Effect of Pyrolisis Temperature and Time on Liquid Smoke Characteristics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wildland Firefighter Smoke Exposure
❑ United States Department of Agriculture Wildland Firefighter Smoke Exposure EST SERVIC FOR E Forest National Technology & 1351 1803 October 2013 D E E P R A U RTMENT OF AGRICULT Service Development Program 5100—Fire Management Wildland Firefighter Smoke Exposure By George Broyles Fire Project Leader Information contained in this document has been developed for the guidance of employees of the U.S. Department of Agriculture (USDA) Forest Service, its contractors, and cooperating Federal and State agencies. The USDA Forest Service assumes no responsibility for the interpretation or use of this information by other than its own employees. The use of trade, firm, or corporation names is for the information and convenience of the reader. Such use does not constitute an official evaluation, conclusion, recommendation, endorsement, or approval of any product or service to the exclusion of others that may be suitable. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. -
PITT Research Brief Pyrolysis
POTENTIAL PFAS DESTRUCTION TECHNOLOGY: PYROLYSIS AND GASIFICATION In Spring 2020, the EPA established the PFAS Innovative Treatment Team (PITT). The PITT was a multi-disciplinary research team that worked full-time for 6-months on applying their scientific efforts and expertise to a single problem: disposal and/or destruction of PFAS- contaminated media and waste. While the PITT formally concluded in Fall 2020, the research efforts initiated under the PITT continue. As part of the PITT’s efforts, EPA researchers considered whether existing destruction technologies could be applied to PFAS-contaminated media and waste. This series of Research Briefs provides an overview of four technologies that were identified by the PITT as promising technologies Figure 1. Biosolids beneficial use. for destroying PFAS and the research underway by the readily available, cost effective, and produce little to no EPA’s Office of Research and Development to further hazardous residuals or byproducts. Pyrolysis and explore these technologies. Because research is still gasification have been identified as promising needed to evaluate these technologies for PFAS technologies that may be able to meet these destruction, this Research Brief should not be considered requirements with further development, testing, and an endorsement or recommendation to use this demonstrations. technology to destroy PFAS. Background Pyrolysis/Gasification: Technology Overview Pyrolysis is a process that decomposes materials at Various industries have produced and used per- and moderately elevated temperatures in an oxygen-free polyfluoroalkyl substances (PFAS) since the mid-20th environment. Gasification is similar to pyrolysis but uses century. PFAS are found in consumer and industrial small quantities of oxygen, taking advantage of the products, including non-stick coatings, waterproofing partial combustion process to provide the heat to materials, and manufacturing additives. -
Review of Smoke Taint in Wine: Smokederived Volatile Phenols And
Krstic et al. Review of smoke taint in wine 537 Review of smoke taint in wine: smoke-derived volatile phenols and their glycosidic metabolites in grapes and vines as biomarkers for smoke exposure and their role in the sensory perception of smoke taint M.P. KRSTIC1, D.L. JOHNSON2 and M.J. HERDERICH2 1 The Australian Wine Research Institute,Victorian Node, Mooroolbark, Vic. 3138, Australia; 2 The Australian Wine Research Institute, Urrbrae, SA 5064, Australia Corresponding author: Dr Mark Krstic, email [email protected] Abstract In recent years, the exposure of vineyards and grapes to smoke from bushfires and controlled burn events has in some instances resulted in wines described as smoke tainted. Such wines are characterised by undesirable sensory characters described as smoky, burnt, ash, smoky bacon, medicinal and ashtray. This review summarises the knowledge about the composition of smoke from forest and grass fires, describes relationships between smoke exposure of vineyards and smoke taint in wine, and outlines strategies for managing and reducing the risk to producing smoke-affected wines. The sensitivity of grapes and vines at different phenological stages to the uptake of contaminants from smoke, especially smoke-derived volatile phenols, is outlined, and the pathways for entry and metabolic transformation of volatile phenols are discussed. The potential for translocation of phenolic contaminants within the grapevine and the differences in uptake of smoke contaminants of different grape cultivars are also discussed, along with preliminary work on dose/response relationships regarding concentration and duration of exposure and subsequent expression of smoke taint in wine. The chemical basis of smoke taint in wine is described, and the relationship between volatile phenols from combustion of wood/lignin and their glycosides, and sensory panel ratings of smoke attributes in affected wines is discussed. -
Wildfire Smoke and Your Health When Smoke Levels Are High, Even Healthy People May Have Symptoms Or Health Problems
PUBLIC HEALTH DIVISION http://Public.Health.Oregon.gov Wildfire Smoke and Your Health When smoke levels are high, even healthy people may have symptoms or health problems. The best thing to do is to limit your exposure to smoke. Depending on your situation, a combination of the strategies below may work best and give you the most protection from wildfire smoke. The more you do to limit your exposure to wildfire smoke, the more you’ll reduce your chances of having health effects. Keep indoor air as clean as possible. Keep windows and doors closed. Use a Listen to your body high- efficiency particulate air (HEPA) and contact your filter to reduce indoor air pollution. healthcare provider Avoid smoking tobacco, using or 911 if you are wood-burning stoves or fireplaces, burning candles, experiencing health incenses or vacuuming. symptoms. If you have to spend time outside when the Drink plenty air quality is hazardous: of water. Do not rely on paper or dust masks for protection. N95 masks properly worn may offer Reduce the some protection. amount of time spent in the smoky area. Reduce the amount of time spent outdoors. Avoid vigorous Stay informed: outdoor activities. The Oregon Smoke blog has information about air quality in your community: oregonsmoke.blogspot.com 1 Frequently asked questions about wildfire smoke and public health Wildfire smoke Q: Why is wildfire smoke bad for my health? A: Wildfire smoke is a mixture of gases and fine particles from burning trees and other plant material. The gases and fine particles can be dangerous if inhaled. -
(Acacia Mangium) and Sengon (Falcataria Moluccana) Smoked Wood1
J. Korean Wood Sci. Technol. 2020, 48(1): 1~11 pISSN: 1017-0715 eISSN: 2233-7180 https://doi.org/10.5658/WOOD.2020.48.1.1 Original Article Color Change and Resistance to Subterranean Termite Attack of Mangium (Acacia mangium) and Sengon (Falcataria moluccana) Smoked Wood1 Yusuf Sudo HADI 2,†⋅Muh Yusram MASSIJAYA2⋅Imam Busyra ABDILLAH2⋅ Gustan PARI3⋅Wa Ode Muliastuty ARSYAD3 ABSTRACT1) Indonesian log production is dominated by young trees harvested from plantation forests. The timber contains of sapwood and juvenile wood, which are not resistant to termite attack. Smoking treatment can enhance wood resistance to termite attack, but it also changes the color. Specimens of mangium (Acacia mangium) and sengon (Falcataria moluccana) wood were exposed for 1, 2, and 3 weeks to smoke produced from the pyrolysis of salam (Syzygium polyanthum) wood. The color change of the wood was measured using the CIELab method. In addition, wood specimens were exposed to subterranean termites (Coptotermes curvignathus Holmgren) under laboratory conditions. Untreated and imidacloprid-preserved wood samples were also prepared for comparison purposes. The results showed that the color of smoked wood differed from that of untreated wood, and the color change for sengon was greater than for mangium. In addition, the 1-week smoking period changed the wood color less than the 2- and 3-week periods, which did not differ. Imidacloprid-preserved wood had distinctive color changes compared to untreated wood. Untreated mangium wood had moderate resistance to subterranean termite attack (resistance class III), while sengon had very poor resistance (resistance class V). Salam wood smoke enhanced wood resistance to termite attack, and smoke treatment of 1 week for mangium and 2 weeks for sengon resulted in the wood becoming very resistant (resistance class I). -
Wood Products: Thermal Degradation and Fire
Wood Products: Thermal Degradation and off. The hemicelluloses and lignin components are pyrolyzed in the ranges 200-300°C and 225-450 °C, Fire respectively (see Wood, Constituents of). Much of the acetic acid liberated from wood pyrolysis is attributed Wood is a thermally degradable and combustible to deactylation of hemicellulose. Dehydration reac material. Applications range from a biomass provid tions around 200°C are primarily responsible for ing useful energy to a building material with unique pyrolysis of hemicellulose and lignin and results in a properties. Wood products can contribute to unwant high char yield for wood. Although cellulose remains ed fires and be destroyed as well. Minor amounts of mostly unpyrolyzed, its thermal degradation can be thermal degradation adversely affect structural pro accelerated in the presence of water, acids, and oxygen. perties. Therefore, knowledge of the thermal degrad As the temperature increases, the degree of poly ation and fire performance of wood can be critical in merization of cellulose decreases further, free radicals many applications. Chemical treatments are available appear, and carbonyl, carboxyl, and hydroperoxide to improve fire performance characteristics. groups are formed. Bryden (1998) assumed tar under- goes cracking to lighter gases and repolymerization to char while streaming through the hot charred residue. Overall pyrolysis reactions are endothermic due to 1. Thermal Degradation decreasing dehydration and increasing CO formation As wood reaches elevated temperatures, the different from porous char reactions with H2O and CO2 with chemical components undergo the thermal de- increasing temperature. During this “low-temperature gradation that affects the performance of wood. The pathway” of pyrolysis, exothermic reactions of ex- extent of the changes depends on the temperature level posed char and volatiles with atmospheric oxygen are and length of time under exposure conditions. -
Smoke Flavourings
SMOKE FLAVOURINGS Prepared at the 57th JECFA (2001) and published in FNP 52 Add. 9 (2001), superseding tentative specifications prepared at the 55th JECFA (2000) and published in FNP 52 Add. 8 (2000). An ADI of “Provisional acceptance” was established at the 31st JECFA (1987). SYNONYMS Wood smoke flavour, Smoke condensate DEFINITION Complex mixtures of components of smoke obtained by subjecting untreated hardwoods to (a) pyrolysis in a limited and controlled amount of air, (b) dry distillation between 200o and 800o, or (c) superheated steam between 300o and 500o. Source materials must not contain detectable amounts of pesticides, wood preservatives, or other extraneous matter that may result in hazardous constituents in the wood smoke. The major flavouring principles of Smoke Flavourings are carboxylic acids, compounds with carbonyl groups and phenolic compounds. During manufacture, wood smoke is subjected to an aqueous extraction system or to distillation, condensation, and separation for collection of the aqueous phase, which serves to remove hazardous constituents, such as polycyclic aromatic hydrocarbons. The aqueous smoke fraction containing water-soluble constituents may be diluted with water or be extracted with an edible vegetable oil to produce a smoke flavouring with higher levels of non- polar constituents that may be further extracted using food-grade substances, such as propylene glycol or aqueous solutions of polysorbates. Commercial products may also contain additives such as emulsifiers, antifoaming agents, and gums. Smoke flavourings may also be prepared in dry form with the addition of carriers, such as yeasts, flours, salt, phosphates, carbohydrates, and anti-caking agents. These specifications apply only to the water-soluble distillates of condensed wood smoke, their aqueous/vegetable oil or polysorbate extracts and concentrates of these. -
Pyrolysis Fuel Oil (PFO)
PRODUCT BACKGROUNDER Pyrolysis Fuel Oil (PFO) Important! For detailed information on this product and emergency measures, obtain the Canadian Safety Data Sheet (SDS)/ U.S. Safety Data Sheet (SDS). In the case of an emergency, please call our 24-hour hotline at 1-800-561-6682 or 1-403-314-8767. May also be called: PFO-Joffre, Heavy Fuel Oils Product/Substance Use: • This product is a complex mixture of naphthalene, polycyclic aromatic hydrocarbons, indene, and dicyclopentadiene, manufactured at NOVA Chemicals' Joffre, Alberta facility and shipped by railcar. • This product is used as chemical intermediate feedstock or industrial fuel. Characteristics and Safe Handling: • This product is a dark coloured, oily liquid with a pungent odour whose odour threshold is < 1 ppm. • This product is classified as a flammable liquid, health and environmental hazard in the workplace and as flammable for transportation. • Any equipment used in areas of handling or storage of the heated product must be approved for flammable liquids and properly grounded for control of static electricity. • If released from containment, product may be ignited by uncontrolled heat, sparks or flames. Containers exposed to fire conditions may explode. • Material burns readily when heated, and sparks or flames may ignite released hot liquids, vapours or mists. The vapor is heavier than air and may collect in low areas Ignition from a distant source with flashback is possible. • Any release to land or water must be isolated, controlled to avoid ignition, contained and recovered or cleaned up by properly trained and equipped personnel. Health and Safety Information: • Wear all recommended personal protective equipment if any contact with this material is likely. -
Cerbera Odollam GAERTN) LIQUID SMOKE for PINE WOOD PRESERVATION AGAINST a SUBTERRANEAN TERMITE Captotermes Curvignathus HOLMGREN ATTACK
Vol. 9 | No. 3 |438 - 443 | July - September | 2016 ISSN: 0974-1496 | e-ISSN: 0976-0083 | CODEN: RJCABP http://www.rasayanjournal.com http://www.rasayanjournal.co.in AN ENVIRONMENTAL FRIENDLY PESTICIDE FROM BINTARO (Cerbera odollam GAERTN) LIQUID SMOKE FOR PINE WOOD PRESERVATION AGAINST A SUBTERRANEAN TERMITE Captotermes curvignathus HOLMGREN ATTACK Rosalina 1, Tun Tedja 2* , Etty Riani 3, and Sri Sugiarti 2 1Graduate School of Natural Resources and Environmental Management, Bogor Agricultural University, Darmaga Bogor-16680, Indonesia 2Department of Chemistry, FMIPA- Bogor Agricultural University, Darmaga Bogor-16680, Indonesia 3Department of MSP, FPIK- Bogor Agricultural University, Darmaga Bogor-16680, Indonesia *E-mail: [email protected] ABSTRACT This study investigated the possibility of using liquid smoke from the waste of pyrolysis Cerbera odollam Gaertn fruit as an environmental friendly pesticide to prevent pine wood from a subterranean termite Captotermes curvignathus Holmgren attack. The liquid smoke was made from three kinds methods of pyrolysis temperature, 300 oC, 400 oC, 500 oC. Liquid smoke characterized by determining the yield, specific gravity, pH, acidy and phenol content. Compounds of liquid smoke were identified using Gas Chromatography and Mass Spectrometry. Material durability test against subterranean termites C. curvignathus Holmgren used Japan International Standard K-1571- 2004. The results showed that the higher the temperature pyrolysis, yield, specific gravity, ph. Acid, and phenol content from liquid smoke also increases and liquid smoke with pyrolysis temperature 500 oC caused 100% mortality of termites. Most compounds in liquid smoke are phenol, phenol 2 methoxy, phenol 2-methoxy, mequinol, phenol 2 methyl, phenol 4 methyl, phenol 2 methoxy 4 methyl,9-octadecenoid acid (2), 2,3 dihydroxypropyl ester. -
Determination of Ammonia in Tobacco Smoke
Application Note 1054 Note Application Determination of Ammonia in Tobacco Smoke Lipika Basumallick and Jeffrey Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA Key Words Ion Chromatography, Freebasing Nicotine, Dionex IonPac CS19 Column, Cigarette Goal To develop an IC method that can determine ammonia in tobacco smoke and is not subject to interference from small amines Introduction Ammonia (0.01–0.6%) occurs naturally in cured tobacco leaves and is now being used as an additive to enhance flavor and increase the amount of free nicotine in cigarette smoke. This practice is called freebasing of nicotine.1,2 Typically, the freebased amount equates to 0.2–10 mg ammonia per gram of tobacco or 7–200 μg and 320–450 μg ammonia per gram of smoked tobacco in mainstream and sidestream smoke, respectively (Figure 1).3 Sidestream Smoke Mainstream Smoke Ammonia is listed as a respiratory toxicant. This list Figure 1. Main- and sidestream smoke from a cigarette. was published in the Federal Register to announce that beginning June 22, 2012, the Food Drug and Cosmetics Act would require tobacco product manufacturers to On June 23, 2009, the U.S. Congress passed the Tobacco submit a list and quantify the constituents (including Control Act that granted the U.S. Food and Drug smoke constituents) identified by the FDA as harmful or Administration (FDA) authority to regulate the potentially harmful to health in each of their tobacco manufacture, marketing, and distribution of tobacco products.4 Hence, there is a need for a robust and sensitive products to protect public health. In January 2011, the analytical method for quantifying ammonia in tobacco FDA established a list of harmful and potentially harmful products and smoke. -
1983 Center for Fire Research Annual Conference on Fire Research
1983 CENTER FOR FIRE RESEARCH ANNUAL CONFERENCE ON FIRE RESEARCH (Summaries of Research Grants and CFR In-House Programs) August 23-25, 1983 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Washington, D.C. 20234 July 1983 Preprint of the 1983 Center for Fire Research Annual Conference on Fire Research to be Held August 23-25, 1983 QC 100 .U56 #82-2612- 1983 CENTER FOR FIRE RESEARCH ANNUAL CONFERENCE ON FIRE RESEARCH (Summaries of Research Grants and CFR In-House Programs) August 23-25, 1983 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Washington, D.C. 20234 July 1983 Malcolm Baldrige, Secretary of Commerce Ernest Ambler, Director, National Bureau of Standards Preprint of the 1983 Center for Fire Research Annual Conference on Fire Research to be Held August 23-25, 1983 — FOREWORD The Seventh Annual Conference on Fire Research honors Professor Howard Emmons who retires from Harvard University this year. Professor Emmons has provided leadership and inspiration to many in this field as attested by the breadth and depth of the topics in the conference modeling of fire growth, flame phenomena and spread, diffusion flames and radiation, fire plumes , extinction and suppression— and the contributions of those he has taught. Howard Emmons has demonstrated the viability of scientifically based fire protection engineering practice. Of course, much remains to be done. The conference program and papers (to be published separately) provide a good indication of where we are in a numoer or crt-txcal areas of tare science. -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.