<<

Mechanisms of transfer of in smoke from ammonium compounds in tobacco

YvesSAINTJALM ,G.DUVAL,T. CONTEandI.BONNICHON AltadisResearchCenter FleurylesAubrais FRANCE Survey of the European market (1998)

• 53leadingbrandsinEurope – France(24),Netherlands,Belgium,Germany, Italy,Spain,Switzerland,Austria,Greeceand UK – ExclusivelyVirginiaandAmericanblends – Fullflavor(between10and15mg) • Surveyofdifferentchemicalandphysical parameters – Ammoniumintobacco,Ammoniainsmoke Relationship between Ammonium in Tobacco and Ammonia in smoke

35,0

30,0

25,0

20,0 NH3 (µg/cig) NH3

15,0

10,0 0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 NH3 (%) Relationship between Ammonium in Tobacco and Ammonia in smoke

• Linearregression – NH3=13.2+37.9NH4 – NH3ing/cig – NH4in%indrytobacco – r=0.594; – ANOVA:p<0.01;significantrelationship • Interpretationofresultsdifficultbecause – differencesinblendandcigarettedesign Transfer of Ammonia From Ammonium compounds

• Thesedataseemtoillustrateadirecttransferof AmmoniaintosmokefromAmmonium compoundsintobaccowithaverylowtransfer rate • Anincreaseof0.2%ofAmmoniuminblend • givesameanincreaseof 8g /cig ofammonia • fromtheregressionequation • withapotentialof 130g/cig • assuming800mgoftobacco/cig • andatransferrateof8%(equivalenttonicotine) Experimental design

• Hypotheses – AmmoniumcompoundsproduceAmmonia underthermaldegradation – Ammoniareactswithcarbonylcompounds producedbytheofcarbohydrates – withaspecialemphasisonsugars(Glucose,Fructoseand Sucrosewhichdegradationoccursatthesametemperature range)

R O NH3 R N R N R H

R O R O R N R Experimental design Response surface type

• Americanblend – AdditionofcontrolledamountsofDAPand

Sucrose DAP 0% 1% 2% 0% S1D1 S1D2 S1D3 Sucrose 2,5% S2D1 S2D2 S2D3 5% S3D1 S3D2 S3D3

– Kingsizecigarette • Constanttobaccoweight:792mg • nofilterventilation Controlled parameters Tobacco rod

• Total alkaloïds • Ammonium • Glucose,Fructose,Sucrose • Phosphate • ContinuousFlowAnalysis Tobacco - Ammonium

DAP0 DAP1 DAP2 m th m th m th

S0 0.30 0.30 0.52 0.53 0.72 0.76 S2.5 0.30 0.29 0.52 0.52 0.71 0.75 S5 0.29 0.29 0.49 0.51 0.71 0.73

%indrytobacco Tobacco - Sucrose

DAP0 DAP1 DAP2 m th m th m th

S0 0.87 0.87 0.80 0.86 0.63 0.85 S2.5 2.67 3.29 2.53 3.26 2.67 3.22 S5 4.75 5.59 4.73 5.54 4.81 5.49

%indrytobacco Tobacco - Glucose

DAP0 DAP1 DAP2 m th m th m th

S0 1.78 1.78 1.63 1.76 1.55 1.75 S2.5 1.80 1.74 1.73 1.72 1.77 1.70 S5 2.10 1.70 1.92 1.68 1.86 1.66

%indrytobacco

SamepatternforFructose Tobacco - Alcaloïds

DAP0 DAP1 DAP2 m th m th m th

S0 2.17 2.17 2.13 2.15 2.13 2.13 S2.5 2.12 2.12 2.06 2.10 2.05 2.08 S5 2.06 2.07 2.04 2.05 2.01 2.03

%indrytobacco Tobacco analysis - Conclusions

• Theexperimentaldesignwasrealisedas planned • SucrosewaspartiallyinvertedtoGlucose andFructoseduringtheprocess • ReactionbetweensugarsandDAPmay haveoccurredatthisstage Transfer of Ammonia Variables

• Smoke – Tar,Nicotine • ISOmethods – Pyrazines • GC – Diacetyl, Methylglyoxal • HPLC(derivatizationwitho plenylendiamine) – Ammonia • IonexchangeliquidChromatography Methodology

• Variablesexpressedin ppm /NFDPM • Mathematicalmodel – V=a+bxA+cxB+dxAB+exA² +fxB² • where:Aisaddedsucrosein%andBisaddedDAPin% • ANOVA – Tosimplifythemodel(excludeornotthesecondorder termsinthemodel) • Calculatethefinalmodelandtheestimated responsesurface Smoke - Ammonia

EstimatedResponseSurface

2900 2600 2300 R² =0.841 2000 1700

Ammonia 1400 1.62 1100 0.81.2 0 1 0.4 DAP 2 3 4 0 Sucrose 5

NH3=1572.6 80xS+586.6xDAP+36.1xSxDAP Smoke - MethylGlyoxal

EstimatedResponseSurface

3900 3500 3100 R² =0.904 2700 2300 MeGlyoxal 1.62 1900 0.81.2 0 1 0.4 DAP 2 3 4 0 Sucrose 5

MeG=2669.3+223XS 370.1xDAP 29.5xSxDAP Smoke - Pyrazines

EstimatedResponseSurface

53 49 R² =0.863 45 41

Pyrazines 37 1.62 33 0.81.2 0 1 0.4 DAP 2 3 4 0 Sucrose 5

Pyr=33.5+0.78xS+6.2xDAP+0.2xSxDAP Transfer of ammonia

• Thereisadirecttransferofammoniain smokefromammoniumcompounds • Thistransferispartiallyinhibitedwhen sucroseyieldsincrease • Ammoniareactswithsomecarbonyl compoundsproducedbysugarpyrolysis Effect on Nicotine transfer Variables

• Nicotine • Expressedin%ofDTPM • Nicotineinvapourphase • Expressedin%oftotalNicotine • Denudertubemethod • “SmokepH” • Totalsmoke • Condensate – Aqueoussolutions pH - Total smoke

DAP0 DAP2 DAP1

5,54 5,52 5,64

5,44 S0 5,51 5,51 5,53 S2.5 5,44 5,46 S5

Nosignificanteffect pH - TPM

DAP0 DAP2 DAP1

6,36 6,27 6,31

6,24 S0 6,30 6,23 6,26 S2.5 6,38 6,18 S5

Nosignificanteffect Nicotine % of Dry PM

EstimatedResponseSurface

8 7.8 R² =0.824 7.6 7.4

Nicotine 7.2 1.62 7 0.81.2 0 1 0.4 DAP 2 3 4 0 Sucrose 5

Nic=7.415 0.196xS+0.208xDAP+0.026xS² Vapour Phase Nicotine % of total Nicotine

EstimatedResponseSurface

5.4 5.1 4.8 R² =0.694 4.5 4.2 3.9 1.62 3.6 0.81.2 DAP 0 1 2 0.4 3 4 5 0

VapourphaseNicotine Sucrose

VPNic=4.92 0.048xS 0.296DAP 0.047xSxDAP Effect on Nicotine transfer

• Nomodificationof“smokepH” – whateverthetrappingmethodused • VerylimitedmodificationofNicotine concentrationincondensate • Combustibilityeffect? • NoincreaseofNicotineinvapourphase • adecreaseisobservedinstead Summary

• ThedirecttransferofAmmoniainsmoke fromAmmoniumcompoundsisprobably controlledbytheammoniumyieldandthe sugars(andrelatedcompounds)yield • NosignificanteffectonNicotinetransferin smokehavebeenobserved