Visible Light Communication: a System Perspective—Overview and Challenges

Total Page:16

File Type:pdf, Size:1020Kb

Visible Light Communication: a System Perspective—Overview and Challenges sensors Review Visible Light Communication: A System Perspective—Overview and Challenges Saeed Ur Rehman 1,*, Shakir Ullah 1, Peter Han Joo Chong 1, Sira Yongchareon 2 and Dan Komosny 3 1 Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand; [email protected] (S.U.); [email protected] (P.H.J.C.) 2 Department of Information Technology and Software Engineering, Auckland University of Technology, Auckland 1010, New Zealand; [email protected] 3 Department of Telecommunications, Brno University of Technology, Technicka 12, 601 90 Brno, Czech Republic; [email protected] * Correspondence: [email protected] Received: 10 January 2019; Accepted: 1 March 2019; Published: 7 March 2019 Abstract: Visible light communication (VLC) is a new paradigm that could revolutionise the future of wireless communication. In VLC, information is transmitted through modulating the visible light spectrum (400–700 nm) that is used for illumination. Analytical and experimental work has shown the potential of VLC to provide high-speed data communication with the added advantage of improved energy efficiency and communication security/privacy. VLC is still in the early phase of research. There are fewer review articles published on this topic mostly addressing the physical layer research. Unlike other reviews, this article gives a system prespective of VLC along with the survey on existing literature and potential challenges toward the implementation and integration of VLC. Keywords: visible light communication; optical communication; LED communication; VLC networks 1. Introduction In the 1980s, the development of high-efficiency red, orange and yellow light emitting diodes (LEDs) have fueled the idea of replacing the solid-state lighting for illumination purpose. It was until 1996 when the first white LED was commercially introduced in the market for sale [1]. LED lights are highly powered efficient, low carbon emissions, free from mercury, durable and produce good quality illumination. LED lights have 75% less power consumption and last 25% longer than traditional incandescent lamps [2]. With the decreasing prices and low power consumption of LED’s, it is estimated that the market share of LED lighting would increase to 69% in 2020 [1]. The exponential growth of data in the last two decades has raised concerns over the electricity consumption of information communication technology (ICT) infrastructure. It was estimated that ICT infrastructure accounted for 4.6% of worldwide electricity consumption in 2012 and projected to increase in the future despite emphasising on the introduction of power efficient technologies [3,4]. By 2030, the contribution of the ICT in greenhouse release would increase up to 23%, and at the worst, it can go up to 50% [5]. The future of the internet of everything (IoE) connecting people, processes, things, data and everything would require internet connectivity at all times. IoE would further increase the deployment of ICT infrastructure, thus increasing the power consumption. Apart from providing illumination at low-cost, LED lights have been used in several other applications, e.g., indoor farming and plantation [6,7], medical applications [8,9]. The easy availability of LED lights at home, offices and public spaces make it an affordable candidate to deal with the radio frequency (RF) spectrum scarcity as well as providing an energy efficient communication system. It is envisioned that existing lighting infrastructure should provide illumination as well as data connectivity. Sensors 2018, 19, 1153; doi:10.3390/s19051153 www.mdpi.com/journal/sensors Sensors 2018, 19, 1153 2 of 22 Visible light communication (VLC) is a new paradigm that could revolutionise the future of wireless communication. In VLC, information is transmitted by modulating the visible light spectrum (400–700 nm) that is used for illumination. The information signal is superimposed on the LED light without introducing any flickering to the end user. Thus, it would be “green” as compared to providing two separate sources for illumination and communication network connectivity. On the other hand, the exhaustion of low-frequency bands to cope with the exponential growth for the highspeed wireless access is another reason for exploring new technologies. The visible light spectrum is unlicensed and hardware readily available, which can be used for data transmission. Furthermore, the exponential improvement in the high power light emitting diodes is an enabler for high data rate VLC Network. It has the potential to provide high-speed data communication with improved energy efficiency along with security/privacy. Standardisation efforts such as visible light communications association (VLCA) standards and IEEE 802.15.7 shows that VLC would augment existing wireless networks in coming years. VLC can have applications in indoor wireless communication [10], intelligent transport system [11,12], smart cities [13], localisation in warehouses/robotics [14–16], human sensing [17], safe and hazard-free data access in hospitals [18], toys and theme parks [19], indoor point to point (PPP) communication and vehicular communication [12]. VLC in its basic form like any other communication system in the downlink consists of a LED as a transmitter, a free space optical communication channel and a photodetector or an image sensor as a receiver. The uplink could be a WiFi transmitter or an IR transmitter or LED based VLC transmitter. Much of the work is focused on the downlink transmission to increase the data rate and improve VLC performance under different environmental conditions such as shadowing, non-LOS scenario and mobility. However, the uplink is equally essential for seamless integration of VLC in the existing ICT infrastructure. Unlike other review articles, this paper provides an overview of the VLC from the uplink and system perspective. This review article critically analyses the existing solutions of the VLC network from the system as well as uplink perspective. This paper has following contributions • We have critically analysed the existing literature of the VLC regarding the uplink from the user device to VLC access point (VAP). • We have discussed the open challenges associated with the use of existing RF spectrum for uplink connectivity. The rest of the paper is organised as follow: Section2 discusses the history and standardisation efforts. Section3 discusses applications of VLC. Section4 gives an overview of the different technologies used in the uplink and discusses its limitation. Section5 summarises open research challenges toward the integration of VLC in the existing systems. Section6 concludes the paper. 2. Visible Light Communication System In the early 1990’s, mobile phones were mainly used for voice conversation or text messaging. However, the introduction of the iPhone in 2007 has started a new era in wireless communication [20]. Nowadays smartphones are equipped with all kinds of sensors and applications to provide health monitoring, video chatting, online streaming along with bank transactions and using cloud services. A larger bandwidth should be allocated for wireless communication in order to provide seamless connectivity and higher data rates. However, frequency spectrum below 5 GHz is well utilised, which leave no room to relocate spectrum for mobile communication. This led scientists to seek new wireless technologies that can fulfil the needs of the higher data rate at a low cost. One such candidate is the use of the visible light spectrum. It has the advantage of its availability (LED lights), link level security, higher bandwidth, and frequency reuse. Furthermore, the demand for data is higher in an indoor environments because 80% of the time people stay in an indoor environments [21]. Thus using the VLC in indoor applications for high data rate applications would free up the precious RF spectrum for other future applications such as autonomous cars and smart cities. Sensors 2018, 19, 1153 3 of 22 The history of VLC goes back to Romans when polish metallic plates were used to reflect sunlight and convey signals over a long distance. In 1794, Claude Chappe developed a semaphore system consisting of a series of towers equipped with mounted arms to transmit information. In the late 19th and early 20th Century, heliograph was used for long distance communication. In heliograph, the sunlight was reflected with a mirror to transmit Morse code. The British and Australian armies used it till 1960. Graham Bell is mostly known for his invention of the modern telephone, which uses electricity to transmit voice. However, Bell described the photo-phone as one of his important inventions [22]. Photophone uses voice to vibrate the mirror, which in turn is used to modulate the sunlight. It was the idea of Graham Bell, which led to fibre optic communication. The first commercial fibre optic communication system was deployed in 1975 and was capable of operating at a bit rate of 45 Mbit/s. VLC is a form of optical communication that instead of using a guided media (fibre optic) operates in the open air in close proximity of two to three meters. In 2003, the term VLC was coined first by Nakagawa Laboratory at Keio University, Japan [23]. The Nakagawa Laboratory demonstrates the first VLC system at Keio University in 2000. Light emitting diodes (LEDs) are used for transmitting the data. Liang et al. have proposed a VLC system consisting of red-green-blue (RGB) LEDs as a transmitter and complimentary metal oxide semiconductor (CMOS) image sensor as a receiver [24]. The authors observe that RGB LEDs can increase the VLC transmission data rate with wavelength division multiplexing (WDM). For such systems, colour signals are isolated using colour filter array which relies on colour-sensitive sensing elements. However, the wide optical bandwidth of colour filters can increase spectral overlap between channels and can cause inter-channel interference (ICI). In order to solve this issue, the authors have applied CMOS image sensors with multiple input–multiple output (MIMO) to mitigate the ICI and demodulate the rolling shutter pattern.
Recommended publications
  • SYLLABUS Optical Fiber Communication
    Optical Fiber Communication 10EC72 SYLLABUS Optical Fiber Communication Subject Code : 10EC72 IA Marks : 25 No. of Lecture Hrs/Week : 04 Exam Hours : 03 Total no. of Lecture Hrs. : 52 Exam Marks : 100 PART - A UNIT - 1 OVERVIEW OF OPTICAL FIBER COMMUNICATION: Introduction, Historical development, general system, advantages, disadvantages, and applications of optical fiber communication, optical fiber waveguides, Ray theory, cylindrical fiber (no derivations in article 2.4.4), single mode fiber, cutoff wave length, mode filed diameter. Optical Fibers: fiber materials, photonic crystal, fiber optic cables specialty fibers. 8 Hours UNIT - 2 TRANSMISSION CHARACTERISTICS OF OPTICAL FIBERS: Introduction, Attenuation, absorption, scattering losses, bending loss, dispersion, Intra modal dispersion, Inter modal dispersion. 5 Hours UNIT - 3 OPTICAL SOURCES AND DETECTORS: Introduction, LED’s, LASER diodes, Photo detectors, Photo detector noise, Response time, double hetero junction structure, Photo diodes, comparison of photo detectors. 7 Hours UNIT - 4 FIBER COUPLERS AND CONNECTORS: Introduction, fiber alignment and joint loss, single mode fiber joints, fiber splices, fiber connectors and fiber couplers. 6 Hours Dept of ECE, SJBIT Page 1 Optical Fiber Communication 10EC72 PART - B UNIT - 5 OPTICAL RECEIVER: Introduction, Optical Receiver Operation, receiver sensitivity, quantum limit, eye diagrams, coherent detection, burst mode receiver operation, Analog receivers. 6 Hours UNIT - 6 ANALOG AND DIGITAL LINKS: Analog links – Introduction, overview of analog links, CNR, multichannel transmission techniques, RF over fiber, key link parameters, Radio over fiber links, microwave photonics. Digital links – Introduction, point–to–point links, System considerations, link power budget, resistive budget, short wave length band, transmission distance for single mode fibers, Power penalties, nodal noise and chirping.
    [Show full text]
  • Introduction to Optical Communication Systems
    1. Introduction to Optical Communication Systems Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 2/ 52 Historical perspective • 1626: Snell dictates the laws of reflection and refraction of light • 1668: Newton studies light as a wave phenomenon – Light waves can be considered as acoustic waves • 1790: C. Chappe “invents” the optical telegraph – It consisted in a system of towers with signaling arms, where each tower acted as a repeater allowing the transmission coded messages over hundred km. – The first Optical telegraph line was put in service between Paris and Lille covering a distance of 200 km. • 1810: Fresnel sets the mathematical basis of wave propagation • 1870: Tyndall demonstrates how a light beam is guided through a falling stream of water • 1830: The optical telegraph is replaced by the electric telegraph, (b/s) until 1866, when the telephony was born • 1873: Maxwell demonstrates that light can be considered as electromagnetic waves http://en.wikipedia.org/wiki/Claude_Chappe Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 3/ 52 Historical perspective • 1800: In Spain, Betancourt builds the first span between Madrid and Aranjuez • 1844: It is published the law for the deployment of the optical telegraphy in Spain – Arms supporting 36 positions, 10º separation Alphabet containing 26 letters and 10 numbers – Spans: Madrid - Irún, 52 towers. Madrid - Cataluña through Valencia, 30 towers. Madrid - Cádiz, 59 towers. • 1855: It is published the law for the deployment of the electrical telegraphy network in Spain • 1880: Graham Bell invents the “photofone” for voice communications TRANSMITTER RECEIVER The transmitter consists of a The receiver is also a mirror made to be vibrated by parabolic reflector in which a the person’s voice, and then selenium cell is placed in its modulating the incident light focus to collect the variations beam towards the receiver.
    [Show full text]
  • Wireless Networks
    SUBJECT WIRELESS NETWORKS SESSION 2 WIRELESS Cellular Concepts and Designs" SESSION 2 Wireless A handheld marine radio. Part of a series on Antennas Common types[show] Components[show] Systems[hide] Antenna farm Amateur radio Cellular network Hotspot Municipal wireless network Radio Radio masts and towers Wi-Fi 1 Wireless Safety and regulation[show] Radiation sources / regions[show] Characteristics[show] Techniques[show] V T E Wireless communication is the transfer of information between two or more points that are not connected by an electrical conductor. The most common wireless technologies use radio. With radio waves distances can be short, such as a few meters for television or as far as thousands or even millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, personal digital assistants (PDAs), and wireless networking. Other examples of applications of radio wireless technology include GPS units, garage door openers, wireless computer mice,keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications include the use of other electromagnetic wireless technologies, such as light, magnetic, or electric fields or the use of sound. Contents [hide] 1 Introduction 2 History o 2.1 Photophone o 2.2 Early wireless work o 2.3 Radio 3 Modes o 3.1 Radio o 3.2 Free-space optical o 3.3
    [Show full text]
  • Long-Range Free-Space Optical Communication Research Challenges Dr
    Long-Range Free-Space Optical Communication Research Challenges Dr. Scott A. Hamilton, MIT Lincoln Laboratory and Prof. Joseph M. Khan, Stanford University The substantial benefits of free-space optical (FSO) or laser communications (lasercom) have been well known to system designers for quite some time, c.f. [1]. The free-space channel, similar to the fiber channel, provides many benefits at optical frequencies compared to radio frequencies (RF) including extremely wide unregulated bandwidth and tightly confined beams (i.e. narrow beam divergence), both of which enable low size, weight and power (SWaP) terminals. However, significant challenges are still perceived: stochastic intensity fluctuations in a received optical signal after propagating through the atmosphere, power-starved link mode of operation, and narrow transmit beams that must be precisely pointed and tracked. Since the late 1970’s the United States [2], Europe [3] and Japan [4] have actively been developing FSO technology motivated primarily for long-haul spaceborne communication systems. While early efforts were focused on maturing FSO technology, the past decade has seen significant progress toward demonstrating the practicality of FSO for multiple applications. The first high-rate demonstration of FSO between a satellite in Geosynchronous (GEO) orbit and the ground was achieved by the US during the GeoLITE experiment in 2001. A short time later, the European Space Agency (ESA) demonstrated a 50- Mbps FSO link operating at 800-nm wavelengths between their Artemis GEO satellite and: i) another ESA spacecraft in Low-Earth orbit (LEO) in 2001 [5]; ii) a ground station located in Tenerife, Spain in 2001 [6]; and iii) an airplane flying at altitudes as low as 6,000 meters outfitted with an FSO terminal developed by France’s Astrium EADS in 2006 [7].
    [Show full text]
  • Flight Inspection History Written by Scott Thompson - Sacramento Flight Inspection Office (May 2008)
    Flight Inspection History Written by Scott Thompson - Sacramento Flight Inspection Office (May 2008) Through the brief but brilliant span of aviation history, the United States has been at the leading edge of advancing technology, from airframe and engines to navigation aids and avionics. One key component of American aviation progress has always been the airway and navigation system that today makes all-weather transcontinental flight unremarkable and routine. From the initial, tentative efforts aimed at supporting the infant air mail service of the early 1920s and the establishment of the airline industry in the 1930s and 1940s, air navigation later guided aviation into the jet age and now looks to satellite technology for direction. Today, the U.S. Federal Aviation Administration (FAA) provides, as one of many services, the management and maintenance of the American airway system. A little-seen but still important element of that maintenance process is airborne flight inspection. Flight inspection has long been a vital part of providing a safe air transportation system. The concept is almost as old as the airways themselves. The first flight inspectors flew war surplus open-cockpit biplanes, bouncing around with airmail pilots and watching over a steadily growing airway system predicated on airway light beacons to provide navigational guidance. The advent of radio navigation brought an increased importance to the flight inspector, as his was the only platform that could evaluate the radio transmitters from where they were used: in the air. With the development of the Instrument Landing System (ILS) and the Very High Frequency Omni-directional Range (VOR), flight inspection became an essential element to verify the accuracy of the system.
    [Show full text]
  • Optical Communications and Networks - Review and Evolution (OPTI 500)
    Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian [email protected] Contents Optical Communications: Review Optical Communications and Photonics Why Photonics? Basic Knowledge Optical Communications Characteristics How Fibre-Optic Works? Applications of Photonics Optical Communications: System Approach Optical Sources Optical Modulators Optical Receivers Modulations Optical Networking: Review Core Networks: SONET, PON Access Networks Optical Networking: Evolution Summary 2 Optical Communications and Photonics Photonics is the science of generating, controlling, processing photons. Optical Communications is the way of interacting with photons to deliver the information. The term ‘Photonics’ first appeared in late 60’s 3 Why Photonics? Lowest Attenuation Attenuation in the optical fibre is much smaller than electrical attenuation in any cable at useful modulation frequencies Much greater distances are possible without repeaters This attenuation is independent of bit-rate Highest Bandwidth (broadband) High-speed The higher bandwidth The richer contents Upgradability Optical communication systems can be upgraded to higher bandwidth, more wavelengths by replacing only the transmitters and receivers Low Cost For fibres and maintenance 4 Fibre-Optic as a Medium Core and Cladding are glass with appropriate optical properties!!! Buffer is plastic for mechanical protection 5 How Fibre-Optic Works? Snell’s Law: n1 Sin Φ1 = n2 Sin Φ2 6 Fibre-Optics Fibre-optic cable functions
    [Show full text]
  • Free Space Optics Vs Radio Frequency Wireless Communication
    I.J. Information Technology and Computer Science, 2016, 9, 1-8 Published Online September 2016 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2016.09.01 Free Space Optics Vs Radio Frequency Wireless Communication Rayan A. Alsemmeari and Sheikh Tahir Bakhsh Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia E-mail: {ralsemmeari, stbakhsh}@kau.edu.sa Hani Alsemmeari Institute of Public Administration Information and Technology department E-mail: [email protected] Abstract—This paper presents the free space optics (FSO) but on very low data rates. Laser technology enhanced and radio frequency (RF) wireless communication. The the use of free space optics and is now highly dependent paper explains the feature of FSO and compares it with on the laser technology. FSO in original form was the already deployed technology of RF communication in developed by the NASA and used for the military terms of data rate, efficiency, capacity and limitations. purposes in different era as fast communication link. The The data security is also discussed in the paper for technology has many commonalities with the fiber optics identification of the system to be able to use in normal technology but behaves differently in the field due to the circumstances. These systems are also discussed in a way method of transmission for both the technologies [5, 6]. that they could efficiently combine to form the single RF technology is very old technology for system with greater throughput and higher reliability. communication. It is the wireless technology for data communication. It is considered to be in use for more Index Terms—Free Space Optics, Radio frequency, than 100 years.
    [Show full text]
  • HELIOGRAPH DESCRIPTION: the Heliograph Was a Communications Device Used to Transmit Messages Over Long Distances. It Uses a Mi
    HELIOGRAPH DESCRIPTION: The heliograph was a communications device used to transmit messages over long distances. It uses a mirror attached to a surveying device to direct a beam of light to a receiving station. Sunlight is used as the light source. Messages could be sent in any direction during daylight hours. If the sun was in front of the sender, the sun’s rays were reflected directly from the sender to the receiving station. If the sun was behind the sender, a secondary mirror was used to reflect the rays toward the receiving station. A keying system was used to generate the flashes required to transmit messages using the Morse Code. The distance that the signals could be seen depended on several variables. A clear line of sight was required and Heliograph at Fort because of the curvature of the earth, the heliograph stations were Bowie Visitor Center located on the highest convenient point. The clarity of the sky and the size of the mirrors were also significant factors. The maximum range was about 10 miles for each inch of mirror diameter. Under normal conditions using the naked eye, a flash could be seen for about 30 miles, much farther using a telescope. The speed at which messages could be sent was dependent on the proficiency of both the sender and the receiver. EARLY HISYORY: A forerunner to the heliograph, the heliotrope, was developed by Professor Carl Friedrich Gauss of the University of Gottingen in Germany. The heliotrope was used to direct a controlled beam of sunlight to a distant station to be used as a survey marker.
    [Show full text]
  • Battle Management Language: History, Employment and NATO Technical Activities
    Battle Management Language: History, Employment and NATO Technical Activities Mr. Kevin Galvin Quintec Mountbatten House, Basing View, Basingstoke Hampshire, RG21 4HJ UNITED KINGDOM [email protected] ABSTRACT This paper is one of a coordinated set prepared for a NATO Modelling and Simulation Group Lecture Series in Command and Control – Simulation Interoperability (C2SIM). This paper provides an introduction to the concept and historical use and employment of Battle Management Language as they have developed, and the technical activities that were started to achieve interoperability between digitised command and control and simulation systems. 1.0 INTRODUCTION This paper provides a background to the historical employment and implementation of Battle Management Languages (BML) and the challenges that face the military forces today as they deploy digitised C2 systems and have increasingly used simulation tools to both stimulate the training of commanders and their staffs at all echelons of command. The specific areas covered within this section include the following: • The current problem space. • Historical background to the development and employment of Battle Management Languages (BML) as technology evolved to communicate within military organisations. • The challenges that NATO and nations face in C2SIM interoperation. • Strategy and Policy Statements on interoperability between C2 and simulation systems. • NATO technical activities that have been instigated to examine C2Sim interoperation. 2.0 CURRENT PROBLEM SPACE “Linking sensors, decision makers and weapon systems so that information can be translated into synchronised and overwhelming military effect at optimum tempo” (Lt Gen Sir Robert Fulton, Deputy Chief of Defence Staff, 29th May 2002) Although General Fulton made that statement in 2002 at a time when the concept of network enabled operations was being formulated by the UK and within other nations, the requirement remains extant.
    [Show full text]
  • History of Radio Broadcasting in Montana
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1963 History of radio broadcasting in Montana Ron P. Richards The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Richards, Ron P., "History of radio broadcasting in Montana" (1963). Graduate Student Theses, Dissertations, & Professional Papers. 5869. https://scholarworks.umt.edu/etd/5869 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE HISTORY OF RADIO BROADCASTING IN MONTANA ty RON P. RICHARDS B. A. in Journalism Montana State University, 1959 Presented in partial fulfillment of the requirements for the degree of Master of Arts in Journalism MONTANA STATE UNIVERSITY 1963 Approved by: Chairman, Board of Examiners Dean, Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number; EP36670 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oiuartation PVUithing UMI EP36670 Published by ProQuest LLC (2013).
    [Show full text]
  • Signalling and Beacon Sites in Dorset
    THE DORSET DIGGER THE NEWSLETTER OF THE DORSET DIGGERS COMMUNITY ARCHAEOLOGY GROUP No 43 December 2016 Signalling and Beacon Sites in Dorset Richard Hood has kicked off this new project. He needs somemorevolunteerstohelpwith the research Introduction The ability to send or receive a message over a distance to warn of impending attack has been used to mobilise troops for defence since the Roman times. The Romans developed a system using five flags or torches to carry a simple message over short distances. This was usually used in battle to pass information out to army commanders. To carry a simple message further, a bonfire was used set on a high point, usually from a mini fort within vision of one or more other sites. This type of warning system was used during the invasion of Britain, when vexation forts could come under attack from tribes yet to be persuaded of the advantages of Roman living. Near the end of the Roman occupation signal stations were employed on the East and South coasts to warn of Saxon pirates. Roman signal stations on the NE coast of England took the form of mini forts, with a ditch and bank for defence. Black Down in Dorset, excavated by Bill Putnam and re examined by Dorset Diggers in 2016 is of this type. The Saxons appear to have had a system of inter divisible beacon sites to warn of Viking attack from the ninth century onwards. Later, beacons were erected to warn of the approach of the Spanish Armada, followed by a similar, but unused system, to warn of Napoleonic invasion.
    [Show full text]
  • Advantages and Limitations of Li- Fi Over Wi-Fi and Ibeacon Technologies By
    ISSN (Online) 2321 – 2004 IJIREEICE ISSN (Print) 2321 – 5526 International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering ISO 3297:2007 Certified Vol. 4, Issue 11, November 2016 Review Paper: Advantages and Limitations of Li- Fi over Wi-Fi and iBeacon Technologies By Deepika D Pai Asst. Professor, (Sel Grade), Department of Electronics and Communication Engineering. Vemana Institute of Technology Abstract: Li-Fi can be thought of as a light-based Wi-Fi. That is, it uses light instead of radio waves to transmit information. And instead of Wi-Fi modems, Li-Fi would use transceiver-fitted LED lamps that can light a room as well as transmit and receive information. Light is inherently safe and can be used in places where radio frequency communication is often deemed problematic, such as in aircraft cabins or hospitals. So visible light communication not only has the potential to solve the problem of lack of spectrum space, but can also enable novel application. The visible light spectrum is unused; it's not regulated, and can be used for communication at very high speeds. This paper compares the Li-Fi technology with Wi-Fi and iBeacon technologies. Keywords: Li-fi, Wi-Fi, iBeacon, visible light communication, BLE communication I. INTRODUCTION In recent trends, wireless communication Wi-Fi is gaining government licence. This new Ethernet standard was tremendous importance. CISCO reported that the compatible with devices and technology working on radio compound annual growth rate (CAGR) of mobile data waves and came to be known as ―Wi-Fi‖ only in 1999. usage per month is around 80% which has led to the saturation of the network spectrum consequently bringing iBeacon: The technology was first introduced by Apple at down its efficiency.
    [Show full text]