Chiari II Malformation: MR Imaging Evaluation

Total Page:16

File Type:pdf, Size:1020Kb

Chiari II Malformation: MR Imaging Evaluation 783 Chiari II Malformation: MR Imaging Evaluation Samuel M. Wolpert' The purpose of this study was to explore the value of high-detail MR imaging in the Mary Anderson' diagnosis of the Chiari II malformation. Twenty-four patients with known Chiari II R. Michael Scott2 malformation as diagnosed by CT scanning were evaluated with cranial MR scans. Two Eddie S. K. Kwan' patients also had spine scans. The sagittal-plane images were the most informative, Val M. Runge3 and abnormalities of the telencephalon, diencephalon, mesencephalon, rhomboen­ cephalon, upper spinal cord, and mesencephalon were shown extremely well. We found MR to be an easy and accurate method for demonstrating the abnormalities of the Chiari II malformation, and it is our procedure of choice. The Chiari II malformation is a complex developmental deformity characterized by an elongated small cerebellum and brainstem with caudal displacement of the medulla, parts of the cerebellum, and pons through an enlarged foramen magnum into the cervical spinal canal [1]. A meningomyelocele is a nearly constant accom­ panying feature, as is hydrocephalus. In addition, numerous other malformations of the neuraxis including polymicrogyria, subependymal heterotopias, beaked col­ licular plate, aqueduct stenosis, diastematomyelia, diplomyelia, hydromyelia, and syringomyelia have been reported [1]. We had the opportunity to evaluate 24 patients with Chiari II malformation with high-detail MR imaging. Most abnormalities previously described as seen by CT [2-5] were also seen by MR. In this article we review these abnormalities and report on other associated features of the Chiari malformation that either have a greater frequency than has previously been reported or that have not been described before. Subjects and Methods Twenty-four patients with meningomyeloceles and known Chiari II malformations as diagnosed by CT scanning were investigated with MR imaging. Three patients were less than 1 year old, five were 1-5 years old , five were 6-10 years old, and 11 were 10-20 years old. This article appears in the September/Octo­ In 21 of the patients ventricular shunts had been inserted previously; in one patient a lumbar ber 1987 issue of AJNR and the November 1987 subarachnoid-peritoneal shunt had been placed . Sagittal and axial head images were obtained issue of AJR. in all patients. The majority of the sagittal images (16) were 3 mm thick; the rest were either Received December 16, 1986; accepted after 4 or 5 mm thick. Eighteen patients had coronal scans (5-10 mm thick). Spin-echo techniques revision March 13, 1987. were used. Since the anatomy of the lesions was the prime consideration , mild T1-weighted , Department of Radiology, Section of Neurora­ images were obtained in all cases with a repetition time of 500, 600, or 800 msec and an diology, New England Medical Center Hospitals, 750 Washington St. , Boston, MA 02111 . Address echo time of 17 msec. T2-weighted images were not obtained routinely. In all patients, an reprint requests to S. M. Wolpert. attempt was made to include the upper cervical spine on the sagittal images. In addition, two 2 Department of Neurosurgery, New England patients had separate T1-weighted sagittal images of the spine, and one of the two had T2- Medical Center Hospitals, Boston, MA 02111 . weighted sequences as well . 3 Department of Radiology, Section of MR Im­ aging, New England Medical Center Hospitals, Bos­ ton , MA 02111 . Results AJNR 8:783-792, September/October 1987 The results are categorized by the involvement of the different embryologic parts 0195-6108/87/0805-0783 © American Society of Neuroradiology of the brain and are summarized in Table 1. 784 WOLPERT ET AL. AJNR:8, September/October 1987 TABLE 1: MR Abnormalities in Chiari II Malformations about 50% of patients with the Chiari II malformation [6, 7], according to Muller [8] the cerebral cortex in patients with No. of Patients Location: Abnormality the Arnold-Chiari malformation is normal and should not be (n = 24) confused with true polymicrogyria, in which the cellular layers Telencephalon: of the cortex are deficient. Muller used the term "stenogyria" Stenogyria 7 Frontal horn beakinga 11 to describe a histologically normal cortex thrown into innu­ Corpus callosum (partial agenesis) 8 merable small , closely spaced folds. Although we have no Supracerebellar CSF-containing spaces 10 histologic verification of normal cortical architecture in our Third ventri cle diverticulum 1 patients, this term appears to be more appropriate for the Diencephalon: Enlarged third ventricle 3 MR appearances of the cortical gyral pattern in these patients. Large massa intermedia 16 Anterior horns.-Anteroinferior pointing of the anterior Elevation of hypothalamus 2 horns was seen in 11 of the 12 patients in this series in whom Mesencephalon: coronal scans had been obtained through the frontal horns Aqueduct not seen 17 (Fig . 2) . In one series these appearances were seen on Bulbous tectum 14 Beaked tectum 10 ventriculograms in 32 of 62 patients with the Arnold-Chiari R homboencephalon malformation [9]. The cause of the findings was thought to Absent cerebellar folia 12 be either a medially directed force causing undue juxtaposition Superior vermis 9 of the two cerebral hemispheres or marked inward bulging of Inferior vermis 10 Overlapping anterior cerebellar margins 18 the caudate nucleus [4, 9]. Cerebellar vermial pegs 23 Corpus callosum .-Partial agenesis of the corpus callosum b Cervicomedullary deformities : was seen in eight (33%) of the 24 patients (Figs. 1, 3, and 4). Type 1 6 Six of these patients had medial radiating sulci on the inner Type 2 7 Type 3a 8 surface of the adjacent parietal lobes. In another four patients Type 3b 3 marked thinning of the posterior portion of the body and the Pyramidal hypogenesis 4 splenium of the corpus callosum was seen , possibly a result Spinal cord: of previous severe hydrocephalus. Other associated features Wide anterior space 9 of agenesis of the corpus callosum , such as dysplasia or Syrin x 3 Mesoderm al: absence of the cingulate gyrus [10], were seen in six of the Clival scalloping 19 eight patients. Failure of the parietooccipital and calcarine Gyral interdigitations (falx hypoplasia) 9 fissures to converge was seen in six patients. Wide incisurac 15 Agenesis of the corpus callosum in association with the Gyral indentations (into skull) 8 Arnold-Chiari malformation has been described but not with • Twelve acceptable coronal scans of frontal horns. this great a frequency. Gilbert et al. [11] described three b See text for elaboration. cases of complete or nearly complete agenesis of the corpus c Ali 15 patients had overlapping anterior cerebellar margins. callosum in a series of 25 autopsies of children with Arnold­ Chiari malformations. Venes et al. [12] reported a case of partial agenesis of the corpus callosum demonstrated by MR, Discussion but the anomaly was not mentioned in the article . Two cases MR imaging is known to be superior to CT in demonstrating of the Chiari II malformation demonstrated by MR were found the craniovertebral junction , particularly the spinal cord , me­ in a series of 11 patients with agenesis of the corpus callosum dulla, cerebellum , pons, and surrounding subarachnoid described by Atlas et al. [13]. The association between the spaces , and MR is perhaps the best technique for demon­ two anomalies further emphasizes the fact that the Chiari II strating structural abnormalities of the Chiari II malformation. malformation involves not only the hindbrain but also other Although additional manifestations of the malformation such fiber tracts in the human brain . as aqueduct stenosis and massa intermedia enlargement are The finding of a deformed corpus callosum on MR may be usually well defined by CT, MR demonstrates superior ana­ of some value in predicting intelligence in children with mye­ tomic detail in these areas as well . lomeningoceles. Of the eight children with the anomaly, two The MR images of our patients, in addition to duplicating are severely retarded and two require special schooling. One previous CT findings, highlighted other components of the child appears to have a normal mental state, but is so disabled malformation that previously have not been emphasized or by extremity deficits and breathing difficulties that he cannot described in the radiologic or neuropathologic literature. Each be tested easily. Only three appear to be developing normally of the areas is discussed separately. with normal intelligence. The other 16 children without severe deformations of the corpus callosum all have normal or nearly Telencephalon normal intelligence. Supracerebellar CSF-containing spaces (CCS).-Wide su­ Stenogyria.-Small , closely spaced gyral folds were seen pracerebellar CCS involving to varying degrees the quadri­ in seven patients, five of whom also had partial agenesis of geminal plate cistern , the cistern velum interpositum, the the corpus callosum (Fig. 1). Although this finding is usually interhemispheric fissure, and the ambient cistern were seen termed "polymicrogyria" and is described as occurring in in 10 of the 24 patients (Figs. 3-5). In one other patient the AJNR:8, September/October 1987 MR OF CHIARI II MALFORMATION 785 A B Fig, 1.-Multiple, closely spaced gyri (open arrows) are Fig. 2.-A, Inferior pointing of lateral ventricular floor (arrows) is associated with radially oriented. Posterior portion of body and splenium of enlarged anterior horns. corpus callosum are absent (arrowhead). Rostrum of corpus B, Heads of caudate nuclei (arrows) bulge medially into anterior horns. Note enlarged callosum is absent (short solid arrow). Aqueduct is not seen lateral ventricles and occipital horn. Third ventricle is unusually large. and inferior colliculus (curved arrow) has beaked appearance. Fourth ventricle is at level of foramen magnum and inferiorly is seen extending through foramen magnum anterior to inferior vermial peg (long solid arrow) (group 2a in text). Clivus is concave. An insufficient amount of upper cervical canal is included on scan to determine whether cervicomedullary kink is present also.
Recommended publications
  • Approach to Brain Malformations
    Approach to Brain Malformations A General Imaging Approach to Brain CSF spaces. This is the basis for development of the Dandy- Malformations Walker malformation; it requires abnormal development of the cerebellum itself and of the overlying leptomeninges. Whenever an infant or child is referred for imaging because of Looking at the midline image also gives an idea of the relative either seizures or delayed development, the possibility of a head size through assessment of the craniofacial ratio. In the brain malformation should be carefully investigated. If the normal neonate, the ratio of the cranial vault to the face on child appears dysmorphic in any way (low-set ears, abnormal midline images is 5:1 or 6:1. By 2 years, it should be 2.5:1, and facies, hypotelorism), the likelihood of an underlying brain by 10 years, it should be about 1.5:1. malformation is even higher, but a normal appearance is no guarantee of a normal brain. In all such cases, imaging should After looking at the midline, evaluate the brain from outside be geared toward showing a structural abnormality. The to inside. Start with the cerebral cortex. Is the thickness imaging sequences should maximize contrast between gray normal (2-3 mm)? If it is too thick, think of pachygyria or matter and white matter, have high spatial resolution, and be polymicrogyria. Is the cortical white matter junction smooth or acquired as volumetric data whenever possible so that images irregular? If it is irregular, think of polymicrogyria or Brain: Pathology-Based Diagnoses can be reformatted in any plane or as a surface rendering.
    [Show full text]
  • A Suprasellar Subarachnoid Pouch; Aetiological Considerations
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.47.10.1066 on 1 October 1984. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry 1984;47:1066-1074 A suprasellar subarachnoid pouch; aetiological considerations O BINITIE, BERNARD WILLIAMS, CP CASE From the Midland Centre for Neurosurgery and Neurology, Smethwick, Warley, West Midlands, UK SUMMARY A child with hydrocephalus treated by a valved shunt was reinvestigated after develop- ing a shunt infection. A pouch was discovered invaginating the floor of the third ventricle and filling slowly with CSF from the region of the interpeduncular cistern. Histology and mechanisms of this pouch formation are discussed. Arachnoid lined cysts in the subarachnoid space There was a family history of one sibling with spina form about one percent of space occupying intra- bifida and two normal siblings aged four and six cranial lesions in several series.'- These cysts may years. He was admitted to the Midland Centre for be separate from the normal subarachnoid space or Neurosurgery and Neurology (MCNN) at the age of may communicate with it. The term cyst" may be one and a half years because his head had been guest. Protected by copyright. applied to a fluid collection which has no macro- increasing in size over the previous six months. It scopic connection with other fluid containing space was also noted that his arms and legs were stiff, that and pouch" to a fluid collection with one entrance he did not attempt to crawl and his vocabulary was or exit.4 Cavities containing cerebrospinal fluid limited to basic words only.
    [Show full text]
  • Susceptibility Weighted Imaging: a Novel Method to Determine the Etiology of Aqueduct Stenosis
    THIEME 44 Techniques in Neurosurgery Susceptibility Weighted Imaging: A Novel Method to Determine the Etiology of Aqueduct Stenosis Chanabasappa Chavadi1 Keerthiraj Bele1 Anand Venugopal1 Santosh Rai1 1 Department of Radiodiagnosis, Kasturba Medical College, Manipal Address for correspondence Chanabasappa Chavadi, DNB, Flat No. C- University, Mangalore, India 1-13, 3rd Floor, K.M.C Staff Quarters, Light House Hill Road, Mangalore 575001, India (e-mail: [email protected]). Indian Journal of Neurosurgery 2016;5:44–46. Abstract The stenosis of aqueduct of Sylvius (AS) is a very common cause of obstruction to cerebrospinal fluid. Multiple etiologies are proposed for this condition. Because treatment is specific for correctable disorder, assessment of etiology gains importance. A case of pediatric hydrocephalus was diagnosed with stenosis of AS on magnetic resonance imaging (MRI). Susceptibility-weighted imaging (SWI) demonstrated blooming in the distal aqueduct and lateral ventricle, which was not Keywords seen on routine MRI sequences. The findings suggest that old hemorrhage is a cause ► susceptibility of chemical arachnoiditis and adhesions causing aqueduct stenosis and weighted imaging hydrocephalus. To our knowledge literature is very scarce, wherein SWI is being ► aqueductal stenosis used to confirm blood products as a cause of aqueduct stenosis; hence SWI should be ► magnetic resonance routine protocol in imaging of pediatric hydrocephalus. Etiology, clinical presentation, imaging role of imaging, and, in particular, SWI in evaluation of aqueductal stenosis is ► hydrocephalus discussed. Introduction Case Report Aqueduct of Sylvius (AS) is the narrowest segment of the An 8-month-old child presented with increased head size, cerebrospinal fluid (CSF) pathway and is the most common site developmental delay, and an episode of seizure.
    [Show full text]
  • Congenital Disorders of Glycosylation from a Neurological Perspective
    brain sciences Review Congenital Disorders of Glycosylation from a Neurological Perspective Justyna Paprocka 1,* , Aleksandra Jezela-Stanek 2 , Anna Tylki-Szyma´nska 3 and Stephanie Grunewald 4 1 Department of Pediatric Neurology, Faculty of Medical Science in Katowice, Medical University of Silesia, 40-752 Katowice, Poland 2 Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland; [email protected] 3 Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, W 04-730 Warsaw, Poland; [email protected] 4 NIHR Biomedical Research Center (BRC), Metabolic Unit, Great Ormond Street Hospital and Institute of Child Health, University College London, London SE1 9RT, UK; [email protected] * Correspondence: [email protected]; Tel.: +48-606-415-888 Abstract: Most plasma proteins, cell membrane proteins and other proteins are glycoproteins with sugar chains attached to the polypeptide-glycans. Glycosylation is the main element of the post- translational transformation of most human proteins. Since glycosylation processes are necessary for many different biological processes, patients present a diverse spectrum of phenotypes and severity of symptoms. The most frequently observed neurological symptoms in congenital disorders of glycosylation (CDG) are: epilepsy, intellectual disability, myopathies, neuropathies and stroke-like episodes. Epilepsy is seen in many CDG subtypes and particularly present in the case of mutations
    [Show full text]
  • Polymicrogyria (PMG) ‘Many–Small–Folds’
    Polymicrogyria Dr Andrew Fry Clinical Senior Lecturer in Medical Genetics Institute of Medical Genetics, Cardiff [email protected] Polymicrogyria (PMG) ‘Many–small–folds’ • PMG is heterogeneous – in aetiology and phenotype • A disorder of post-migrational cortical organisation. PMG often appears thick on MRI with blurring of the grey-white matter boundary Normal PMG On MRI PMG looks thick but the cortex is actually thin – with folded, fused gyri Courtesy of Dr Jeff Golden, Pen State Unv, Philadelphia PMG is often confused with pachygyria (lissencephaly) Thick cortex (10 – 20mm) Axial MRI 4 cortical layers Lissencephaly Polymicrogyria Cerebrum Classical lissencephaly is due Many small gyri – often to under-migration. fused together. Axial MRI image at 7T showing morphological aspects of PMG. Guerrini & Dobyns Malformations of cortical development: clinical features and genetic causes. Lancet Neurol. 2014 Jul; 13(7): 710–726. PMG - aetiology Pregnancy history • Intrauterine hypoxic/ischemic brain injury (e.g. death of twin) • Intrauterine infection (e.g. CMV, Zika virus) TORCH, CMV PCR, [+deafness & cerebral calcification] CT scan • Metabolic (e.g. Zellweger syndrome, glycine encephalopathy) VLCFA, metabolic Ix • Genetic: Family history Familial recurrence (XL, AD, AR) Chromosomal abnormalities (e.g. 1p36 del, 22q11.2 del) Syndromic (e.g. Aicardi syndrome, Kabuki syndrome) Examin - Monogenic (e.g. TUBB2B, TUBA1A, GPR56) Array ation CGH Gene test/Panel/WES/WGS A cohort of 121 PMG patients Aim: To explore the natural history of PMG and identify new genes. Recruited: • 99 unrelated patients • 22 patients from 10 families 87% White British, 53% male ~92% sporadic cases (NB. ascertainment bias) Sporadic PMG • Array CGH, single gene and gene panel testing - then a subset (n=57) had trio-WES.
    [Show full text]
  • CONGENITAL ABNORMALITIES of the CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles Ffrench-Constant *I3
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_1.i3 on 1 March 2003. Downloaded from CONGENITAL ABNORMALITIES OF THE CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles ffrench-Constant *i3 J Neurol Neurosurg Psychiatry 2003;74(Suppl I):i3–i8 dvances in genetics and molecular biology have led to a better understanding of the control of central nervous system (CNS) development. It is possible to classify CNS abnormalities Aaccording to the developmental stages at which they occur, as is shown below. The careful assessment of patients with these abnormalities is important in order to provide an accurate prog- nosis and genetic counselling. c NORMAL DEVELOPMENT OF THE CNS Before we review the various abnormalities that can affect the CNS, a brief overview of the normal development of the CNS is appropriate. c Induction—After development of the three cell layers of the early embryo (ectoderm, mesoderm, and endoderm), the underlying mesoderm (the “inducer”) sends signals to a region of the ecto- derm (the “induced tissue”), instructing it to develop into neural tissue. c Neural tube formation—The neural ectoderm folds to form a tube, which runs for most of the length of the embryo. c Regionalisation and specification—Specification of different regions and individual cells within the neural tube occurs in both the rostral/caudal and dorsal/ventral axis. The three basic regions of copyright. the CNS (forebrain, midbrain, and hindbrain) develop at the rostral end of the tube, with the spinal cord more caudally. Within the developing spinal cord specification of the different popu- lations of neural precursors (neural crest, sensory neurones, interneurones, glial cells, and motor neurones) is observed in progressively more ventral locations.
    [Show full text]
  • Chiari Type II Malformation: Past, Present, and Future
    Neurosurg Focus 16 (2):Article 5, 2004, Click here to return to Table of Contents Chiari Type II malformation: past, present, and future KEVIN L. STEVENSON, M.D. Children’s Healthcare of Atlanta, Atlanta, Georgia Object. The Chiari Type II malformation (CM II) is a unique hindbrain herniation found only in patients with myelomeningocele and is the leading cause of death in these individuals younger than 2 years of age. Several theories exist as to its embryological evolution and recently new theories are emerging as to its treatment and possible preven- tion. A thorough understanding of the embryology, anatomy, symptomatology, and surgical treatment is necessary to care optimally for children with myelomeningocele and prevent significant morbidity and mortality. Methods. A review of the literature was used to summarize the clinically pertinent features of the CM II, with par- ticular attention to pitfalls in diagnosis and surgical treatment. Conclusions. Any child with CM II can present as a neurosurgical emergency. Expeditious and knowledgeable eval- uation and prompt surgical decompression of the hindbrain can prevent serious morbidity and mortality in the patient with myelomeningocele, especially those younger than 2 years old. Symptomatic CM II in the older child often pre- sents with more subtle findings but rarely in acute crisis. Understanding of CM II continues to change as innovative techniques are applied to this challenging patient population. KEY WORDS • Chiari Type II malformation • myelomeningocele • pediatric The CM II is uniquely associated with myelomeningo- four distinct forms of the malformation, including the cele and is found only in this population. Originally de- Type II malformation that he found exclusively in patients scribed by Hans Chiari in 1891, symptomatic CM II ac- with myelomeningocele.
    [Show full text]
  • Auditory Processing Disorders in Twins with Perisylvian Polymicrogyria
    Arq Neuropsiquiatr 2009;67(2-B):499-501 Clinical / Scientific note AUDITORY PROCESSING DISORDERS IN TWINS WITH PERISYLVIAN POLYMICROGYRIA Mirela Boscariol1, Vera Lúcia Garcia2, Catarina A. Guimarães3, Simone R.V. Hage4, Maria Augusta Montenegro5, Fernando Cendes6, Marilisa M. Guerreiro7 Bilateral perisylvian polymicrogyria is a malformation tigation was performed in a 2.0 T scanner (Elscint Prestige) with of cortical development due to abnormal late neuronal posterior multiplanar reconstruction and curvilinear reformat- migration or abnormal cortical organization around the ting in 3D magnetic resonance imaging (MRI). sylvian fissure1. The language assessment considered the following aspects: The severity of the clinical manifestations correlates phonological, morphosyntactic, semantic and pragmatic produc- with the extent of the lesion. Therefore, the term diffuse tion. Standard and non-standard speech protocols were used: polymicrogyria is applied when the cortical malforma- sample of free speech; ABFW – Children Language Test with tion spreads around the entire sylvian fissure, and restrict- phonological and vocabulary tests3. Reading/writing evaluation ed polymicrogyria is applied when polymicrogyria occurs included: sample of free writing, Phonologic Skill Test4, School only in the posterior part of the parietal region. The re- Performance Test5, non-words reading and writing, oral speed stricted form is also called bilateral posterior parietal reading, and text understanding. polymicrogyria and appears to be associated with a genet- The peripheral audiological capability was assessed with au- ic predisposition and soft clinical features (such as speech diometry, speech reception thresholds and acoustic impedance delay and dysarthria) when compared to the diffuse form tests. An acoustic cabin was used with an AC-30 audiometer (In- of polymicrogyria.
    [Show full text]
  • Supratentorial Brain Malformations
    Supratentorial Brain Malformations Edward Yang, MD PhD Department of Radiology Boston Children’s Hospital 1 May 2015/ SPR 2015 Disclosures: Consultant, Corticometrics LLC Objectives 1) Review major steps in the morphogenesis of the supratentorial brain. 2) Categorize patterns of malformation that result from failure in these steps. 3) Discuss particular imaging features that assist in recognition of these malformations. 4) Reference some of the genetic bases for these malformations to be discussed in greater detail later in the session. Overview I. Schematic overview of brain development II. Abnormalities of hemispheric cleavage III. Commissural (Callosal) abnormalities IV. Migrational abnormalities - Gray matter heterotopia - Pachygyria/Lissencephaly - Focal cortical dysplasia - Transpial migration - Polymicrogyria V. Global abnormalities in size (proliferation) VI. Fetal Life and Myelination Considerations I. Schematic Overview of Brain Development Embryology Top Mid-sagittal Top Mid-sagittal Closed Neural Tube (4 weeks) Corpus Callosum Callosum Formation Genu ! Splenium Cerebral Hemisphere (11-20 weeks) Hemispheric Cleavage (4-6 weeks) Neuronal Migration Ventricular/Subventricular Zones Ventricle ! Cortex (8-24 weeks) Neuronal Precursor Generation (Proliferation) (6-16 weeks) Embryology From ten Donkelaar Clinical Neuroembryology 2010 4mo 6mo 8mo term II. Abnormalities of Hemispheric Cleavage Holoprosencephaly (HPE) Top Mid-sagittal Imaging features: Incomplete hemispheric separation + 1)1) No septum pellucidum in any HPEs Closed Neural
    [Show full text]
  • A Recommended Workflow Methodology in the Creation of An
    Manson et al. BMC Medical Imaging (2015) 15:44 DOI 10.1186/s12880-015-0088-6 TECHNICAL ADVANCE Open Access A recommended workflow methodology in the creation of an educational and training application incorporating a digital reconstruction of the cerebral ventricular system and cerebrospinal fluid circulation to aid anatomical understanding Amy Manson1,2, Matthieu Poyade2 and Paul Rea1* Abstract Background: The use of computer-aided learning in education can be advantageous, especially when interactive three-dimensional (3D) models are used to aid learning of complex 3D structures. The anatomy of the ventricular system of the brain is difficult to fully understand as it is seldom seen in 3D, as is the flow of cerebrospinal fluid (CSF). This article outlines a workflow for the creation of an interactive training tool for the cerebral ventricular system, an educationally challenging area of anatomy. This outline is based on the use of widely available computer software packages. Methods: Using MR images of the cerebral ventricular system and several widely available commercial and free software packages, the techniques of 3D modelling, texturing, sculpting, image editing and animations were combined to create a workflow in the creation of an interactive educational and training tool. This was focussed on cerebral ventricular system anatomy, and the flow of cerebrospinal fluid. Results: We have successfully created a robust methodology by using key software packages in the creation of an interactive education and training tool. This has resulted in an application being developed which details the anatomy of the ventricular system, and flow of cerebrospinal fluid using an anatomically accurate 3D model.
    [Show full text]
  • Characterization of an Inherited Neurologic Syndrome in Toyger Cats with Forebrain Commissural Malformations, Ventriculomegaly and Interhemispheric Cysts
    UC Davis UC Davis Previously Published Works Title Characterization of an Inherited Neurologic Syndrome in Toyger Cats with Forebrain Commissural Malformations, Ventriculomegaly and Interhemispheric Cysts. Permalink https://escholarship.org/uc/item/2468j30c Journal Journal of veterinary internal medicine, 30(2) ISSN 0891-6640 Authors Keating, MK Sturges, BK Sisó, S et al. Publication Date 2016-03-01 DOI 10.1111/jvim.13836 Peer reviewed eScholarship.org Powered by the California Digital Library University of California J Vet Intern Med 2016;30:617–626 Characterization of an Inherited Neurologic Syndrome in Toyger Cats with Forebrain Commissural Malformations, Ventriculomegaly and Interhemispheric Cysts M.K. Keating, B.K. Sturges, S. Siso, E.R. Wisner, E.K. Creighton, and L.A. Lyons Background: In children, frequent congenital malformations with concomitant agenesis of the corpus callosum are diag- nosed by neuroimaging in association with other cerebral malformations, including interhemispheric cysts and ventricu- lomegaly. Similar studies providing full characterization of brain defects by in vivo magnetic resonance imaging (MRI), and correlations with the pertinent anatomic pathologic examinations are absent in veterinary medicine. Hypothesis/Objectives: Congenital brain defects underlie the neurologic signs observed in Toyger cats selectively bred for a short ear phenotype. Animals: Using proper pedigree analysis and genetic evaluations, 20 related Oriental-derived crossbred Toyger cats were evaluated. Seven clinically healthy (carrier) cats and 13 clinically affected cats that had neurologic signs, short ear phenotype and concomitant complex brain anomalies were studied. Methods: Complete physical and neurologic examinations and MRI were performed in all clinically healthy and affected cats. Postmortem and histopathologic examinations were performed in 8 affected cats and 5 healthy cats.
    [Show full text]
  • Craniopharyngioma in the Third Ventricle: Necropsy Findings and Histogenesis
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.50.8.1053 on 1 August 1987. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry 1987;50:1053-1056 Short report Craniopharyngioma in the third ventricle: necropsy findings and histogenesis KATSUZO KUNISHIO, YUJI YAMAMOTO, NORIO SUNAMI, SHOJI ASARI, TADAATSU AKAGI,* YUJI OHTSUKI* From the Department ofNeurological Surgery, Matsuyama Shimin Hospital, Ehime and Department Of Pathology,* Kochi Medical School, Kochi, Japan SUMMARY A case of craniopharyngioma confined within the third ventricle with necropsy is re- ported. A stalk-like structure in this tumour was present in the wall of the third ventricle at its base. It is suggested that this tumour might have arisen from the remnants of Rathke's pouch persisting in the tuber cinereum. Craniopharyngiomas have been considered to be de- or slightly low-density mass (mean Hounsfield units (HU): rived from remnants of Rathke's pouch, which is 30) occupying the third ventricle, and the lateral ventricles Protected by copyright. thought to lie in the superior aspect of the pituitary were dilated. With contrast medium there was homogeneous enhancement (mean HU: 68) of the entire mass situated in stalk and infundibulum. They commonly occupy the the third ventricle. Coronal CT scans showed that an en- suprasellar cistern and may occasionally spread into hanced mass seemed to be separated from the sella turcica the anterior, middle, or posterior cranial fossae, as and confined to the third ventricle. Conray ventriculography well as into the sella turcica. Craniopharyngioma showed a large mass almost completely filling the anterior confined to the third ventricle, however, is rare.
    [Show full text]