Inglewood/Rose Canyon Fault Connections (Gary Oberts)

Total Page:16

File Type:pdf, Size:1020Kb

Inglewood/Rose Canyon Fault Connections (Gary Oberts) Part 1 – New So. CA Findings on Newport- Inglewood/Rose Canyon Fault connections (Gary Oberts) “California is a banged-up specimen with a curved spine and head- to-toe fractures, mugged by time, and the worst beatings may be yet to come.” Steve Lopez, LAT, Sept. 24, 2017 The most recent USGS forecast put the chance of an earthquake with a magnitude 6.7 or larger hitting CA sometime in the next 30 years at 99%. USGS Open-File Report 2013–1165 1. 2. * “A powerful quake in the mid-to- upper 6s (MM) could cause liquefaction around San Diego and Mission bays and locally in Mission Valley, and cause the land to be offset across the fault, which would damage buildings”, Seismologist Tom Rockwell , San Diego State Univ. *San Diego Union Tribune, June 1, 2017 3. From: USA Today, March 8, 2017 4. STATE OF CALIFORNIA - ARNOLD SCHWARZENEGGER, GOVERNOR CALIFORNIA GEOLOGICAL SURVEY THE RESOURCES AGENCY - MIKE CHRISMAN, SECRETARY MAP SHEET 57 JOHN G. PARRISH, Ph.D., STATE GEOLOGIST CALIFORNIA DEPARTMENT OF CONSERVATION - BRIDGETT LUTHER, DIRECTOR SIMPLIFIED GEOLOGIC MAP OF CALIFORNIA SIMPLIFIED GEOLOGIC MAP OF CALIFORNIA C O R R E L AT I O N O F M A P U N I T S S E D I M E N TA R Y A N D V O L C A N I C R O C K S Age In Millions of Years Goose e S n Lake U e Y R c o R P l R A o S C I N r S H O Clear Lake Res. - R e E A e U v E i 0.011 n T T e R S c H MODOC A V C o t A U s L i A Q L F e E l h O D t M K MT Y P R a E K L m SHASTA O F a ALTURAS A x A l U U M M r 1.6 K e e L T N T v n N A i e C T c R I T o A i l F d H O A I P u N Z U o l 5.3 L O S e T C n c N it River e P c E M o i C 24 M Tr PLATEAU e in n Shasta e EUREKA it Y y c R Lake o g A r i M I e l v T i O R O R 37 E e M U T a n N Eagle Lake e d LASSEN c T o E Cape Mendocino R REDDING A PEAK i x SUSANVILLE v I 58 e e N n r Cenozoic nonmarine Cenozoic volcanic e S c o INTRUSIVE IGNEOUS AND e Honey Lake (continental) sedimentary rocks l a H P O METAMORPHIC ROCKS rocks and alluvial deposits Lake N E Cenozoic marine Y E Almanor L e A sedimentary rocks l K S E - - F U Y A O U R LT E A C I A R T T i R v E e E R Granitic rocks T r S C a c chiefly Mesozoic r a 65 m e n t S o U O R C I E i v C O e A r Z T O B F Serpentinized ultramafic E A e S R R T a C L rocks chiefly Mesozoic E E t T h T e M S r P UKIAH R 144 R I NEVADA CITY C N Late Mesozoic (latest I G i R S v a Clear S SUTTER b Lake S u e u R F Y r Jurassic and Cretaceous) s Lake A r e A i s U BUTTES iv Tahoe v i L R R e a T marine sedimentary rocks; r n U J M Great Valley Sequence 208 A C A I C Late Mesozoic (latest and related rocks S A M S A Jurassic and Cretaceous) A F I A PLACERVILLE U R L rocks of the T Franciscan Complex 245 T N SACRAMENTO A an I G ric R e M O m D R A er R G iv E E R Mesozoic sedimentary E P R S S C A A and volcanic rocks - R T 286 - N E S S N E K in places strongly U I F O A E O U B metamorphosed R LT ne R R A m E lu A N ke R F o I Pre-Cenozoic metamorphic C D M r e M C Riv A I R 360 E O rocks of unknown age N A V O T Mono A I S A Z H Lake N Point Reyes O L E O S E V a L R E n L E L D A F Y - N O P 408 - r a A I N r D W n H ive c C R YOSEMITE A H A s E I i u I s la Y s I c i T V SAN FRANCISCO n R W ta B o E S NATIONAL O U E A M Paleozoic sedimentary D R L L T I B PARK R D N T S a r and volcanic rocks; O F y Rive 505 F A mne u N l A U F C Tuo in places strongly U A A A L I T L L U T L A metamorphosed R r B T V ve E i R M R ed BISHOP rc A A e ? N M 570 C S N A I C E R O G V B A R A O E M S D W A T A A E T Precambrian rocks of C F N A S E U all types including R L V T A P er L D coarse-grained intrusives iv L n R E E Monterey qui A Joa Y T San H Bay B INDEPENDENCE A V F S A FRESNO A IN L S U L E I E L T Y R r x MONTEREY e R F iv A A R MT U P L s WHITNEY A T Contact g N Shaded relief map in K Owens Lake A S M I Y N T S showing the natural T E K M E N Fault R E V R N Geomorphic A V A A L L D N E Provinces G A Y E C Dotted where concealed; F S A C A F N A U A includes low-angle faults; Y U L L S O T T C N arrows indicate direction A Z D n O Searles or relative movement on r N E e K E MODOC ver Lake strike-slip faults Ri IV A MATH PLATEAU F N KLA A P A S U H A L OUNTAINS R M N T F A A B U L L N BASIN A T G C K N E AND SAN LUIS OBISPO BAKERSFIELD W YO A AN LT RANGE T C AU E R F R A C A D U N E Y D T N A R UL C A M E FA FA C A A U LT I S L FAU M K T ANIX IE C M N F LO S AU R I T LT A C E O G L A NEEDLES E C L R FA H N A I F UL E M C DESERT R A T L W O G A U E O P LT MOJAVE N R C R D O O E A D C O LT L K A A AU E F T F F A S BIG E S A U PIN A L T N U T L LT T N TR S AU E AN ANT F F SVE A EZ A V RS YN S U E GE L A AN G T Point Conception R A D E B A DG RI V KRI EL A SANTA OA T F UL FAULT A L FA U L L BARBARA T E SANTA B ARBARA Y CHANN R EL MI MTN FAULT A SSION TO C PIN N San Miguel Island SAN BERNARDINO RE G C E N H K E I E WH N F S W ITT O BA A IE NNIN U Santa Cruz Island LOS ANGELES P R F F G FAU O AU A LT L LT U S T R L A T N T r N AND Santa Rosa Island - SI e BA IN A G S N v D i L A R RANGE E N E R W A O S O J o A F d D C A a F IN U r SAN A T L o PED U O T l RO L o C T C Santa Barbara Island HAN NE S L E a L F lt MOJAVE S A on IN U O LT S DESERT R SA ea San Nicolas Island E L Santa Catalina Island TO P FA N TRANSVERSE E UL N T RANGES I IM R N P A E S R N U IA G L T L R San Clemente Island E F A A O PENINSULAR S R U U L G T H RANGES EL CENTRO COLORADO Point Loma DESERT SAN DIEGO 0 50 100 MILES Copyright © 2006 by the California Department of Conservation, California Geological Survey.
Recommended publications
  • Long-Term Fault Slip Rates, Distributed Deformation Rates, and Forecast Of
    1 Long-term fault slip rates, distributed deformation rates, and forecast of seismicity 2 in the western United States from joint fitting of community geologic, geodetic, 3 and stress-direction datasets 4 Peter Bird 5 Department of Earth and Space Sciences 6 University of California 7 Los Angeles, CA 90095-1567 8 [email protected] 9 Second revision of 2009.07.08 for J. Geophys. Res. (Solid Earth) 10 ABSTRACT. The long-term-average velocity field of the western United States is computed 11 with a kinematic finite-element code. Community datasets include fault traces, geologic offset 12 rates, geodetic velocities, principal stress directions, and Euler poles. There is an irreducible 13 minimum amount of distributed permanent deformation, which accommodates 1/3 of Pacific- 14 North America relative motion in California. Much of this may be due to slip on faults not 15 included in the model. All datasets are fit at a common RMS level of 1.8 datum standard 16 deviations. Experiments with alternate weights, fault sets, and Euler poles define a suite of 17 acceptable community models. In pseudo-prospective tests, fault offset rates are compared to 18 126 additional published rates not used in the computation: 44% are consistent; another 48% 19 have discrepancies under 1 mm/a, and 8% have larger discrepancies. Updated models are then 20 computed. Novel predictions include: dextral slip at 2~3 mm/a in the Brothers fault zone, two 21 alternative solutions for the Mendocino triple junction, slower slip on some trains of the San 22 Andreas fault than in recent hazard models, and clockwise rotation of some domains in the 23 Eastern California shear zone.
    [Show full text]
  • Report of Geotechnical Investigation Proposed Improvements
    REPORT OF GEOTECHNICAL INVESTIGATION PROPOSED IMPROVEMENTS PROPOSED RIO HONDO SATELLITE CAMPUS EL RANCHO ADULT SCHOOL 9515 HANEY STREET PICO RIVERA, CALIFORNIA Prepared for: RIO HONDO PROGRAM MANAGEMENT TEAM Whittier, California January 20, 2016 Project 4953-15-0302 January 20, 2016 Mr Luis Rojas Rio Hondo Program Management Team c/o Rio Hondo College 3600 Workman Mill Road Whittier, California 90601-1699 Subject: LETTER OF TRANSMITTAL Report of Geotechnical Investigation Proposed Improvements Proposed Rio Hondo Satellite Campus El Rancho Adult School 9515 Haney Street Pico Rivera, California, 90660 Amec Foster Wheeler Project 4953-15-0302 Dear Mr. Rojas: We are pleased to submit the results of our geotechnical investigation for the proposed improvements as part of the proposed Rio Hondo Satellite Campus at the El Rancho Adult School in Pico Rivera, California. This investigation was performed in general accordance with our proposal dated November 24, 2015, which was authorized by e-mail on December 15, 2015. The scope of our services was planned with Mr. Manuel Jaramillo of DelTerra. We have been furnished with a site plan and a general description of the proposed improvements. The results of our investigation and design recommendations are presented in this report. Please note that you or your representative should submit copies of this report to the appropriate governmental agencies for their review and approval prior to obtaining a permit. Correspondence: Amec Foster Wheeler 6001 Rickenbacker Road Los Angeles, California 90040 USA
    [Show full text]
  • Signature of Author:
    KINEMATICMODELS OF DEFORMATIONIN SOUTHERN CALIFORNIA CONSTRAINEDBY GEOLOGICAND GEODETICDATA Lori A. Eich S.B. Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology, 2003 SUBMITTEDTO THE DEPARTMENTOF EARTH, ATMOSPHERIC, AND PLANETARYSCIENCES IN PARTIALFULFILLMENT OF THE REQUIREMENTSFOR THE DEGREEOF AT THE MASSACHUSETTSINSTITUTE OF TECHNOLOGY I FEBRUARY2006 1 LIBRARIES O 2006 Massachusetts Institute of Technology. All rights reserved. Signature of Author: ....................................................................................:. ................................... Department of Earth, Atmospheric, and Planetary Sciences September 2 1,2005 Certified by: ...................................................%. .......... .%. .............. - ....- .. ......................................... Bradford H. Hager Cecil and Ida Green Professor of Earth Sciences Thesis Supervisor Accepted by: ................................................................................................................................. Maria T. Zuber E. A. Griswold Professor of Geophysics Head, Department of Earth, Atmospheric, and Planetary Sciences Kinematic Models of Deformation in Southern California Constrained by Geologic and Geodetic Data Lori A. Eich Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on January 20,2006, in partial fulfillment of the requirements for the degree of Master of Science in Earth, Atmospheric, and Planetary Sciences Abstract Using a standardized fault geometry based on
    [Show full text]
  • Activity of the Offshore Newport–Inglewood Rose Canyon Fault Zone, Coastal Southern California, from Relocated Microseismicity by Lisa B
    Bulletin of the Seismological Society of America, Vol. 94, No. 2, pp. 747–752, April 2004 Activity of the Offshore Newport–Inglewood Rose Canyon Fault Zone, Coastal Southern California, from Relocated Microseismicity by Lisa B. Grant and Peter M. Shearer Abstract An offshore zone of faulting approximately 10 km from the southern California coast connects the seismically active strike-slip Newport–Inglewood fault zone in the Los Angeles metropolitan region with the active Rose Canyon fault zone in the San Diego area. Relatively little seismicity has been recorded along the off- shore Newport–Inglewood Rose Canyon fault zone, although it has long been sus- pected of being seismogenic. Active low-angle thrust faults and Quaternary folds have been imaged by seismic reflection profiling along the offshore fault zone, raising the question of whether a through-going, active strike-slip fault zone exists. We applied a waveform cross-correlation algorithm to identify clusters of microseis- micity consisting of similar events. Analysis of two clusters along the offshore fault zone shows that they are associated with nearly vertical, north-northwest-striking faults, consistent with an offshore extension of the Newport–Inglewood and Rose Canyon strike-slip fault zones. P-wave polarities from a 1981 event cluster are con- sistent with a right-lateral strike-slip focal mechanism solution. Introduction The Newport–Inglewood fault zone (NIFZ) was first clusters of microearthquakes within the northern and central identified as a significant threat to southern California resi- ONI-RC fault zone to examine the fault structure, minimum dents in 1933 when it generated the M 6.3 Long Beach earth- depth of seismic activity, and source fault mechanism.
    [Show full text]
  • More Fault Connectivity Is Needed in Seismic Hazard Analysis
    More Fault Connectivity Is Needed in Seismic Hazard Analysis Morgan T. Page*1 ABSTRACT Did the third Uniform California Earthquake Rupture Forecast (UCERF3) go overboard with multifault ruptures? Schwartz (2018) argues that there are too many long ruptures in the model. Here, I address his concern and show that the UCERF3 rupture-length distribution matches empirical data. I also present evidence that, if anything, the UCERF3 model could be improved by adding more connectivity to the fault system. Adding more connectivity would improve model misfits with data, particularly with paleoseismic data on the southern San Andreas fault; make the model less characteristic on the faults; potentially improve aftershock forecasts; and reduce model sensitivity to inadequacies and unknowns in the modeled fault system. Furthermore, I argue that not only was the inclusion of mul- KEY POINTS tifault ruptures an improvement on past practice, as it allows • The UCERF3 model has a rupture-length distribution that the model to include ruptures much like those that have been matches empirical data. observed in the past, but also that there is still further progress • Adding more connectivity to UCERF3 would improve data that can be made in this direction. Further increasing connec- misfits. tivity in hazard models such as UCERF will reduce model mis- • More connectivity in seismic hazard models would make fits, as well as make the model less sensitive to inadequacies in them less sensitive to fault model uncertainties. the fault model and provide a better approximation of the Supplemental Material natural system. RUPTURE-LENGTH DISTRIBUTION In a recent article, Schwartz (2018) criticizes the UCERF3 INTRODUCTION model and suggests that it has too many long ruptures (i.e., The third Uniform California Earthquake Rupture Forecast those with rupture lengths ≥100 km).
    [Show full text]
  • Fault-Rupture Hazard Zones in California
    SPECIAL PUBLICATION 42 Interim Revision 2007 FAULT-RUPTURE HAZARD ZONES IN CALIFORNIA Alquist-Priolo Earthquake Fault Zoning Act 1 with Index to Earthquake Fault Zones Maps 1 Name changed from Special Studies Zones January 1, 1994 DEPARTMENT OF CONSERVATION California Geological Survey STATE OF CALIFORNIA ARNOLD SCHWARZENEGGER GOVERNOR THE RESOURCES AGENCY DEPARTMENT OF CONSERVATION MIKE CHRISMAN BRIDGETT LUTHER SECRETARY FOR RESOURCES DIRECTOR CALIFORNIA GEOLOGICAL SURVEY JOHN G. PARRISH, PH.D. STATE GEOLOGIST SPECIAL PUBLICATION 42 FAULT-RUPTURE HAZARD ZONES IN CALIFORNIA Alquist-Priolo Earthquake Fault Zoning Act With Index to Earthquake Fault Zones Maps by WILLIAM A. BRYANT and EARL W. HART Geologists Interim Revision 2007 California Department of Conservation California Geological Survey 801 K Street, MS 12-31 Sacramento, California 95814 PREFACE The purpose of the Alquist-Priolo Earthquake Fault Zoning Act is to regulate development near active faults so as to mitigate the hazard of surface fault rupture. This report summarizes the various responsibilities under the Act and details the actions taken by the State Geologist and his staff to implement the Act. This is the eleventh revision of Special Publication 42, which was first issued in December 1973 as an “Index to Maps of Special Studies Zones.” A text was added in 1975 and subsequent revisions were made in 1976, 1977, 1980, 1985, 1988, 1990, 1992, 1994, and 1997. The 2007 revision is an interim version, available in electronic format only, that has been updated to reflect changes in the index map and listing of additional affected cities. In response to requests from various users of Alquist-Priolo maps and reports, several digital products are now available, including digital raster graphic (pdf) and Geographic Information System (GIS) files of the Earthquake Fault Zones maps, and digital files of Fault Evaluation Reports and site reports submitted to the California Geological Survey in compliance with the Alquist-Priolo Act (see Appendix E).
    [Show full text]
  • Nehrp Final Technical Report
    NEHRP FINAL TECHNICAL REPORT Grant Number: G16AP00097 Term of Award: 9/2016-9/2017, extended to 12/2017 PI: Whitney Maria Behr1 Quaternary geologic slip rates along the Agua Blanca fault: implications for hazard to southern California and northern Baja California Abstract The Agua Blanca and San Miguel-Vallecitos Faults transfer ~14% of San Andreas-related Pacific-North American dextral plate motion across the Peninsular Ranges of Baja California. The Late Quaternary slip histories for the these faults are integral to mapping how strain is transferred by the southern San Andreas fault system from the Gulf of California to the western edge of the plate boundary, but have remained inadequately constrained. We present the first quantitative geologic slip rates for the Agua Blanca Fault, which of the two fault is characterized by the most prominent tectonic geomorphologic evidence of significant Late Quaternary dextral slip. Four slip rates from three sites measured using new airborne lidar and both cosmogenic 10Be exposure and optically stimulated luminescence geochronology suggest a steady along-strike rate of ~3 mm/a over 4 time frames. Specifically, the most probable Late Quaternary slip rates for the Agua Blanca Fault are 2.8 +0.8/-0.6 mm/a since ~65.1 ka, 3.0 +1.4/-0.8 mm/a since ~21.8 ka, 3.4 +0.8/-0.6 mm/a since ~11.8 ka, and 3.0 +3.0/-1.5 mm/a since ~1.6 ka, with all uncertainties reported at 95% confidence. These rates suggest that the Agua Blanca Fault accommodates at least half of plate boundary slip across northern Baja California.
    [Show full text]
  • Quaternary Fault and Fold Database of the United States
    Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Newport-Inglewood-Rose Canyon fault zone, south Los Angeles Basin section (Class A) No. 127b Last Review Date: 1999-06-01 Compiled in cooperation with the California Geological Survey citation for this record: Treiman, J.A., and Lundberg, M., compilers, 1999, Fault number 127b, Newport-Inglewood- Rose Canyon fault zone, south Los Angeles Basin section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:16 PM. Synopsis General: Data on this fault zone is variable. Fault locations onshore and in some limited offshore areas are generally well located. The large central portion of the fault zone is offshore and less well defined. Urbanization in the San Diego area has also somewhat limited the accurate location of some of the fault strands. The northern onshore portion is demonstrably Holocene based on numerous geotechnical studies as well as the historic Long Beach numerous geotechnical studies as well as the historic Long Beach earthquake. The southern onshore portion, through San Diego, is also demonstrably active based on geotechnical and research studies. The intermediate offshore portion is presumed Holocene based on sparse evidence of displacement of presumed young Holocene sediments offshore as well as its continuity to the better- defined onshore sections.
    [Show full text]
  • Century City Area Fault Investigation Report Volume 1 of 2
    ` WESTSIDE SUBWAY EXTENSION PROJECT Contract No. PS-4350-2000 Century City Area Fault Investigation Report Volume 1 of 2 Prepared for: Prepared by: 777 South Figueroa Street Suite 1100 Los Angeles, California 90017 November 30, 2011 (Rev 1) October 14, 2011 Century City Area Fault Investigation Report Revision Log Revision Log Revision # Revision Date Revision 0 October 14, 2011 Original 1 November 30, 2011 References Page 32 – added reference Plate 3 Appendix B – Deleted Boring and Cone Penetrometer Test Locations not excavated. Appendix C-2 – Added Rotary Wash Boring and Cone Penetrometer Test Logs, See Appendix Cover WESTSIDE SUBWAY EXTENSION PROJECT November 30, 2011 (Rev 1) Page i Century City Area Fault Investigation Report Table of Contents Table of Contents Volume 1 EXECUTIVE SUMMARY ......................................................................................................................... 1 1.0 INTRODUCTION ....................................................................................................................... 5 1.1 Supervisor Yaroslavsky’s Motion to Metro Board of Directors .......................................... 5 1.2 Status of Design and Environmental Documents ............................................................... 7 2.0 BACKGROUND ......................................................................................................................... 8 2.1 Published Literature ...........................................................................................................
    [Show full text]
  • 2010 City of Beverly Hills Urban Water Management Plan
    2010 City of Beverly Hills Urban Water Management Plan August, 2011 This Page Left Blank Intentionally 2010 URBAN WATER MANAGEMENT PLAN City of Beverly Hills August 2011 Prepared by: CONSULTING ENGINEERS 1130 W. Huntington Drive Unit 12 Arcadia, CA 91007 (626) 821-3456 This Page Left Blank Intentionally CITY OF BEVERLY HILLS 2010 URBAN WATER MANAGEMENT PLAN TABLE OF CONTENTS Section 1: Introduction Section Page 1.1 Purpose and Summary ....................................................................................................1-1 1.2 Coordination.....................................................................................................................1-1 1.3 Format of the Plan............................................................................................................1-2 1.4 Water System History ......................................................................................................1-3 1.5 Service Area.....................................................................................................................1-5 1.6 Climate .............................................................................................................................1-5 1.7 Population ........................................................................................................................1-6 1.8 Water System...................................................................................................................1-6 Section 2: Water Supply Resources Section Page 2.1 Introduction
    [Show full text]
  • SSA 2015 Annual Meeting Announcement Seismological Society of America Technical Sessions 21--23 April 2015 Pasadena, California
    SSA 2015 Annual Meeting Announcement Seismological Society of America Technical Sessions 21--23 April 2015 Pasadena, California IMPORTANT DATES Meeting Pre-Registration Deadline 15 March 2015 Hotel Reservation Cut-Off (gov’t rate) 03 March 2015 Hotel Reservation Cut-Off (regular room) 17 March 2015 Online Registration Cut-Off 10 April 2015 On-site registration 21--23 April 2015 PROGRAM COMMITTEE This 2015 technical program committee is led by co-chairs Press Relations Pablo Ampuero (California Institute of Technology, Pasadena Nan Broadbent CA) and Kate Scharer (USGS, Pasadena CA); committee Seismological Society of America members include Domniki Asimaki (Caltech, Mechanical 408-431-9885 and Civil Engineering), Monica Kohler (Caltech, Mechanical [email protected] and Civil Engineering), Nate Onderdonk (CSU Long Beach, Geological Sciences) and Margaret Vinci (Caltech, Office of Earthquake Programs) TECHNICAL PROGRAM Meeting Contacts The SSA 2015 technical program comprises 300 oral and 433 Technical Program Co-Chairs poster presentations and will be presented in 32 sessions over Pablo Ampuero and Kate Scharer 3 days. The session descriptions, detailed program schedule, [email protected] and all abstracts appear on the following pages. Seachable abstracts are at http://www.seismosoc.org/meetings/2014/ Abstract Submissions abstracts/. Joy Troyer Seismological Society of America 510.559.1784 [email protected] LECTURES Registration Sissy Stone President’s Address Seismological Society of America The President’s Address will be presented
    [Show full text]
  • Imperial Irrigation District Final EIS/EIR
    Final Environmental Impact Report/ Environmental Impact Statement Imperial Irrigation District Water Conservation and Transfer Project VOLUME 2 of 6 (Section 3.3—Section 9.23) See Volume 1 for Table of Contents Prepared for Bureau of Reclamation Imperial Irrigation District October 2002 155 Grand Avenue Suite 1000 Oakland, CA 94612 SECTION 3.3 Geology and Soils 3.3 GEOLOGY AND SOILS 3.3 Geology and Soils 3.3.1 Introduction and Summary Table 3.3-1 summarizes the geology and soils impacts for the Proposed Project and Alternatives. TABLE 3.3-1 Summary of Geology and Soils Impacts1 Alternative 2: 130 KAFY Proposed Project: On-farm Irrigation Alternative 3: 300 KAFY System 230 KAFY Alternative 4: All Conservation Alternative 1: Improvements All Conservation 300 KAFY Measures No Project Only Measures Fallowing Only LOWER COLORADO RIVER No impacts. Continuation of No impacts. No impacts. No impacts. existing conditions. IID WATER SERVICE AREA AND AAC GS-1: Soil erosion Continuation of A2-GS-1: Soil A3-GS-1: Soil A4-GS-1: Soil from construction existing conditions. erosion from erosion from erosion from of conservation construction of construction of fallowing: Less measures: Less conservation conservation than significant than significant measures: Less measures: Less impact with impact. than significant than significant mitigation. impact. impact. GS-2: Soil erosion Continuation of No impact. A3-GS-2: Soil No impact. from operation of existing conditions. erosion from conservation operation of measures: Less conservation than significant measures: Less impact. than significant impact. GS-3: Reduction Continuation of A2-GS-2: A3-GS-3: No impact. of soil erosion existing conditions.
    [Show full text]