A Suprasellar Subarachnoid Pouch; Aetiological Considerations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anatomical Variations of Circle of Willis - a Cadaveric Study
International Surgery Journal Singh R et al. Int Surg J. 2017 Apr;4(4):1249-1258 http://www.ijsurgery.com pISSN 2349-3305 | eISSN 2349-2902 DOI: http://dx.doi.org/10.18203/2349-2902.isj20171016 Original Research Article Anatomical variations of circle of Willis - a cadaveric study Ramanuj Singh, Ajay Babu Kannabathula*, Himadri Sunam, Debajani Deka Department of Anatomy, Gouri devi Institute of Medical Sciences and Hospital, Durgapur, West Bengal, India Received: 02 March 2017 Accepted: 09 March 2017 *Correspondence: Dr. Ajay Babu Kannabathula, E-mail: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: The circle of Willis (CW) is a vascular network formed at the base of skull in the interpeduncular fossa. Its anterior part is formed by the anterior cerebral artery, from either side. Anterior communicating artery connects the right and left anterior cerebral arteries. Posteriorly, the basilar artery divides into right and left posterior cerebral arteries and each join to ipsilateral internal carotid artery through a posterior communicating artery. Anterior communicating artery and posterior communicating arteries are important component of circle of Willis, acts as collateral channel to stabilize blood flow. In the present study, anatomical variations in the circle of Willis were noted. Methods: 75 apparently normal formalin fixed brain specimens were collected from human cadavers. 55 Normal anatomical pattern and 20 variations of circle of Willis were studied. -
Susceptibility Weighted Imaging: a Novel Method to Determine the Etiology of Aqueduct Stenosis
THIEME 44 Techniques in Neurosurgery Susceptibility Weighted Imaging: A Novel Method to Determine the Etiology of Aqueduct Stenosis Chanabasappa Chavadi1 Keerthiraj Bele1 Anand Venugopal1 Santosh Rai1 1 Department of Radiodiagnosis, Kasturba Medical College, Manipal Address for correspondence Chanabasappa Chavadi, DNB, Flat No. C- University, Mangalore, India 1-13, 3rd Floor, K.M.C Staff Quarters, Light House Hill Road, Mangalore 575001, India (e-mail: [email protected]). Indian Journal of Neurosurgery 2016;5:44–46. Abstract The stenosis of aqueduct of Sylvius (AS) is a very common cause of obstruction to cerebrospinal fluid. Multiple etiologies are proposed for this condition. Because treatment is specific for correctable disorder, assessment of etiology gains importance. A case of pediatric hydrocephalus was diagnosed with stenosis of AS on magnetic resonance imaging (MRI). Susceptibility-weighted imaging (SWI) demonstrated blooming in the distal aqueduct and lateral ventricle, which was not Keywords seen on routine MRI sequences. The findings suggest that old hemorrhage is a cause ► susceptibility of chemical arachnoiditis and adhesions causing aqueduct stenosis and weighted imaging hydrocephalus. To our knowledge literature is very scarce, wherein SWI is being ► aqueductal stenosis used to confirm blood products as a cause of aqueduct stenosis; hence SWI should be ► magnetic resonance routine protocol in imaging of pediatric hydrocephalus. Etiology, clinical presentation, imaging role of imaging, and, in particular, SWI in evaluation of aqueductal stenosis is ► hydrocephalus discussed. Introduction Case Report Aqueduct of Sylvius (AS) is the narrowest segment of the An 8-month-old child presented with increased head size, cerebrospinal fluid (CSF) pathway and is the most common site developmental delay, and an episode of seizure. -
Subarachnoid Trabeculae: a Comprehensive Review of Their Embryology, Histology, Morphology, and Surgical Significance Martin M
Literature Review Subarachnoid Trabeculae: A Comprehensive Review of Their Embryology, Histology, Morphology, and Surgical Significance Martin M. Mortazavi1,2, Syed A. Quadri1,2, Muhammad A. Khan1,2, Aaron Gustin3, Sajid S. Suriya1,2, Tania Hassanzadeh4, Kian M. Fahimdanesh5, Farzad H. Adl1,2, Salman A. Fard1,2, M. Asif Taqi1,2, Ian Armstrong1,2, Bryn A. Martin1,6, R. Shane Tubbs1,7 Key words - INTRODUCTION: Brain is suspended in cerebrospinal fluid (CSF)-filled sub- - Arachnoid matter arachnoid space by subarachnoid trabeculae (SAT), which are collagen- - Liliequist membrane - Microsurgical procedures reinforced columns stretching between the arachnoid and pia maters. Much - Subarachnoid trabeculae neuroanatomic research has been focused on the subarachnoid cisterns and - Subarachnoid trabecular membrane arachnoid matter but reported data on the SAT are limited. This study provides a - Trabecular cisterns comprehensive review of subarachnoid trabeculae, including their embryology, Abbreviations and Acronyms histology, morphologic variations, and surgical significance. CSDH: Chronic subdural hematoma - CSF: Cerebrospinal fluid METHODS: A literature search was conducted with no date restrictions in DBC: Dural border cell PubMed, Medline, EMBASE, Wiley Online Library, Cochrane, and Research Gate. DL: Diencephalic leaf Terms for the search included but were not limited to subarachnoid trabeculae, GAG: Glycosaminoglycan subarachnoid trabecular membrane, arachnoid mater, subarachnoid trabeculae LM: Liliequist membrane ML: Mesencephalic leaf embryology, subarachnoid trabeculae histology, and morphology. Articles with a PAC: Pia-arachnoid complex high likelihood of bias, any study published in nonpopular journals (not indexed PPAS: Potential pia-arachnoid space in PubMed or MEDLINE), and studies with conflicting data were excluded. SAH: Subarachnoid hemorrhage SAS: Subarachnoid space - RESULTS: A total of 1113 articles were retrieved. -
A Recommended Workflow Methodology in the Creation of An
Manson et al. BMC Medical Imaging (2015) 15:44 DOI 10.1186/s12880-015-0088-6 TECHNICAL ADVANCE Open Access A recommended workflow methodology in the creation of an educational and training application incorporating a digital reconstruction of the cerebral ventricular system and cerebrospinal fluid circulation to aid anatomical understanding Amy Manson1,2, Matthieu Poyade2 and Paul Rea1* Abstract Background: The use of computer-aided learning in education can be advantageous, especially when interactive three-dimensional (3D) models are used to aid learning of complex 3D structures. The anatomy of the ventricular system of the brain is difficult to fully understand as it is seldom seen in 3D, as is the flow of cerebrospinal fluid (CSF). This article outlines a workflow for the creation of an interactive training tool for the cerebral ventricular system, an educationally challenging area of anatomy. This outline is based on the use of widely available computer software packages. Methods: Using MR images of the cerebral ventricular system and several widely available commercial and free software packages, the techniques of 3D modelling, texturing, sculpting, image editing and animations were combined to create a workflow in the creation of an interactive educational and training tool. This was focussed on cerebral ventricular system anatomy, and the flow of cerebrospinal fluid. Results: We have successfully created a robust methodology by using key software packages in the creation of an interactive education and training tool. This has resulted in an application being developed which details the anatomy of the ventricular system, and flow of cerebrospinal fluid using an anatomically accurate 3D model. -
Characterization of an Inherited Neurologic Syndrome in Toyger Cats with Forebrain Commissural Malformations, Ventriculomegaly and Interhemispheric Cysts
UC Davis UC Davis Previously Published Works Title Characterization of an Inherited Neurologic Syndrome in Toyger Cats with Forebrain Commissural Malformations, Ventriculomegaly and Interhemispheric Cysts. Permalink https://escholarship.org/uc/item/2468j30c Journal Journal of veterinary internal medicine, 30(2) ISSN 0891-6640 Authors Keating, MK Sturges, BK Sisó, S et al. Publication Date 2016-03-01 DOI 10.1111/jvim.13836 Peer reviewed eScholarship.org Powered by the California Digital Library University of California J Vet Intern Med 2016;30:617–626 Characterization of an Inherited Neurologic Syndrome in Toyger Cats with Forebrain Commissural Malformations, Ventriculomegaly and Interhemispheric Cysts M.K. Keating, B.K. Sturges, S. Siso, E.R. Wisner, E.K. Creighton, and L.A. Lyons Background: In children, frequent congenital malformations with concomitant agenesis of the corpus callosum are diag- nosed by neuroimaging in association with other cerebral malformations, including interhemispheric cysts and ventricu- lomegaly. Similar studies providing full characterization of brain defects by in vivo magnetic resonance imaging (MRI), and correlations with the pertinent anatomic pathologic examinations are absent in veterinary medicine. Hypothesis/Objectives: Congenital brain defects underlie the neurologic signs observed in Toyger cats selectively bred for a short ear phenotype. Animals: Using proper pedigree analysis and genetic evaluations, 20 related Oriental-derived crossbred Toyger cats were evaluated. Seven clinically healthy (carrier) cats and 13 clinically affected cats that had neurologic signs, short ear phenotype and concomitant complex brain anomalies were studied. Methods: Complete physical and neurologic examinations and MRI were performed in all clinically healthy and affected cats. Postmortem and histopathologic examinations were performed in 8 affected cats and 5 healthy cats. -
Endoscopic Third Ventriculostomy : Success and Failure
Review Article J Korean Neurosurg Soc 60 (3) : 306-314, 2017 https://doi.org/10.3340/jkns.2017.0202.013 pISSN 2005-3711 eISSN 1598-7876 Endoscopic Third Ventriculostomy : Success and Failure Chandrashekhar E. Deopujari, M.Ch., Vikram S. Karmarkar, DNB, Salman T. Shaikh, M.S. Department of Neurosurgery, Bombay Hospital Institute of Medical Science, Mumbai, India Endoscopic third ventriculostomy (ETV) has now become an accepted mode of hydrocephalus treatment in children. Varying degrees of success for the procedure have been reported depending on the type and etiology of hydrocephalus, age of the patient and certain technical parameters. Review of these factors for predictability of success, complications and validation of success score is presented. Key Words : Hydrocephalus · Ventriculostomy · Cerebrospinal fluid shunt. INTRODUCTION neurosurgical community to look for other solutions. This came in the form of shunts devised by Nulsen and Spitz work- Hydrocephalus is a spectrum of conditions where there is a ing with an engineer Holter in the 1950’s44). This technology mismatch of cerebrospinal fluid (CSF) production and ab- was immediately accepted and has further evolved and ma- sorption, with resultant enlarged ventricles. There are many tured to become the standard of care for all types of hydro- proposed classifications for hydrocephalus. Most commonly cephalus. However, in spite of several innovations and techni- in use is the obstructive (non-communicating) and the com- cal modifications, shunts are not without complications and municating type7). In the obstructive variety, the block is have remained a constant source of concern for the child, par- proximal to the arachnoid granulations and may be further ents and the family. -
Neuroanatomy Dr
Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Prof Yousry 10/15/17 A F B K G C H D I M E N J L Ventricular System, The Cerebrospinal Fluid, and the Blood Brain Barrier The lateral ventricle Interventricular foramen It is Y-shaped cavity in the cerebral hemisphere with the following parts: trigone 1) A central part (body): Extends from the interventricular foramen to the splenium of corpus callosum. 2) 3 horns: - Anterior horn: Lies in the frontal lobe in front of the interventricular foramen. - Posterior horn : Lies in the occipital lobe. - Inferior horn : Lies in the temporal lobe. rd It is connected to the 3 ventricle by body interventricular foramen (of Monro). Anterior Trigone (atrium): the part of the body at the horn junction of inferior and posterior horns Contains the glomus (choroid plexus tuft) calcified in adult (x-ray&CT). Interventricular foramen Relations of Body of the lateral ventricle Roof : body of the Corpus callosum Floor: body of Caudate Nucleus and body of the thalamus. Stria terminalis between thalamus and caudate. (connects between amygdala and venteral nucleus of the hypothalmus) Medial wall: Septum Pellucidum Body of the fornix (choroid fissure between fornix and thalamus (choroid plexus) Relations of lateral ventricle body Anterior horn Choroid fissure Relations of Anterior horn of the lateral ventricle Roof : genu of the Corpus callosum Floor: Head of Caudate Nucleus Medial wall: Rostrum of corpus callosum Septum Pellucidum Anterior column of the fornix Relations of Posterior horn of the lateral ventricle •Roof and lateral wall Tapetum of the corpus callosum Optic radiation lying against the tapetum in the lateral wall. -
Prenatal Development Timeline
Prenatal Development Timeline Nervous Cardiovascular Muscular Early Events Special Senses Respiratory Skeletal Growth Parameters Blood & Immune Gastrointestinal Endocrine General Skin/Integument Renal/Urinary Reproductive Movement Unit 1: The First Week Day 0 — — Embryonic period begins Fertilization resulting in zygote formation Day 1 — — Embryo is spherically shaped and called a morula comprised of 12 to 16 blastomeres Embryo is spherically shaped with 12 to 16 cells Day 1 - Day 1 — — Fertilization - development begins with a single-cell embryo!!! Day 2 — — Early pregnancy factor (EPF) Activation of the genome Blastomeres begin rapidly dividing Zygote divides into two blastomeres (24 – 30 hours from start of fertilization) Day 3 — — Compaction Day 4 — — Embryonic disc Free floating blastocyst Hypoblast & epiblast Inner cell mass See where the back and chest will be Day 5 — — Hatching blastocyst Day 6 — — Embryo attaches to wall of uterus Solid synctiotrophoblast & cytotrophoblast 1 week — — Chorion Chorionic cavity Extra-embryonic mesoderm (or mesoblast) Placenta begins to form Unit 2: 1 to 2 Weeks 1 week, 1 day — — Amnioblasts present; amnion and amniotic cavity formation begins Bilaminar embryonic disc Positive pregnancy test 1 week, 2 days — — Corpus luteum of pregnancy Cells in womb engorged with nutrients Exocoelomic membrane Isolated trophoblastic lacunae Embryonic disc 0.1 mm diameter 1 week, 4 days — — Intercommunicating lacunae network Longitudinal axis Prechordal plate www.ehd.org 1 of 33 Trophoblastic vascular circle 1 week, -
Cribside Neurosonography: Real-Time Sonography for Intracranial Investigation of the Neonate
501 Cribside Neurosonography: Real-Time Sonography for Intracranial Investigation of the Neonate Mary K. Edwards 1 A prospective study was made of 94 real-time sonographic sector scans of 56 David L. Brown 1 neonates in a 6 month period. The examinations were performed using the anterior Jans Muller2 fontanelle as an acoustic window. In 17 cases, computed tomography (CT) head scans were available for comparison. In no case did the CT and sonographic examination Charles B. Grossman 1 disagree as to the size of the lateral ventricles. Abnormalities detected by sonography Gonzalo T. Chua 1 include ventriculomegaly, intracerebral hematomas, a congenital glioma, and several cystic lesions. Sonographic sector scanning produces excellent, detailed images of dilated lateral and third ventricles, uses no ionizing radiation, is less expensive than CT, and can be performed in the isolette, minimizing the risk of hypoxia and hypother mia. At Methodist Hospital Graduate Medical Center, sonography has replaced CT as the initial method of investigation of ventricular size. CT plays a complementary role in the evaluation of the posterior fossa, intracranial hemorrhage, and mass lesions. Since the first report of the clinical application of echoencephalography in 1956 [1], there has been much interest in the sonographic demonstration of intracranial pathology [2, 3]. Recent advances in sonographic technology have produced high resolution contact scanners and the Octason, an automated water delay scanner [1 , 4, 5]. These instruments produce images of the neonatal intracranial contents with sufficient detail to permit accurate evaluation of ventri culomegaly and certain other intracranial lesions [1 , 4-6]. The development of a compact transducer head for wide-angle real-time sector scanning (ATL real time digital scanner) has permitted the use of the anterior fontanelle as an acoustic window. -
CT and MR Patterns That Differ from Aneurysmal Rupture
829 Nonaneurysmal Perimesencephalic Subarachnoid Hemorrhage: CT and MR Patterns That Differ from Aneurysmal Rupture Gabriel J. E. Rinkel 1 We describe a characteristic distribution of cisternal blood in 52 patients with non Eelco F. M. Wijdicks1 aneurysmal subarachnoid hemorrhage proved by a normal angiogram. On CT, the center Marinus Vermeulen2 of the bleeding was located immediately anterior to the brainstem in all patients, which Lino M. P. Ramos3 was confirmed in four patients who were studied with MR imaging. Extension to the Herve L. J. T anghe4 ambient cisterns or to the basal parts of the sylvian fissures was common, but the lateral sylvian or anterior interhemispheric fissures were never completely filled with Djo Hasan2 3 blood. Rupture into the ventricular system did not occur. MR demonstrated downward Linda C. Meiners extension of the blood anterior to the brainstem as far as the medulla, but failed to 1 Jan van Gijn detect the source of hemorrhage. Our aim was to determine whether this so-called nonaneurysmal perimesencephalic hemorrhage could be distinguished from aneurysmal subarachnoid hemorrhage on early CT scans. Two neuroradiologists were shown a consecutive series of 221 CT scans of patients with subarachnoid hemorrhage who subsequently underwent angiography. Only one patient with a basilar artery aneurysm on angiography was incorrectly labeled by both observers as having a nonaneurysmal perimesencephalic paHern of hemorrhage. The high predictive value of the perimesencephalic paHern of hemorrhage for a normal angiogram (0.95 and 0.94, respectively, for the two observers) and the excellent interobserver agreement (K 0.87) demonstrate that nonaneurysmal perimesencephalic hemorrhage can be distinguished on CT in the majority of patients. -
Endoscopic Third Ventriculostomy – Effectiveness of the Procedure for Obstructive Hydrocephalus with Different Etiology in Adults
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository Original paper Videosurgery Endoscopic third ventriculostomy – effectiveness of the procedure for obstructive hydrocephalus with different etiology in adults Krzysztof Stachura, Ewelina Grzywna, Borys M. Kwinta, Marek M. Moskała Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Krakow, Poland Videosurgery Miniinv 2014; 9 (4): 586–595 DOI: 10.5114/wiitm.2014.46076 Abstract Introduction: After a time of domination of shunt placement, endoscopic third ventriculostomy (ETV) has been in- creasingly applied in treatment of obstructive hydrocephalus. Aim: To assess the effectiveness of ETV in treatment of adults with three-ventricle hydrocephalus of different etiology. Material and methods: Ninety-six patients with obstructive hydrocephalus were studied: 24 with primary aque- ductal stenosis, 61 with brain tumor, and 2 with basilar tip aneurysm. In 9 patients the etiology of hydrocephalus remained undetermined. The assessment of treatment results was based on clinical and radiological criteria. Results: Clinical improvement was observed in 74 (77.1%) patients, and radiological improvement in 52 (54.2%). One patient died. Follow-up of 24 patients with primary aqueductal stenosis has shown that in 20 (83.3%) of them clin- ical improvement has been stable, and in 14 (58.3%) radiological improvement has been observed. Two patients re- quired shunt placement due to hydrocephalus recurrence 12–24 months after the ETV procedure. Among 9 patients with undefined hydrocephalus, 3 required shunt placement within 6 months after ETV (2 shunted previously). Endo- scopic third ventriculostomy treatment in a patient with hydrocephalus caused by basilar tip aneurysm succeeded. -
CENTRAL NERVOUS SYSTEM Composed from Spinal Cord and Brain
CENTRAL NERVOUS SYSTEM composed from spinal cord and brain SPINAL CORD − is developmentally the oldest part of CNS − is long about 45 cm in adult − fills upper 2/3 of vertebral canal cranial border at level of: foramen magnum, pyramidal decussation, exit of first pair of spinal nerves caudal border: level of L1 vertebra – medullary cone – filum terminale made by pia mater (ends at level of S2 vertebra) – spinal roots below L1 vertebra form cauda equina two enlargements: • cervical enlargement (CV – ThI): origin of nerves for upper extremity – brachial plexus • lumbosacral enlargement (LI – SII): origin of nerves for lower extremity – lumbosacral plexus Spinal segment is part of spinal cord where 1 pair of spinal n. exits. Spinal cord consists of 31 spinal segments and 31 pairs of spinal nn.: 8 cervical, 12 thoracic, 5 lumbar, 1 coccygeal. Spinal nn. leave spinal cord through íntervertebral foramens. Denticulate ligg. attach spinal segments to vertebral canal. Dermatome is part of skin innervated by 1 spinal nerve. external features: • anterior median fissure • anterolateral sulcus – exits of anterior roots of spinal nn. (laterally to anterior median fissure) • posterolateral sulcus – exits of posterior roots of spinal nn. • posterior median sulcus • posterior intermediate sulcus internal features: White matter • anterior funiculus (between anterior median fissure and anterolateral sulcus) • lateral funiculus (between anterolateral and posterolateral sulci) • posterior funiculus (between posterolateral sulcus and posterior median sulcus) is divided by posterior intermediate sulcus to: − gracile fasciculus – medial one − cuneate fasciculus – lateral one, both for sensory tracts of fine sensation White matter of spinal cord contains fibres of ascending and descending nerve tracts.