+.<#+%#;&'A#S<1(9+*:b.#"-)%&'"7 ^-&Ai / -CC- ,'8-6# X&+W-# 191&(-(# %'# 3"D. E"F45. >#G 1"(# 8"5"<)5;4. /!**-6-&1%'&. H)5;4@" ;'&#%<-#(-%-*%+'"#';#.'61"(#1%A'.5<-&+*#"-)%&+"'.7 / ,-)%&+"'# (-%-*%'&.# 1&-# %35+*1663# 6'*1%-(# &'(%#$#)&'(4# %'# ;+6%-&# ')%# %<-# "1%)&1663>'**)&&+"=# *'.A+*>&13.# *'A+"=# ;&'A# .51*-# # B'&# / *+/0 ,-)%&+"'.# 9-&-# ;+&.%# (-%-*%-(# 83# 1)2"'. 1"(# 3%4'%5 1%# / -CC/ ?$,@0#-O5-&+A-"%#8-=+".#%'#*'66-*%#(1%17 H?'&-#'"#%<+.#61%-& ;&'A#%<-#1%A'.5<-&-DDC7 %<-#0121""1<#M+2-&#")*6-1'9-ȱ"%7#M-+"-. 91.#191&(-(#%<-# NPPT#,'8-6#X&+W-7 / *+0- !# .-*'"(# Y;612'&Z# ';# "-)%&+"'4# %<-# A)'">"-)%&+"'# 91.# (+.*'2-&-(7##$"#NP[[#6%)'.6%(%#7"'4#8%!.9:;2"#<= 1"(#>":?. E'9#1&-#"-)%&+"'.#(-%-*%-(D 9<%4'@%#$%# &-*-+2-(#%<-#,'8-6#X&+W-#;'&#%<+.#(+.*'2-&37 / *+AB 0)5-&"'21#NP[\1#91.#'8.-&2-(7##,-)%&+"'.#9-&-#(-%-*%-(# / 0+"*-#"-)%&+"'#+"%-&1*%+'".#1&-#2-&3#&1&-4#"-)%&+"'#(-%-*%'&.#1&-# +"#%9'#(-%-*%'&.4#'"-#+"#V151"#1"(#'"-#+"#@<+'7 %35+*1663#2-&3 !"#$%7 / *++A ,-)%&+"'# '.*+661%+'".# 9-&-# '8.-&2-(# +"# 1%A'.5<-&+*# / ,-)%&+"'.# *1""'%# 8-# '8.-&2-(# (+&-*%634#8)%# 9-# *1"# 6'':# ;'&# %<-# "-)%&+"'.#+"#%<-#0)5-&>]1A+':1"(- -O5-&+A-"%#+"#V151"7 *<1&=-(>51&%+*6-.#%<1%#%<-3#6-12-#8-<+"(7 / -CCC.!#%<+&(#Y;612'&Z#';#"-)%&+"'4#%<-#%1)>"-)%&+"'#91.#'8.-&2-(# / $"# ?$,@0# %<-.-# *<1&=-(>51&%+*6-.# 1&-# (-%-*%-(# 83# %<-# .A166# 1%#^-&A+618 +"#%<-#_@,`R#-O5-&+A-"%7# 1A')"%# ';# 6+=<%# %<1%# %<-3# 5&'()*-(# +"# 1# .5-*+16# %35-# ';# 561.%+*# B.*+"%+661%'&C7 / -CC- ,'8-6# X&+W-# 191&(-(# %'# 3"D. E"F45. >#G 1"(# 8"5"<)5;4. H)5;4@" ;'&#%<-#(-%-*%+'"#';#.'61"(#1%A'.5<-&+*#"-)%&+"'.7 / ,-)%&+"'# (-%-*%'&.# 1&-# %35+*1663# 6'*1%-(# &'(%#$#)&'(4# %'# ;+6%-&# ')%# %<-# "1%)&1663>'**)&&+"=# *'.A+*>&13.# *'A+"=# ;&'A# .51*-# # B'&# / -CC/ ?$,@0#-O5-&+A-"%#8-=+".#%'#*'66-*%#(1%17 ;&'A#%<-#1%A'.5<-&-DDC7 Where Do Neutrinos Come From?

Nuclear Reactors - 400,000 Braidwood reactor neutrinos will pass through your thumbnail each second during this talk

Accelerators - Like those at Fermilab Produce about 5 neutrinos for each proton from the Main Injector that strikes the target 8

Tuesday, February 14, 2012 Where Do Neutrinos Come From?

Bananas - an average banana emits about 1 million neutrinos/day from the decays of the small number of naturally occurring radioactive potassium atoms in it

If you had a banana today, you are a neutrino source!

9

Tuesday, February 14, 2012 Finding Neutrinos

Reines • Cowan and Reines (1956) were the first to detect neutrinos using a nuclear reactor as the source • The experiment was called Poltergeist - a nod to the ghostly nature of the neutrino • The interaction they detected was Cowan + + Poltergeist νe + p → n + e • The e+ annihilated with an e- in the detector producing 2 photons • The neutron was captured and produced another photon 5 μs later

10

Tuesday, February 14, 2012 Detecting Neutrinos • Because neutrinos rarely interact with other forms of matter, neutrino detectors are typically very big • Modern detectors tend to have thousands of tons of mass • Play the statistics game - the chance of any one neutrino interacting is small, so use as many neutrinos as you can and give the neutrinos many chances to interact • Never actually see the neutrino, just the particles produced by the interaction • Just like mining - only get a few ounces of gold for every ton of rock 11

Tuesday, February 14, 2012 Neutrino Detectors

• Like any good sluice box, neutrino detectors have to separate gold (neutrinos) from common rock (backgrounds) Super-K • The current neutrino detectors at 50 kt Fermilab are MiniBooNE, MINERνA, MINOS and NOνA • Other major neutrino detectors in the world include Super-K MINOS (Japan), Daya Bay (China), Opera 5 kt (Italy)

12

Tuesday, February 14, 2012 Neutrino Detectors

• Like any good sluice box, neutrino MINOS detectors have to separate gold 5 kt (neutrinos) from common rock (backgrounds) • The current neutrino detectors at Fermilab are MiniBooNE, MINERνA, MINOS and NOνA • Other major neutrino detectors in the world include Super-K (Japan), Daya Bay (China), Opera (Italy) Super-K 50 kt

13

Tuesday, February 14, 2012 Neutrino Interactions in the MINOS and Super-K Detectors

νe in SK

νμ in MINOS

14

Tuesday, February 14, 2012 Missing Neutrinos

• Neutrinos from the sun were first observed by the Homestake experiment in the 1960’s • Only found ~1/3 the number of solar neutrinos expected • A similar mystery was found with the atmospheric neutrinos - ~1/2 the number expected were observed

15

Tuesday, February 14, 2012 Neutrinos Change Type! ν ν ν ν α ν ν α ν ν α ν α ν α α ν α β ν α ν α ν ν β ν ν β ν αν α α α β β α να να

• Neutrinos change from one type (flavor) to another, called oscillations • Oscillations occur because the neutrino flavors we observe are actually combinations of other neutrinos defined by their mass • We have learned a lot about how these changes happen

Symmetry Magazine 16

Tuesday, February 14, 2012 What We Know • MINOS has made the most precise measurement of the difference between 2 neutrino masses ν3 • Experiments in Japan and Canada measured the other difference • Neutrinos coming from the Sun have an equal chance of being detected as any of the 3 types ν2 • Neutrinos produced in the atmosphere are muon neutrinos and change into tau neutrinos ν1 about 1/2 the time νe νμ ντ • Muon neutrinos may change into electron neutrinos, MINOS and NOνA are looking for that process as are T2K and several other Size of the colored box indicates probability of experiments interacting as a specific flavor 17

Tuesday, February 14, 2012 Why Build LBNE? • We need a new experiment to answer new questions about neutrino conversion • Is our current understanding enough to explain all observations? • Are there more neutrinos than the 3 types we directly observe?

• How often does a νμ change into a νe? Maybe it is so infrequent that MINOS, NOνA and others won’t see it • What is the relative ordering of the masses? • Do neutrinos and anti-neutrinos oscillate with the same probability?18

Tuesday, February 14, 2012 Why LBNE? • We need a new experiment to answer new questions about neutrino type conversion • Is our current understanding enough to explain all observations? ν • Are there more neutrinos than the 3 3 types we directly observe?

• How often does a νμ change into a νe? Maybe it is so infrequent that MINOS, NOνA and others won’t see it ν2

• What is the relative ordering of ν1 the masses? νe νμ ντ

• Do neutrinos and anti-neutrinos P(να → νβ) ≠ P(να → νβ) oscillate with the same probability?19

Tuesday, February 14, 2012 Why LBNE? • We need a new experiment to answer new questions about neutrino type conversion • Is our current understanding enough to explain all observations?

• Are there more neutrinos than the ν2 3 types we directly observe? ν1 • How often does a νμ change into a νe? Maybe it is so infrequent that MINOS, NOνA and others won’t see it • What is the relative ordering of ν3 the masses? νe νμ ντ

• Do neutrinos and anti-neutrinos P(να → νβ) ≠ P(να → νβ) oscillate with the same probability?20

Tuesday, February 14, 2012 Why We Care about Neutrino vs Antineutrino Oscillations

• In the early Universe there were equal amounts of matter and antimatter • At some point the amount of matter becomes slightly larger • Almost all of the matter and antimatter annihilate • What is left over becomes us • How did it happen? Maybe neutrinos hold the key

21

Tuesday, February 14, 2012 Why We Care about Neutrino vs Antineutrino Oscillations

• In the early Universe there were equal amounts of matter and antimatter • At some point the amount of matter becomes slightly larger Matter: 100,000,001 • Almost all of the matter and Antimatter: 100,000,001 antimatter annihilate • What is left over becomes us • How did it happen? Maybe neutrinos hold the key

22

Tuesday, February 14, 2012 Why We Care about Neutrino vs Antineutrino Oscillations

• In the early Universe there were equal amounts of matter and antimatter • At some point the amount of matter becomes slightly larger Matter: 100,000,002 • Almost all of the matter and Antimatter: 100,000,000 antimatter annihilate • What is left over becomes us • How did it happen? Maybe neutrinos hold the key

23

Tuesday, February 14, 2012 Why We Care about Neutrino vs Antineutrino Oscillations

• In the early Universe there were equal amounts of matter and antimatter • At some point the amount of matter becomes slightly larger Matter: 2 • Almost all of the matter and Antimatter: 0 antimatter annihilate • What is left over becomes us • How did it happen? Maybe neutrinos hold the key

24

Tuesday, February 14, 2012 Long Baseline Neutrino Experiment

• LBNE is the next generation of experiments • 3 main ingredients: a beam and 2 detectors • Near detector is at at Fermilab and far one is 800 miles away in South Dakota • Far detector is 40,000 tons of liquid • Very large detector is needed to allow us to observe enough neutrinos to answer the outstanding questions

25

Tuesday, February 14, 2012 Making a Neutrino Beam

• Accelerate protons to have the desired energy and then smash them into a target • Use magnetic horns to focus the produced particles which are unstable and decay into muons and neutrinos • Make sure to deliver as many protons as possible as quickly as possible to make lots of neutrinos • LBNE and NOνA want to double the number of protons hitting the target compared to what NuMI currently provides in the same amount of time

26

Tuesday, February 14, 2012 The LBNE Beam

27

Tuesday, February 14, 2012 The LBNE Beam

• Design is to build a hill to take the beam up before pointing it toward South Dakota • Allows the near detector to be at a shallower depth than otherwise

28

Tuesday, February 14, 2012 Why Do the Neutrinos have to Travel So Far? • Finding gold today is more challenging than in the gold rush, need bigger equipment to do it • Supersize the experiment to measure the low probability conversion, ie νμ → νe • New experiments need longer distances - νe are more likely to appear due interactions with e- in the Earth’s crust • Which neutrino is the most massive also influences appearance probability • Using beams of neutrinos and then anti-neutrinos helps establish if their appearance rates are different 29

Tuesday, February 14, 2012 Why Underground?

• The target location for LBNE is at the 4850’ level of the Homestake mine • Same location as the cavern that housed the Davis experiment that discovered the problem • The rock between the cavern and the surface reduces the back ground from cosmic rays to be 3 million times smaller than at the surface • Depth allows us to look for neutrinos and other phenomena not associated with the beam (more later) 30

Tuesday, February 14, 2012 The Far Detector

• Liquid argon time projection chamber chosen μ as technology Charged particles going through liquid argon - • e drift direction release 23,000 electrons/inch Cathode -V G+V Electrons drift toward readout planes over a 3.7 m • period of 2.4 ms, starting positions of the electrons are recorded to produce an image of the interaction Liquid Argon in a FNAL test stand • Like taking a digital photograph of a neutrino interaction

31 νe in liquid argon

Tuesday, February 14, 2012 Comparing Detectors

νe in SK

νμ in MINOS

32

Tuesday, February 14, 2012 Comparing Detectors

νe in liquid argon

33

Tuesday, February 14, 2012 Building the Far Detector

• Far detector will contain 40,000 tons of liquid argon • Membrane cryostat is the chosen technology to hold it • Makes effective use of cavern space • Liquid natural gas tankers have used the technology for decades with much larger volumes • Working with industry to develop design

34

Tuesday, February 14, 2012 LBNE Expected Event Rate

• Plots at right show the expected number of electron (anti)neutrino events at the far detector for 5 years in each beam configuration • Would see about 500 electron neutrinos and 100 electron antineutrinos, depending on the probability of the conversion from muon (anti) neutrinos • The order of the masses and the differences between neutrino and antineutrino oscillations can change those numbers • 600 total “golden” events for 10 years of running - mining may be easier

35

Tuesday, February 14, 2012 Other Physics with LBNE

• The LBNE far detector can also be used for physics beyond neutrino oscillations • Can dramatically improve the limits on how stable protons are, also complimentary to on- going measurements • Will detect thousands of neutrinos from any super novae that explode in our area of the Livermore Kneller 40 - 40 galaxy - last one we only saw 24 νe + Ar → e + K* 2308 2848

from the last one 40 + 40 νe + Ar → e + Cl* 194 134 Can even look for neutrinos • ν + e- → ν + e- 296 178 from super novae that exploded x x in the past Total 2798 3160 36

Tuesday, February 14, 2012 Pay Dirt

• The processes LBNE will look for are all really rare • Need to have a grand scale to even begin: massive detectors, long distances for the neutrinos to travel, intense beams • The knowledge gained will be revolutionary - maybe even answer the question as to why we are here

37

Tuesday, February 14, 2012 Oscillation Measurement Performance

• LBNE will be able to determine both the mixing between muon and electron neutrinos as well as the mass hierarchy for larger portions of phase space than NOvA and T2K • Will be able to quickly reduce the uncertainty on the difference between neutrino and antineutrino appearance probabilities 38

Tuesday, February 14, 2012 Neutrino Oscillations

B. Kayser

• Source produces a neutrino of flavor α, the neutrino propagates a distance L, and is then detected as flavor β • Neutrinos interact in the flavor states, but propagate in the mass states • The propagating neutrino is a combination of mass states - differences in the masses causes the oscillations

39

Tuesday, February 14, 2012 Neutrino Oscillations

• Probability for flavor change between two flavors depends on 4 things: • Distance the neutrino travels • Energy of the neutrino • Mixing angle - how much each mass contributes to a flavor • Difference in square of masses between the two neutrino states • Probability is larger than zero only if neutrinos have mass and the masses are different from each other • Can see where the term oscillation comes from looking at the low energy portion of the graphs (left side) 40

Tuesday, February 14, 2012 !"#$"%&'()*%+'"#%'#,-)%&+"'.

F<1%#+.#1#"-)%&+"'D F<-&-#('#"-)%&+"'.#*'A-#;&'AD ,-)%&+"'.# 1&-# J&'("7%'<"!. O"#<4:!%54# /G+=#G1"= '"-# ';# %<-# 81.+*# Y8)+6(+"=# 86'*:.Z# ';# %<-# HI2-&39<-&-# +"# %<-# )"+2-&.-# %<-&-# 1&-# JKLL# )"+2-&.-7# # R<-3# 1&-# %35+*1663# (-"'%-(# 83# "-)%&+"'.# 5-&# *)8+*# *-"%+A-%-&# 6-;%# '2-&# ;&'A# %<-# %<-##c&--:#6-%%-&#") BνC7#F+%<#') %!%:<#4:. G+=#G1"= :;"#$% 1"(#'"63#1#<4'D. 7"554#%<-3#*1"# 51..# %<&')=<# =&-1%# 1A')"%.# ';# A1%-&+16# Galaxy NGC 4526 B.)*<# 1.# %<-# -"%+&-# I1&%%35-# /0%1&. "-)%&+"'#+.#%<-#51&%"-&#';#%<-#;1A+6+1&#-6-*%&'"7 HM')=<63#NLL#8+66+'"#"-)%&+"'.#5&'()*-(#+"#%<-#*'&-# ';# %<-# 0)"# .%&-1A# %<&')=<# 3')&# ;+"=-&"1+6# -2-&3# Atmospheric Neutrinos.-*'"(4#(13#'&#"+=<% !#<+.%'&3#';#%<-#"-)%&+"' /R<-#!%A'.5<-&- HE+=<>I"-&=3# S'.A+*# &13.# ;&'A# .51*-# .%&+:-# /*+,C. $"# 1# 6-%%-&# %'# %<-# 1%%-"(--.# ';# 1# *'";-&-"*-4# 1%'A.# +"# %<-# 1%A'.5<-&-4# 5&'()*+"=# 1# .<'9-&# I)!J$"'$. K"&!4 5&'5'.-(# 1# 6+=<%# -6-*%&+*1663>"-)%&16# ';#51&%+*6-.4#+"*6)(+"=#"-)%&+"'.7##!55&'O+A1%-63# 51&%+*6-#+"#'&(-&#%'#-O561+"#%<-#A+..+"=#-"-&=3#+"#*-&%1+"# NL# 1%A'.5<-&+*# "-)%&+"'.# # 9+66# 51..# %<&')=<# &1(+'1*%+2-#(-*13.7#BX1)6+ (+(#"'%#1%%-"(#%<-#*'";-&-"*-# 3')&#%<)A8"1+6#-2-&3#.-*'"(7## 8-*1).-# <+.# 5&-.-"*-# 91.# Y+"(+.5-".186-Z# 1%# 1# 81•66#First+" #real evidenceX1)6+ for oscillations from /Super-KG1" 1experiment"1. - Water Cherenkov detector a)&+*<7C##E-#*166-(#%<+.#51&%+*6-#%<-#"-)%&'"7 H!"#12-&1=-#81"1"1#9+66#-A+%#&')=<63#N#A+66+'"#"-)%&+"'.# • 50 kt of ultra pure water, 22.5 kt fiducial mass / *+,-. $"# 1"# )";'&%)"1%-# <+.%'&+*16# 1**+(-"%4# V1A-.# S<1(9+*:# -1*<# (13# ()-# %'# %<-# %+"3# 1A')"%# ';# "1%)&1663>'**)&&+"=# • Built to look for , made lasting impact on neutrino physics (+.*'2-&-(# 1# %'%1663# )"&-61%-(# "-)%&16# 51&%+*6-4# %1:-"# %'# 8-# %<- 41 &1(+'1*%+2-#5'%1..+)A#+%#*'"%1+". "-)%&'"7##$%#91.#.''"#&-16+W-(#%<1%#+%#91.#A)*<#%'Tuesday,'# February<-1 14,2 20123#%'#8-# %<-#51&%+*6-#%<1%#X1)6+ <1(#5&'5'.-(4#8)%#%<-#"1A-#.%)*:7 /,)*6-1&#M-1*%'&.## H!55&'O+A1%-63# T# A+66+'"# &-1*%'&# "-)%&+"'.# 9+66# /*+,L.M'#4:).N%#74 5)86+.<-(#<+.#%<-'&3#';#&1(+'1*%+2-# 51..# %<&')=<# 3')&# %<)A8"1+6# -2-&3# .-*'"(4# +;# (-*13.4#+"#9<+*<#<-#1('5%-(#X1)6+b. .)==-.%+'"#;'#6+=<%# 3')# 1&-# UT# :A# BNK# A+6-.C# ;&'A# 1# ")*6-1&# "-)%&16# 51&%+*6-7# # E-# ()88-(# +%# %<-# Y"-)%&+"'Z# B6+%%6-> &-1*%'&7 "-)%&16#'"-C4#%'#(+.%+"=)+.<#+%#;&'A#S<1(9+*:b.#"-)%&'"7 ^-&Ai /!**-6-&1%'&. / *+/0 ,-)%&+"'.# 9-&-# ;+&.%# (-%-*%-(# 83# 1)2"'. 1"(# 3%4'%5 1%# H?'&-#'"#%<+.#61%-& %<-#0121""1<#M+2-&#")*6-1'9-ȱ"%7#M-+"-. 91.#191&(-(#%<-# NPPT#,'8-6#X&+W-7 / *+0- !# .-*'"(# Y;612'&Z# ';# "-)%&+"'4# %<-# A)'">"-)%&+"'# 91.# (+.*'2-&-(7##$"#NP[[#6%)'.6%(%#7"'4#8%!.9:;2"#<= 1"(#>":?. E'9#1&-#"-)%&+"'.#(-%-*%-(D 9<%4'@%#$%# &-*-+2-(#%<-#,'8-6#X&+W-#;'&#%<+.#(+.*'2-&37 / *+AB 0)5-&"'21#NP[\1#91.#'8.-&2-(7##,-)%&+"'.#9-&-#(-%-*%-(# / 0+"*-#"-)%&+"'#+"%-&1*%+'".#1&-#2-&3#&1&-4#"-)%&+"'#(-%-*%'&.#1&-# +"#%9'#(-%-*%'&.4#'"-#+"#V151"#1"(#'"-#+"#@<+'7 %35+*1663#2-&3 !"#$%7 / *++A ,-)%&+"'# '.*+661%+'".# 9-&-# '8.-&2-(# +"# 1%A'.5<-&+*# / ,-)%&+"'.# *1""'%# 8-# '8.-&2-(# (+&-*%634#8)%# 9-# *1"# 6'':# ;'&# %<-# "-)%&+"'.#+"#%<-#0)5-&>]1A+':1"(- -O5-&+A-"%#+"#V151"7 *<1&=-(>51&%+*6-.#%<1%#%<-3#6-12-#8-<+"(7 / -CCC.!#%<+&(#Y;612'&Z#';#"-)%&+"'4#%<-#%1)>"-)%&+"'#91.#'8.-&2-(# / $"# ?$,@0# %<-.-# *<1&=-(>51&%+*6-.# 1&-# (-%-*%-(# 83# %<-# .A166# 1%#^-&A+618 +"#%<-#_@,`R#-O5-&+A-"%7# 1A')"%# ';# 6+=<%# %<1%# %<-3# 5&'()*-(# +"# 1# .5-*+16# %35-# ';# 561.%+*# B.*+"%+661%'&C7 / -CC- ,'8-6# X&+W-# 191&(-(# %'# 3"D. E"F45. >#G 1"(# 8"5"<)5;4. H)5;4@" ;'&#%<-#(-%-*%+'"#';#.'61"(#1%A'.5<-&+*#"-)%&+"'.7 / ,-)%&+"'# (-%-*%'&.# 1&-# %35+*1663# 6'*1%-(# &'(%#$#)&'(4# %'# ;+6%-&# ')%# %<-# "1%)&1663>'**)&&+"=# *'.A+*>&13.# *'A+"=# ;&'A# .51*-# # B'&# / -CC/ ?$,@0#-O5-&+A-"%#8-=+".#%'#*'66-*%#(1%17 ;&'A#%<-#1%A'.5<-&-DDC7 Atmospheric Results

cosθ = 1

cosθ = -1

• Super-K events classified as either e-like or μ-like • No deficit on rate of νe as a function of direction or energy • Clear deficit of νμ from below the detector, rate from above as expected

Interpreted as νμ → ντ oscillations with maximal mixing • 42

Tuesday, February 14, 2012 Neutrino Oscillations - Solar • Sudbury Neutrino Observatory built to study solar deficit

• 1 kt of D20, 2100 m below the surface • Uses both charged current and neutral current reactions to measure solar neutrino flux - νe + d → p + p + e νx + d → n + p + νx • CC only detects νe, NC detects all flavors • Total rate shows no deficit, indicates flavor change 43

Tuesday, February 14, 2012 Long-Baseline Reactor Results

• KamLAND - 1kt liquid scintillator detector • Measured anti-neutrinos from Japanese and Korean power reactors + νe + p → n + e • Weighted average reactor distance of 180 km • L/E dependence shows two cycles of oscillation 44

Tuesday, February 14, 2012 Short-baseline Reactor Results

) 1 2 (eV 2 #e $ #x m " • experiment searched for reactor νe disappearance over ~1 -1 km baseline 10 • No evidence for disappearance, coupling of νe to ν3 excluded in red

region -2 10 • Allowed region for by blue box • New reactor experiments coming -3 online this year! 10 analysis A

analysis B Also possible to search for the • analysis C coupling using accelerator beams 90! CL Kamiokande (multi-GeV)

90 CL Kamiokande (sub+multi-GeV) -4 ! 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 sin2(2 ) 45 !

Tuesday, February 14, 2012 Accelerator Results - K2K

• K2K was first experiment to report results with accelerator neutrino beam

• Looked for disappearance of νμ over a 250 km baseline, attempting to measure same mass splitting as seen in atmospheric results • Near detectors measure flux of neutrinos before oscillations • Far detector (Super-K) used to look for energy dependent deficit of νμ

46

Tuesday, February 14, 2012 Accelerator Results - MINOS

• MINOS used charged-current interactions and observed deficit of νμ at far detector 735 km from source • Deficit is well described by oscillations at the atmospheric mass-splitting • Made most precise measurement of difference in square of masses for this mode 47

Tuesday, February 14, 2012 Accelerator Results - MINOS

MINOS Far Detector 300 Far detector data No oscillations 200 Best oscillation fit NC background

100 Events / GeV

0 0 5 10 15 20 30 50 Reconstructed neutrino energy (GeV)

• MINOS used charged-current interactions and observed deficit of νμ at far detector 735 km from source • Deficit is well described by oscillations at the atmospheric mass-splitting • Made most precise measurement of difference in square of masses for this mode 48

Tuesday, February 14, 2012 MINOS and T2K νe Appearance

• MINOS and T2K are attempting to look for νe appearance in a beam of νμ • T2K observed 6 events with an expectation of 1.5 indicating a non-zero, and relatively large value of θ13

• MINOS also sees an excess; cannot rule out θ13 = 0, but does limit the size of the mixing angle at the other end 49

Tuesday, February 14, 2012 Tying it all Together SLAC Summer Institute on Particle Physics (SSI04), Aug. 2-13, 2004 • A variety of experiments (solar, reactor, atmospheric) Figure from B. Kayser (2004) have shown us there are two different regimes for neutrino oscillations • The different regimes are determined by the differences in the squares of the 3 mass states • Figure shows the probability of a mass state interacting as a given flavor state • Most probabilities are relatively large Figure 3: A three-neutrino (mass)2 spectrum that accounts for all the neutrino oscillation data except those from LSND.

The νe fraction of each mass eigenstate is shown by green right-leaning hatching, the νµ fraction is shown by red left-leaning • Zero point of mass scalehatching, and the ντ fraction by blue vertical hatching. currently unknown 50

Tuesday, February 14, 2012 lepton, the probability that this charged lepton is, in particular, an electron, is the ν fraction of ν , U 2. The e i | ei| probability that the charged lepton is a muon is the ν fraction of ν , U 2, and the probability that it is a tau is µ i | µi| the ν fraction, U 2. τ | τi| Fig. 3 summarizes how we learned the flavor content of the various mass eigenstates, and the squared-mass splittings between them. With reference to this figure, let us explain how these features of the neutrino spectrum were found,

starting with ν3. The ν fraction of ν is not known, but is bounded by reactor experiments that had a detector at a distance L 1 e 3 ∼ km from the reactor. Since the (anti)neutrinos emitted by a reactor have an energy E 3 GeV, this detector distance 2 ∼2 3 2 made these experiments sensitive to oscillation involving the larger (mass) gap, ∆matm 2.4 10− eV , but not 2 5 2 ￿ × to oscillation involving the smaller gap, ∆msol 8.0 10− eV [cf. Eq. (16) and surrounding text]. As a result, ￿ × 2 these experiments probed the properties of ν3, the isolated neutrino at one end of the ∆matm gap [9]. In particular, they probed the νe fraction of ν3, since the particles emitted by a reactor are νe. The experiments saw no oscillation of these ν , whose disappearance they sought, and thereby set a 3σ upper bound of U 2 < 0.045 on the ν fraction e | e3| e of ν3 [10]. One hears a lot of discussion of a leptonic mixing angle called θ . This angle is so defined that U 2 = sin2 θ . 13 | e3| 13 Thus, θ13 is a measure of the smallness of the νe part of ν3.

Apart from this small νe piece, ν3 is of νµ and ντ flavor. Now, the oscillation of atmospheric muon neutrinos is observed to be dominated by ν ν , with a ν ν mixing angle that is very large. The best fit for this angle µ → τ µ − τ is maximal mixing: 45◦. This atmospheric mixing angle will be reflected in the flavor content of ν3, since ν3 is at 2 one end of the splitting ∆matm that drives atmospheric neutrino oscillation. If the angle is truly maximal, then, apart from its small νe component, ν3 is simply (νµ + ντ )/√2. This mimics the behavior of the neutral K meson system. There, apart from a small CP violation, the mixing of K0 and K0 is maximal, with the consequence that 0 0 KS = (K + K )/√2.

L004 1 1