1 a Calculation of the Environmental Footprint of a Granular Activated Carbon Regeneration Facility Katherine He ABSTRACT the U

Total Page:16

File Type:pdf, Size:1020Kb

1 a Calculation of the Environmental Footprint of a Granular Activated Carbon Regeneration Facility Katherine He ABSTRACT the U Katherine He Environmental Footprint of Regenerating GAC Spring 2012 A Calculation of the Environmental Footprint of a Granular Activated Carbon Regeneration Facility Katherine He ABSTRACT The U.S. Environmental Protection Agency (EPA) Superfund Division is responsible for maintaining a high standard of environmental quality, and thus must deal with the environment impacts of its own remedial activities. The regeneration of granular activated carbon (GAC), a substance used to purify contaminated water, is one example of a remediation activity with substantial environmental impacts. The objective of my project is to calculate the environmental footprint of GAC regeneration at the Siemens Reactivation facility in Parker, Arizona. I calculated the electricity usage, natural gas usage, potable water usage, employee gasoline usage, and wastewater production using information from site diagrams, facility process maps, and literature searches. I converted these values into units of CO2e, NOx, SOx, PM10, and HAP using conversion values from the EPA Methodology for Understanding and Reducing a Project's Environmental Footprint. I found that the largest environmental impact resulted from natural gas consumption and electricity usage in the carbon regeneration building. The selection of context- dependent conversion factors greatly impacted the accuracy of my results. Using the results from my GAC environmental impact assessment, remedial project managers can more effectively apply green remediation principles to their projects. KEYWORDS remediation, carbon footprint, climate change, Environmental Protection Agency (EPA), Superfund 1 Katherine He Environmental Footprint of Regenerating GAC Spring 2012 INTRODUCTION The U.S. Environmental Protection Agency (EPA) is responsible for monitoring and enforcing a high standard of environmental quality, and thus must also regulate the environmental impacts of its own remedial activities (EPA 2011a). The EPA Superfund program, established in response to human-induced environmental disasters in the 1970s, initiates and executes cleanup of abandoned hazardous waste sites, termed “Superfund” sites. The multistep Superfund cleanup process includes conducting rigorous site assessments, designing specific remediation strategies, and constructing contaminant profiles (EPA 2011b). Remedial activities also have their own negative environmental impacts. The Superfund Program has acknowledged the potential environmental impact of its operations and as a result has developed a methodology to quantify the impacts of remediation projects and processes. This method outlines a process to estimate environmental impacts of specific remediation activities in all steps of the Superfund cleanup process (EPA 2012). The methodology investigates the extent of impacts associated with energy usage, water usage, material inputs, and waste discharge (ibid.). Superfund projects can last decades due to the complexity of projects and the EPA goal of sustained environmental protection in remediated sites (EPA 2011b). Consequently, these long-term cleanup projects can have substantial long-term environmental impacts (ibid.). For example, the Iron Mountain Mine cleanup project has cost nearly USD 55.5 million and has altered natural waterway trajectories to facilitate contaminant management (Region 9: Superfund 2011). EPA diverted streams loaded with heavy metals from the mine site to a water treatment plant. This diversion of water impacted the benthic invertebrate ecology and water quality of nearby riparian ecosystems (EPA 2004). These impacts were a direct result of the EPA-initiated remediation activities. The environmental footprint calculator used to estimate these and other impacts is currently being developed (Scheuermann, personal communication). Due to the novelty of the methodology and calculator, environmental impact values of many common remediation strategies incorporated in the footprint calculator are incomplete. The regeneration of granular activated carbon (GAC) is one example of a Superfund site remediation activity whose calculated environmental footprint is incomplete. Activated carbon, a porous carbon-rich material, is used to filter harmful volatile organic compounds (VOCs) from contaminated water (Cannon et al. 1994). It has enormous adsorptive potential because it has the 2 Katherine He Environmental Footprint of Regenerating GAC Spring 2012 largest surface area to mass ratio of any known substance (Mohan and Singh 2005). When contaminated water is poured into a matrix of GAC, the contaminants are attracted to the GAC’s large surface area and are captured in the matrix (ibid.). Activated carbon is produced by heating various materials like coal, coconut shells, and bone to temperatures of 1000 °C (Mohan and Singh 2005, Bayer 2005). After use in water treatment, GAC can be regenerated through exposure to temperatures up to 800 °C in the presence of a mildly oxidative atmosphere (provided by steam and/or carbon dioxide). The heat and oxidative conditions vaporize the VOCs, which may be vented to the atmosphere in low concentrations (San Miguel et al. 2001). The regeneration of GAC plays an important role in decreasing the demand for creation of virgin, or previously unused, GAC (San Miguel et al. 2001). This recycling process has many ecological benefits such as reducing the need for new GAC, but the recycling process could possibly be inefficient and more polluting than creating new GAC. The comparison between the environmental impacts of new GAC and recycled GAC is crucial to choosing an alternative that best promotes environmental sustainability. A preliminary environmental footprint of GAC regeneration has already been calculated, but it only quantifies electricity usage, natural gas usage, water usage, and wastewater discharged, and does not account for many resource inputs of machines used in the regeneration process (Scheuermann, personal communication). Thus, there is a need to improve the estimated environmental footprint of the GAC regeneration process to better reflect all of its consequences. The objective of my project is to refine the current calculations of the environmental footprint of GAC regeneration to provide a more accurate environmental assessment tool. This objective will help answer the broader research question of how ecologically sustainable remediation methods can be implemented in Superfund site remedy decision models. To accomplish this research objective, I will recalculate the results from the existing environmental impact analysis to double-check previously calculated values and to include categories that are inclusive of different emission categories. I will compile my results and present them to the EPA Superfund Division. 3 Katherine He Environmental Footprint of Regenerating GAC Spring 2012 BACKGROUND The Siemens Water Technologies Corporation Parker Reactivation Facility in Parker, Arizona reactivates spent carbon using a thermal regeneration process: spent GAC is heated in a reactivation furnace, vaporizing the contaminants on the carbon. These contaminants are filtered from the furnace exhaust and vented to the atmosphere at regulated levels (Siemens 2007). The facility processes both vapor phase and liquid phase carbon with and without chlorinated contaminants. This distinction is important because different types of spent GAC have different resource consumption requirements (ibid.). In addition to the carbon regeneration facility, the Siemens facility has on-site support buildings including a carbon product warehouse, a drum storage warehouse, and administrative offices (ibid.). Activities that support the carbon regeneration facility are emissions monitoring, on-site and off-site wastewater treatment, employee transportation, and laboratory analysis (to determine the contaminant composition). The facility is currently undergoing a permitting process and has released a permit application that includes information about the layout and specifications of their machines and buildings (Siemens 2007). This permit application was a major source of information for my study. METHODS I separated the environmental impacts into six components: (1) electricity impacts, (2) natural gas impacts, (3) water impacts, (4) transportation impacts, (5) laboratory analysis, and (6) treatment chemicals. I calculated CO2 emissions, NOx emissions, SOx emissions, PM10 emissions, and hazardous air pollutant (HAP) emissions for each component. I used Excel spreadsheets to organize my data. General assumptions Data in the process maps from the Siemens permit application was separated by carbon phase (vapor versus liquid) and carbon chlorination (non-chlorinated versus chlorinated). I 4 Katherine He Environmental Footprint of Regenerating GAC Spring 2012 assumed a breakdown of 25% liquid phase non-chlorinated carbon, 25% liquid phase chlorinated carbon, 25% vapor phase non-chlorinated carbon, and 25% vapor phase chlorinated carbon (Scheuermann, personal communication). I applied a 0.9 capacity factor to all processes in the regeneration building by multiplying final spent carbon and resource consumption estimates by 0.9 (Scheuermann, personal communication). This capacity factor accounts for downtime due to equipment maintenance and holidays. The 0.9 capacity factor was not applied to warehouse/office electricity and water consumption, transportation, or lab analysis - I incorporated system downtime for these activities using other methods. I assumed 100% of energy consumption in warehouses
Recommended publications
  • Raman Spectroscopy of Efflorescent
    ASTROBIOLOGY Volume 13, Number 3, 2013 ª Mary Ann Liebert, Inc. DOI: 10.1089/ast.2012.0908 Raman Spectroscopy of Efflorescent Sulfate Salts from Iron Mountain Mine Superfund Site, California Pablo Sobron1 and Charles N. Alpers2 Abstract The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination. Key Words: Acid mine drainage—Efflorescent sulfate minerals—Mars analogue—Iron Mountain—Laser Raman spectroscopy. Astro- biology 13, 270–278. 1. Introduction efflorescent sulfate minerals. This reconnaissance sampling resulted in characterization of the extremely acidic mine ron Mountain, California, is the host of massive sulfide waters (pH values from - 3.6 to + 0.5) and a variety of iron- Ideposits that were mined for copper, zinc, gold, silver, and sulfate efflorescent salts (Nordstrom and Alpers, 1999; pyrite (for sulfuric acid) between the early 1860s and the early Nordstrom et al., 2000).
    [Show full text]
  • Iron Mountain Mine Superfund Site Long Term O&M Challenges
    Iron Mountain Mine Superfund Site Long Term O&M Challenges August 12-14, 2014 James Sickles, U.S. EPA Region 9 National Conference on Mining-Influenced Waters: Approaches for Characterization, Source Control and Treatment Albuquerque,Long Term New O&M MexicoChallenges | 1 Iron Mountain Mine Site • Site Setting • Mining Impacts • Geologic Setting • Mining Chronology • Mining Processes • Site Remedial Components • O&M Challenges • Issues and the Future Long Term O&M Challenges | 2 Site Setting • Located 9 miles northwest of Redding, CA • Consists of more Iron Mountain Shasta Lake than a dozen sulfide mines Sacramento River • Covers approximately 4,400 acres, with over 2,500 feet of relief • Mines produced Spring Creek Reservoir silver, copper, zinc and pyrite Long Term O&M Challenges | 3 Mining Impacts • Fish kills in the Sacramento River • Open-air heap roasting and smelters stripped the land of vegetation for over 100 square miles along lower Spring Creek • Acid mine water seeping into the Sacramento River, created sediment deposits in Keswick Keswick Smelter Reservoir Operations 1895 - 1907 • Drinking water source for the city of Redding is the Sacramento River downstream Long Term O&M Challenges | 4 Mining Impacts • Mining influenced waters (MIW) with pH as low as -3.6 found in Richmond Mine workings • 10,000 pounds of iron, 650 pounds of copper, and 1,800 pounds of zinc were discharged per day prior to remediation • AMD entering Keswick Reservoir precipitated more than 200,000 cubic yards of metal rich sediment into the Spring Creek
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated `Omics' Technologies Permalink https://escholarship.org/uc/item/259113st Author Justice, Nicholas Bruce Publication Date 2013 Supplemental Material https://escholarship.org/uc/item/259113st#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated ‘Omics’ Technologies By Nicholas Bruce Justice A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Microbiology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Jillian Banfield, Chair Professor Mary Firestone Professor Mary Power Professor John Coates Fall 2013 Abstract Analyzing Microbial Physiology and Nutrient Transformation in a Model, Acidophilic Microbial Community using Integrated ‘Omics’ Technologies by Nicholas Bruce Justice Doctor of Philosophy in Microbiology University of California, Berkeley Professor Jillian F. Banfield, Chair Understanding how microorganisms contribute to nutrient transformations within their community is critical to prediction of overall ecosystem function, and thus is a major goal of microbial ecology. Communities of relatively tractable complexity provide a unique opportunity to study the distribution of metabolic characteristics amongst microorganisms and how those characteristics subscribe diverse ecological functions to co-occurring, and often closely related, species. The microbial communities present in the low-pH, metal-rich environment of the acid mine drainage (AMD) system in Richmond Mine at Iron Mountain, CA constitute a model microbial community due to their relatively low diversity and extensive characterization over the preceding fifteen years.
    [Show full text]
  • MAP SHOWING LOCATIONS of MINES and PROSPECTS in the DILLON Lox 2° QUADRANGLE, IDAHO and MONTANA
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY MAP SHOWING LOCATIONS OF MINES AND PROSPECTS IN THE DILLON lox 2° QUADRANGLE, IDAHO AND MONTANA By JeffreyS. Loen and Robert C. Pearson Pamphlet to accompany Miscellaneous Investigations Series Map I-1803-C Table !.--Recorded and estimated production of base and precious metals in mining districts and areas in the Dillon 1°x2° guadrangle, Idaho and Montana [Production of other commodities are listed in footnotes. All monetary values are given in dollars at time of production. Dashes indicate no information available. Numbers in parentheses are estimates by the authors or by those cited as sources of data in list that follows table 2. <,less than; s.t., short tons] District/area Years Ore Gold Silver Copper Lead Zinc Value Sources name (s. t.) (oz) (oz) (lb) (lb) (lb) (dollars) of data Idaho Carmen Creek 18 70's-190 1 (50,000) 141, 226 district 1902-1980 (unknown) Total (50,000) Eldorado 1870's-1911 17,500 (350 ,000) 123, 226 district 1912-1954 (13,000) (8,000) (300,000) Total (650,000) Eureka district 1880's-1956 (13 ,500) 12,366 (2,680,000) 57,994 (4,000) ( 4,000 ,000) 173 Total (4,000,000) Gibbonsville 1877-1893 (unknown) district 1894-1907 (83,500) (1,670,000) 123, 226 1908-1980 ( <10 ,000) 123 Total (2,000,000) Kirtley Creek 1870's-1890 2,000 40,500 173 district 1890's-1909 (<10,000) 1910-1918 24,300 (500 ,000) 123 1919-1931 (unknown) 1932-1947 2,146 (75 ,000) 173 Total (620,000) McDevitt district 1800's.-1980 (80,000) Total (80,000) North Fork area 1800's-1980 (unknown) Total ( <10 ,000) Pratt Creek 1870's-1900 (50 ,000) district Total (50,000) Sandy Creek 1800 's-1900 (unknown) district 1901-1954 19,613 4,055 4,433 71,359 166,179 (310,000) 17 3, 200 Total (310 ,000) Montana Anaconda Range 1880's-1980 (<100,000) area Total (<100,000) Argenta district 1864-1901 (1 ,500 ,000) 1902-1965 311,796 72,241 562,159 604,135 18,189,939 2,009,366 5,522,962 88 Total (7,000,000) Baldy Mtn.
    [Show full text]
  • Iron Mountain Mines, Inc. P.O
    Iron Mountain Mines, Inc. P.O. Box 992867, Redding, CA 96099 Tel (530) 275-4550 Fax (530) 275-4559 SHASTA COUNTY RECORDERS OFFICE NOTICE OF ADVERSE CLAIMS APPLICATION FOR RELOCATION OF PATENTS DECLARATION AND AFFIDAVIT AGAINST JOINT AND SEVERAL TRESPASSERS I, T.W. (Ted) Arman, am the purchaser of Iron Mountain Mines, I am the sole shareholder of Iron Mountain Mines, Inc., and successor in interests as grantee and assignee of all rights, privileges, and immunities of patent title from Colonel William Magee, Mr. Charles Camden, Iron Mountain Corporation, Iron Mountain Investment Co., Mountain Copper Co., and Stauffer Chemical Co. concerning the locations, pursuant to the mining law of 1866, of the Noble and Scott consolidated, Home Stake, Home Stake extension, Home Stake fraction, Copper Mountain, Mountain Copper, Monarch Copper, Boston Copper, Tehama Copper, Geology Copper, Leap Year Copper, Redding Copper, Sugar Loaf Copper, Trinity Copper, Shasta Copper, Halite, Limonite, Depending, Cuprite, Purity, and Letier lode mining claims, which mining property was originally patented May 1, 1862, that is the apex of the Flat Creek mining district for which I am the successor in interest as grantee. I purchased these patented mineral estates along with other patented properties in December, 1976. This purchase included an option for the purchase of the remaining patented mineral estates, which purchase was upset and interfered with by agents and agencies of the state and federal governments who conspired by false claims, malice, fraud, oppression,
    [Show full text]
  • Acid Mine Drainage Prediction
    EPA 530-R-94-036 NTIS PB94-201829 TECHNICAL DOCUMENT ACID MINE DRAINAGE PREDICTION December 1994 U.S. Environmental Protection Agency Office of Solid Waste Special Waste Branch 401 M Street, SW Washington, DC 20460 Acid Mine Drainage Prediction DISCLAIMER AND ACKNOWLEDGEMENTS This document was prepared by the U.S. Environmental Protection Agency (EPA). The mention of company or product names in this document is not to be considered an endorsement by the U.S. Government or by the EPA. This technical document consists of a brief review of acid forming processes at mine sites, followed by a summary of the current methods used to predict acid formation, selected state regulatory requirements, and case histories. This report was distributed for review to the U.S. Department of the Interior's Bureau of Mines and Bureau of Land Management, the U.S. Department of Agriculture's Forest Service, the Interstate Mining Compact Commission, the American Mining Congress, the Mineral Policy Center, representatives of state agencies, and public interest groups. EPA is grateful to all individuals who took the time to review this technical document. The use of the terms "extraction," "beneficiation," and "mineral processing" in this document is not intended to classify any waste stream for the purposes of regulatory interpretation or application. Rather, these terms are used in the context of common industry terminology. Acid Mine Drainage Prediction TABLE OF CONTENTS Page 1. INTRODUCTION ................................................................ 1 1.1 Oxidation of Metal Sulfides ..................................................... 4 1.2 Source of Acid and Contributing Factors ........................................... 5 2. ACID GENERATION PREDICTION ................................................. 9 2.1 Sampling .................................................................... 11 2.2 Static Tests .................................................................
    [Show full text]
  • Iron Mountain Mine Case Study Success Through Planning, Partnerships, and Perseverance
    arly in its history, Iron Mountain Mine was famous for being the most productive copper mine in California and one of the largest Ein the world. In recent years, the legacy of mining at Iron Mountain turned its fame to infamy, as the site became known as the largest source of surface water pollution in the United States and the source of the world’s most corrosive water. Even so, 40 years after the cessation of mining activities, scientists seeking to understand how to control the risks posed by the site made a valuable discovery of a different kind at Iron Mountain: a new species of microbe that thrives in the extreme conditions deep within the mountain. While pollution from the site has not posed any great risk to the approximately 100,000 people living in the nearby City of Redding, the same can not be said for the salmon, trout, and other aquatic organisms that have struggled for survival downstream of Iron Mountain. More than 20 years of work by EPA, other Federal and California State agencies, and potentially responsible parties (PRPs)—much of it underwritten by Superfund—is finally paying off in a big way. Remediation and pollution control activities now neutralize almost all the acid mine drainage and control 95 percent of the copper, cadmium, and zinc that used to flow out of Iron Mountain into nearby streams and then into the Sacramento River. Furthermore, EPA and the State of California secured funding from one of the site’s previous owners in one of the largest settlements with a single private party in Superfund history.
    [Show full text]
  • Acid Mine Drainage and Effects on Fish Health and Ecology: a Review
    Acid Mine Drainage and Effects on Fish Health and Ecology: A Review For: U.S. Fish and Wildlife Service, Anchorage Fish and Wildlife Field Office, Anchorage, Alaska, 99501 Prepared by: Reclamation Research Group, LLC, Bozeman, Montana June 2008 Suggested Citation: Jennings, S.R., Neuman, D.R. and Blicker, P.S. (2008). “Acid Mine Drainage and Effects on Fish Health and Ecology: A Review”. Reclamation Research Group Publication, Bozeman, MT. ii Table of Contents Purpose ................................................................................................................................ 1 Acid Mine Drainage Overview ........................................................................................... 1 Chemistry of Acid Rock Drainage .................................................................................. 1 Acid Mine Drainage ........................................................................................................ 3 Effect of Acid Mine Drainage on Aquatic Resources ........................................................ 5 Major Environmental Incidents Caused by Acid Mine Drainage ....................................... 7 Prediction of Acid Mine Drainage ...................................................................................... 7 Assessment of Acid Rock Drainage and Metals Release ................................................. 11 Water Quality and Acid Mine Drainage: Pre-mine Predictions and Post-mine Comparisons ....................................................................................................................
    [Show full text]
  • 6Th 5-Year Review for Iron Mountain Mine Superfund Site, W/Appendices
    SEMS-RM DOCID # 100010569 SIXTH FIVE-YEAR REVIEW REPORT FOR IRON MOUNTAIN MINE SUPERFUND SITE SHASTA COUNTY, CALIFORNIA PREPARED BY United States Army Corps of Engineers, Seattle District FOR U.S. Environmental Protection Agency Region IX Ap~poved by: /2. Date ( _ tJa,r-1-w, '] -z_,,1 II ¥ Da Barton Assistant Director, Superfund Division California Site Cleanup and Enforcement Branch U.S. EPA, Region 9 [This page is intentionally left blank.] Executive Summary This is the sixth Five-Year Review (FYR) for the Iron Mountain Mine (IMM) Superfund Site (Site), located near Redding, California. The purpose of this FYR is to review information to determine if the interim remedies are, and will continue to be, protective of human health and the environment. The Iron Mountain Mine was mined from the 1860’s through 1963 for copper, gold, pyrite, silver, and zinc. Operations included open pit mining, adits and stoping inside Iron Mountain, milling, ore transportation via railroad and tramway, a cyanide leaching plant, cementation plants, ore roasting areas, and a smelter. Exposure of the mine workings, waste rock piles, and the open pit mine to oxygen and water have produced acid mine drainage (AMD) management issues. Numerous historical fish kills in the Sacramento River were attributed to AMD from the Main Mine Area. The Site was added to the National Priorities List in September 1983. The interim remedies for the Site consist of a combination of source control, AMD collection and treatment, and water management components, including clean water diversions and coordinated releases of contaminated surface water from Spring Creek Debris Dam (SCDD) into dilution flows from Shasta Dam.
    [Show full text]
  • Oxide-Rich Scale in a Pipeline Carrying Acid Mine Drainage at Iron
    Characterization and Remediation of Iron(III) Oxide‐rich Scale in a Pipeline Carrying Acid Mine Drainage at Iron Mountain Mine, California, USA Kate M. Campbell 1, Charles N. Alpers 2, D. Kirk Nordstrom3, Alex E. Blum4, and Amy Williams5 1U.S. Geological Survey, Boulder, Colorado, USA, [email protected] 2U.S. Geological Survey, Sacramento, California, USA, [email protected] 3U.S. Geological Survey, Boulder, Colorado, USA, [email protected] 4U.S. Geological Survey, Boulder, Colorado, USA, [email protected] 5University of California, Davis, California, USA, [email protected] Abstract A 3.4 km pipeline carrying acid mine drainage to a treatment plant at the Iron Mountain Mine Superfund Site (California, USA) develops substantial scaling, resulting in occasional spillage and requiring periodic, costly clean‐out. Samples of scale and water were collected from four points along the pipeline and water was collected from the mine portal influent. Mineralogy of the scale samples consisted of primarily hydrous ferric oxides including schwertmannite and goethite based on powder X‐ray diffraction, wet chemical extractions, and scanning electron microscopy. Laboratory batch experiments with fresh, unfiltered water from the site showed that the scale was formed by microbial Fe(II) oxidation and precipitation of Fe(III) phases. A remediation strategy of lowering the pH of the influent water from 2.7 to 2.0‐2.3 was tested using a geochemical model and laboratory batch experiments. Decreasing the pH did not substantially retard the rate of Fe(II) oxidation, but prevented precipitation of Fe(III) phases, suggesting that mixing the pipeline water with low pH water (pH ~1) from the Richmond mine portal may prevent scale formation.
    [Show full text]
  • Trinity River Division Project History
    Trinity Division Central Valley Project Eric A. Stene Bureau of Reclamation 1996 Table of Contents Trinity River Division..........................................................2 Project Location.........................................................2 Historic Setting .........................................................2 Project Authorization.....................................................2 Construction History .....................................................3 Division Operation.................................................3 Trinity Dam......................................................4 Clear Creek Tunnel ................................................6 Clair A. Hill Whiskeytown Dam ......................................7 Spring Creek Power Conduit .........................................9 Lewiston Dam ....................................................9 Spring Creek Debris Dam ..........................................10 Cow Creek and Clear Creek Units....................................10 Post-Construction History................................................11 Buckhorn Dam ...................................................11 Settlement of the Project .................................................13 Uses of Project Water ...................................................13 Conclusion............................................................14 Table 1. Trinity River Division Powerplants and Capacities. ...........................15 Table 2. 1990 Crops and Total Value on the Trinity River Division.
    [Show full text]
  • Technical Document: Acid Mine Drainage Prediction
    EPA 530-R-94-036 NTIS PB94-201829 TECHNICAL DOCUMENT ACID MINE DRAINAGE PREDICTION December 1994 U.S. Environmental Protection Agency Office of Solid Waste Special Waste Branch 401 M Street, SW Washington, DC 20460 Acid Mine Drainage Prediction DISCLAIMER AND ACKNOWLEDGEMENTS This document was prepared by the U.S. Environmental Protection Agency (EPA). The mention of company or product names in this document is not to be considered an endorsement by the U.S. Government or by the EPA. This technical document consists of a brief review of acid forming processes at mine sites, followed by a summary of the current methods used to predict acid formation, selected state regulatory requirements, and case histories. This report was distributed for review to the U.S. Department of the Interior's Bureau of Mines and Bureau of Land Management, the U.S. Department of Agriculture's Forest Service, the Interstate Mining Compact Commission, the American Mining Congress, the Mineral Policy Center, representatives of state agencies, and public interest groups. EPA is grateful to all individuals who took the time to review this technical document. The use of the terms "extraction," "beneficiation," and "mineral processing" in this document is not intended to classify any waste stream for the purposes of regulatory interpretation or application. Rather, these terms are used in the context of common industry terminology. Acid Mine Drainage Prediction TABLE OF CONTENTS Page 1. INTRODUCTION ................................................................ 1 1.1 Oxidation of Metal Sulfides ..................................................... 4 1.2 Source of Acid and Contributing Factors ........................................... 5 2. ACID GENERATION PREDICTION ................................................. 9 2.1 Sampling .................................................................... 11 2.2 Static Tests .................................................................
    [Show full text]