Solar Neutrinos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Gran Sasso Underground Laboratory Program
The Gran Sasso Underground Laboratory Program Eugenio Coccia INFN Gran Sasso and University of Rome “Tor Vergata” [email protected] XXXIII International Meeting on Fundamental Physics Benasque - March 7, 2005 Underground Laboratories Boulby UK Modane France Canfranc Spain INFN Gran Sasso National Laboratory LNGSLNGS ROME QuickTime™ and a Photo - JPEG decompressor are needed to see this picture. L’AQUILA Tunnel of 10.4 km TERAMO In 1979 A. Zichichi proposed to the Parliament the project of a large underground laboratory close to the Gran Sasso highway tunnel, then under construction In 1982 the Parliament approved the construction, finished in 1987 In 1989 the first experiment, MACRO, started taking data LABORATORI NAZIONALI DEL GRAN SASSO - INFN Largest underground laboratory for astroparticle physics 1400 m rock coverage cosmic µ reduction= 10–6 (1 /m2 h) underground area: 18 000 m2 external facilities Research lines easy access • Neutrino physics 756 scientists from 25 countries Permanent staff = 66 positions (mass, oscillations, stellar physics) • Dark matter • Nuclear reactions of astrophysics interest • Gravitational waves • Geophysics • Biology LNGS Users Foreigners: 356 from 24 countries Italians: 364 Permanent Staff: 64 people Administration Public relationships support Secretariats (visa, work permissions) Outreach Environmental issues Prevention, safety, security External facilities General, safety, electrical plants Civil works Chemistry Cryogenics Mechanical shop Electronics Computing and networks Offices Assembly halls Lab -
A Measurement of the 2 Neutrino Double Beta Decay Rate of 130Te in the CUORICINO Experiment by Laura Katherine Kogler
A measurement of the 2 neutrino double beta decay rate of 130Te in the CUORICINO experiment by Laura Katherine Kogler A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Stuart J. Freedman, Chair Professor Yury G. Kolomensky Professor Eric B. Norman Fall 2011 A measurement of the 2 neutrino double beta decay rate of 130Te in the CUORICINO experiment Copyright 2011 by Laura Katherine Kogler 1 Abstract A measurement of the 2 neutrino double beta decay rate of 130Te in the CUORICINO experiment by Laura Katherine Kogler Doctor of Philosophy in Physics University of California, Berkeley Professor Stuart J. Freedman, Chair CUORICINO was a cryogenic bolometer experiment designed to search for neutrinoless double beta decay and other rare processes, including double beta decay with two neutrinos (2νββ). The experiment was located at Laboratori Nazionali del Gran Sasso and ran for a period of about 5 years, from 2003 to 2008. The detector consisted of an array of 62 TeO2 crystals arranged in a tower and operated at a temperature of ∼10 mK. Events depositing energy in the detectors, such as radioactive decays or impinging particles, produced thermal pulses in the crystals which were read out using sensitive thermistors. The experiment included 4 enriched crystals, 2 enriched with 130Te and 2 with 128Te, in order to aid in the measurement of the 2νββ rate. The enriched crystals contained a total of ∼350 g 130Te. The 128-enriched (130-depleted) crystals were used as background monitors, so that the shared backgrounds could be subtracted from the energy spectrum of the 130- enriched crystals. -
THE BOREXINO IMPACT in the GLOBAL ANALYSIS of NEUTRINO DATA Settore Scientifico Disciplinare FIS/04
UNIVERSITA’ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA SCUOLA DI DOTTORATO IN FISICA, ASTROFISICA E FISICA APPLICATA CICLO XXIV THE BOREXINO IMPACT IN THE GLOBAL ANALYSIS OF NEUTRINO DATA Settore Scientifico Disciplinare FIS/04 Tesi di Dottorato di: Alessandra Carlotta Re Tutore: Prof.ssa Emanuela Meroni Coordinatore: Prof. Marco Bersanelli Anno Accademico 2010-2011 Contents Introduction1 1 Neutrino Physics3 1.1 Neutrinos in the Standard Model . .4 1.2 Massive neutrinos . .7 1.3 Solar Neutrinos . .8 1.3.1 pp chain . .9 1.3.2 CNO chain . 13 1.3.3 The Standard Solar Model . 13 1.4 Other sources of neutrinos . 17 1.5 Neutrino Oscillation . 18 1.5.1 Vacuum oscillations . 20 1.5.2 Matter-enhanced oscillations . 22 1.5.3 The MSW effect for solar neutrinos . 26 1.6 Solar neutrino experiments . 28 1.7 Reactor neutrino experiments . 33 1.8 The global analysis of neutrino data . 34 2 The Borexino experiment 37 2.1 The LNGS underground laboratory . 38 2.2 The detector design . 40 2.3 Signal processing and Data Acquisition System . 44 2.4 Calibration and monitoring . 45 2.5 Neutrino detection in Borexino . 47 2.5.1 Neutrino scattering cross-section . 48 2.6 7Be solar neutrino . 48 2.6.1 Seasonal variations . 50 2.7 Radioactive backgrounds in Borexino . 51 I CONTENTS 2.7.1 External backgrounds . 53 2.7.2 Internal backgrounds . 54 2.8 Physics goals and achieved results . 57 2.8.1 7Be solar neutrino flux measurement . 57 2.8.2 The day-night asymmetry measurement . 58 2.8.3 8B neutrino flux measurement . -
BOREXINO - Status and Calibration
BOREXINO - Status and Calibration International Workshop on "Double Beta Decay and Neutrinos" Osaka, June 12, 2007 Christian Grieb for the Borexino Collaboration Virginia Tech Borexino Collaboration • College de France (France) • Technische Unversität München (Germany) • JINR Dubna (Russia) • Kurchatov Institute Moscow (Russia) • MPI Heidelberg (Germany) • Jagellonian University Cracow (Poland) • INFN – Milano (Italy) • INFN – Genova (Italy) • INFN – Perugia (Italy) • INFN – LNGS (Italy) • Princeton Univeristy (USA) NSF funded • Virginia Tech (USA) } Borexino Christian Grieb, Virginia Tech, June 2007 Borexino • Designed to spectroscopically measure low energy solar neutrinos, especially 7Be • Liquid Scintillator Spectrometer • ν + e - → ν’ + e -’ • Charged Current • Neutral Current Borexino Christian Grieb, Virginia Tech, June 2007 Signal in Borexino 7 +++ −−− →→→ 7 +++ ννν Be e Li e Monochromatic E ννν=862 keV Φ 9 ν 2 SSM =4.8x10 /sec/cm ννν ννν e x Expected rate (LMA) is ~35 counts/day between 0.25-0.8 MeV Borexino Christian Grieb, Virginia Tech, June 2007 Science in Borexino • Measure 7Be solar neutrinos (0.25-0.8 MeV) • Measured vs MSW-LMA predicted event rate • 1/r^2 solar signature • Study CNO and pep (~1-2 pep ev/d) neutrinos (0.8-1.3 MeV) (rejection of 11 C 8B-neutrinos cosmogenic background – proven in CTF (SuperK, SNO) hep-ex/0601035) • Geoneutrinos (10 – 30 ev/year) • Supernova Neutrinos (~120 ev from GC 7 supernova) Be neutrinos (BOREXINO) • Double beta decay with Xenon? (Phys.Rev.Lett. 72:1411,1994) • ... Borexino Christian Grieb, Virginia Tech, June 2007 Publications (since 2002) • The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment. • J. Benziger et al. Feb 2007 physics/0702162 • CNO and pep neutrino spectroscopy in Borexino: Measurement of the deep-underground production of cosmogenic C11 in an organic liquid scintillator • H. -
Daya at Antineutrinos Reactor Eebr1 2006 1, December Proposal Aabay Daya Θ 13 Using Daya Bay Collaboration
Daya Bay Proposal December 1, 2006 A Precision Measurement of the Neutrino Mixing Angle θ13 Using Reactor Antineutrinos At Daya Bay arXiv:hep-ex/0701029v1 15 Jan 2007 Daya Bay Collaboration Beijing Normal University Xinheng Guo, Naiyan Wang, Rong Wang Brookhaven National Laboratory Mary Bishai, Milind Diwan, Jim Frank, Richard L. Hahn, Kelvin Li, Laurence Littenberg, David Jaffe, Steve Kettell, Nathaniel Tagg, Brett Viren, Yuping Williamson, Minfang Yeh California Institute of Technology Christopher Jillings, Jianglai Liu, Christopher Mauger, Robert McKeown Charles Unviersity Zdenek Dolezal, Rupert Leitner, Viktor Pec, Vit Vorobel Chengdu University of Technology Liangquan Ge, Haijing Jiang, Wanchang Lai, Yanchang Lin China Institute of Atomic Energy Long Hou, Xichao Ruan, Zhaohui Wang, Biao Xin, Zuying Zhou Chinese University of Hong Kong, Ming-Chung Chu, Joseph Hor, Kin Keung Kwan, Antony Luk Illinois Institute of Technology Christopher White Institute of High Energy Physics Jun Cao, Hesheng Chen, Mingjun Chen, Jinyu Fu, Mengyun Guan, Jin Li, Xiaonan Li, Jinchang Liu, Haoqi Lu, Yusheng Lu, Xinhua Ma, Yuqian Ma, Xiangchen Meng, Huayi Sheng, Yaxuan Sun, Ruiguang Wang, Yifang Wang, Zheng Wang, Zhimin Wang, Liangjian Wen, Zhizhong Xing, Changgen Yang, Zhiguo Yao, Liang Zhan, Jiawen Zhang, Zhiyong Zhang, Yubing Zhao, Weili Zhong, Kejun Zhu, Honglin Zhuang Iowa State University Kerry Whisnant, Bing-Lin Young Joint Institute for Nuclear Research Yuri A. Gornushkin, Dmitri Naumov, Igor Nemchenok, Alexander Olshevski Kurchatov Institute Vladimir N. Vyrodov Lawrence Berkeley National Laboratory and University of California at Berkeley Bill Edwards, Kelly Jordan, Dawei Liu, Kam-Biu Luk, Craig Tull Nanjing University Shenjian Chen, Tingyang Chen, Guobin Gong, Ming Qi Nankai University Shengpeng Jiang, Xuqian Li, Ye Xu National Chiao-Tung University Feng-Shiuh Lee, Guey-Lin Lin, Yung-Shun Yeh National Taiwan University Yee B. -
Large Large-Scale Neutrino Detectors No Detectors
LARGE-SCALE NEUTRINO DETECTORS input for the 2020 update of the European Strategy for Particle Physics from the Institute for Nuclear Research of the Russian Academy of Sciences Contact person: Prof. Leonid Kravchuk, Director, INR RAS, 60th October Anniversary prospect 7A, 117312, Moscow, Russia Tel.: +7 495 8504201 e-mail: [email protected] Abstract: We propose a multi-purpose neutrino observatory comprising two very large detectors solving different problems at the intersection of particle physics, astrophysics and Earth science. Baikal-GVD will work jointly with KM3NET and IceCube in the Global Neutrino Network, aiming at the detection and study of high-energy astrophysical neutrinos. The new Baksan neutrino telescope (NBNT) will inherit from its smaller precursor, Borexino, but will become the only large-scale neutrino detector geographically located in Europe. Thanks to the unique low-background conditions at Baksan, determined by a combination of depth and of location far from artificial nuclear reactors, it will be the best instrument in the world to measure the CNO solar neutrino flux, at the same time addressing a wide range of other problems. Moscow, December 13, 2018 Comprehensive overview Development of many areas in modern physics, astrophysics and related fields is closely related to the neutrino studies. Neutrinos may bring the key to the way the Standard Model (SM) should be extended: in fact, it is the neutrino oscillations which violate the SM conservation laws (lepton numbers of individual generations) and give the only laboratory proof of the SM incompleteness. The discovery of the oscillations in the solar neutrinos gave a bright example of the application of astrophysical results to understanding of basic properties of elementary particles. -
Pos(ICRC2017)1010 ∗ † G
Search for GeV neutrinos associated with solar flares with IceCube PoS(ICRC2017)1010 The IceCube Collaboration† † http://icecube.wisc.edu/collaboration/authors/icrc17_icecube E-mail: [email protected] Since the end of the eighties and in response to a reported increase in the total neutrino flux in the Homestake experiment in coincidence with solar flares, solar neutrino detectors have searched for solar flare signals. Hadronic acceleration in the magnetic structures of such flares leads to meson production in the solar atmosphere. These mesons subsequently decay, resulting in gamma-rays and neutrinos of O(MeV-GeV) energies. The study of such neutrinos, combined with existing gamma-ray observations, would provide a novel window to the underlying physics of the acceleration process. The IceCube Neutrino Observatory may be sensitive to solar flare neutrinos and therefore provides a possibility to measure the signal or establish more stringent upper limits on the solar flare neutrino flux. We present an original search dedicated to low energy neutrinos coming from transient events. Combining a time profile analysis and an optimized selection of solar flare events, this research represents a new approach allowing to strongly lower the energy threshold of IceCube, which is initially foreseen to detect TeV neutrinos. Corresponding author: G. de Wasseige∗ IIHE-VUB, Pleinlaan 2, 1050 Brussels, Belgium 35th International Cosmic Ray Conference 10-20 July, 2017 Bexco, Busan, Korea ∗Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/ Search for GeV neutrinos associated with solar flares with IceCube G. -
Retrospect of GALLEX/GNO
10th Int. Conf. on Topics in Astroparticle and Underground Physics (TAUP2007) IOP Publishing Journal of Physics: Conference Series 120 (2008) 052013 doi:10.1088/1742-6596/120/5/052013 Retrospect of GALLEX/GNO Till Kirsten Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany E-mail: [email protected] Abstract. After the completion of the gallium solar neutrino experiments at the Laboratori Nazionali del Gran Sasso (GALLEX, GNO), we shortly summarize the major achievements. Among them are the first observation of solar pp-neutrinos and the recognition of a substantial (40%) deficit of sub-MeV solar neutrinos that called for νe transformations enabled by non- vanishing neutrino masses. We also inform about a recent complete re-analysis of the GALLEX data evaluation and reflect on the causes for the termination of GNO. From our gallium data we extract the e-e survival probability Pee for pp-neutrinos after subtraction of the 8B and 7Be contributions based on the experimentally determined 8B- (SNO/SK) and 7Be- (Borexino) neutrino fluxes as Pee(pp only) = 0.52 ± 0.12. 1. Introduction The Gallium solar neutrino experiments at the Laboratori Nazionali del Gran Sasso have been terminated for external non-scientific reasons. This triggers a short retrospect of the achievements of GALLEX and GNO (Section 2). In Section 3 we report on a recent update that is based on data that were impossible to acquire before completion of the low rate measurement phase (solar runs). After some reflections on the causes for the termination of the gallium experiments at Gran Sasso (Section 4), I give a first quantitative estimate of the separate pp solar neutrino production (Section 5). -
Solar Neutrino Spectroscopy
Solar Neutrino Spectroscopy Michael Wurm∗ PRISMA Cluster of Excellence and Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany April 24, 2017 Abstract More than forty years after the first detection of neutrinos from the Sun, the spectroscopy of solar neutrinos has proven to be an on-going success story. The long-standing puzzle about the observed solar neutrino deficit has been resolved by the discovery of neutrino flavor oscillations. Today's experiments have been able to solidify the standard MSW-LMA oscillation scenario by performing precise measurements over the whole energy range of the solar neutrino spectrum. This article reviews the enabling experimental technologies: On the one hand mutli- kiloton-scale water Cherenkov detectors performing measurements in the high-energy regime of the spectrum, on the other end ultrapure liquid-scintillator detectors that allow for a low- threshold analysis. The current experimental results on the fluxes, spectra and time vari- ation of the different components of the solar neutrino spectrum will be presented, setting them in the context of both neutrino oscillation physics and the hydrogen fusion processes embedded in the Standard Solar Model. Finally, the physics potential of state-of-the-art detectors and a next-generation of ex- periments based on novel techniques will be assessed in the context of the most interesting open questions in solar neutrino physics: a precise measurement of the vacuum-matter transition curve of electron-neutrino oscillation probability that offers a definitive test of the basic MSW-LMA scenario or the appearance of new physics; and a first detection of neutrinos from the CNO cycle that will provide new information on solar metallicity and stellar physics. -
Nov/Dec 2020
CERNNovember/December 2020 cerncourier.com COURIERReporting on international high-energy physics WLCOMEE CERN Courier – digital edition ADVANCING Welcome to the digital edition of the November/December 2020 issue of CERN Courier. CAVITY Superconducting radio-frequency (SRF) cavities drive accelerators around the world, TECHNOLOGY transferring energy efficiently from high-power radio waves to beams of charged particles. Behind the march to higher SRF-cavity performance is the TESLA Technology Neutrinos for peace Collaboration (p35), which was established in 1990 to advance technology for a linear Feebly interacting particles electron–positron collider. Though the linear collider envisaged by TESLA is yet ALICE’s dark side to be built (p9), its cavity technology is already established at the European X-Ray Free-Electron Laser at DESY (a cavity string for which graces the cover of this edition) and is being applied at similar broad-user-base facilities in the US and China. Accelerator technology developed for fundamental physics also continues to impact the medical arena. Normal-conducting RF technology developed for the proposed Compact Linear Collider at CERN is now being applied to a first-of-a-kind “FLASH-therapy” facility that uses electrons to destroy deep-seated tumours (p7), while proton beams are being used for novel non-invasive treatments of cardiac arrhythmias (p49). Meanwhile, GANIL’s innovative new SPIRAL2 linac will advance a wide range of applications in nuclear physics (p39). Detector technology also continues to offer unpredictable benefits – a powerful example being the potential for detectors developed to search for sterile neutrinos to replace increasingly outmoded traditional approaches to nuclear nonproliferation (p30). -
The Variation of the Solar Neutrino Fluxes Over Time in the Homestake, GALLEX(GNO) and Super-Kamiokande Experiments
The Variation of the Solar Neutrino Fluxes over Time in the Homestake, GALLEX(GNO) and Super-Kamiokande Experiments K. Sakurai1,3, H. J. Haubold2 and T. Shirai1 1. Institute of Physics, Kanagawa University, Yokohama 221-8686, Japan 2. Office for Outer Space Affairs, United Nations, P. O. Box 500, A-1400, Vienna, Austria 3. Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan Abstract Using the records of the fluxes of solar neutrinos from the Homestake, GALLEX (GNO), and Super-Kamiokande experiments, their statistical analyses were performed to search for whether there existed a time variation of these fluxes. The results of the analysis for the three experiments indicate that these fluxes are varying quasi-biennially. This means that both efficiencies of the initial p-p and the PP-III reactions of the proton-proton chain are varying quasi-biennially together with a period of about 26 months. Since this time variation prospectively generated by these two reactions strongly suggests that the efficiency of the proton-proton chain as the main energy source of the Sun has a tendency to vary quasi-biennially due to some chaotic or non-linear process taking place inside the gravitationally stabilized solar fusion reactor. It should be, however, remarked that, at the present moment, we have no theoretical reasoning to resolve this mysterious result generally referred to as the quasi-biennial periodicity in the time variation of the fluxes of solar neutrinos. There is an urgent need to search for the reason why such a quasi-biennial periodicity is caused through some physical process as related to nuclear fusion deep inside the Sun. -
Sudbury Neutrino Observatory Energy Calibration Using Gamma-Ray Sources By
AN ABSTRACT OF THE DISSERTATION OF Michael Raymond Dragowsky for the degree of Doctor of Philosophy in Physics presented on 28 June 1999. Title: Sudbury Neutrino Observatory Energy Calibration using Gamma-Ray Sources. Redacted for privacy Abstract approved: _____ Kenneth S. Krane Redacted for privacy Eric B. Norman The long-standing Solar Neutrino Problem describes the disagreement between the observed and predicted solar neutrino flux. An extension to the electroweak model of particle physics predicts that neutrino flavor may change as a neutrino propagates from its source, and may account for the Solar Neutrino Problem. The Sudbury Neutrino Observatory will make two measurements of the 8B neutrino flux from the Sun. The first is independent of neutrino flavor, allowing for the first time a definitive measurement of the total 8B neutrino flux. The second measurement will be sensitive only to the 8B electron-neutrino flux. Comparison of these two measurements will allow a determination of whether the electron-neutrinos produced in the Sun change their flavor as they propagate to the Earth. Precise energy calibration is required to ensure accurate measurements. Two energy calibration sources will be described that rely on the coincident emission of a {3 particle and a 'Y-ray. The sources make use of 4 4 16N and 2 Na {3-decay. In addition to energy calibration, the 2 Na source provides an assessment of the rate of photodissociation of deuterium that is important in understanding backgrounds for both solar neutrino measurements. Sudbury