Advantages and Limitations of Li- Fi Over Wi-Fi and Ibeacon Technologies By

Total Page:16

File Type:pdf, Size:1020Kb

Advantages and Limitations of Li- Fi Over Wi-Fi and Ibeacon Technologies By ISSN (Online) 2321 – 2004 IJIREEICE ISSN (Print) 2321 – 5526 International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering ISO 3297:2007 Certified Vol. 4, Issue 11, November 2016 Review Paper: Advantages and Limitations of Li- Fi over Wi-Fi and iBeacon Technologies By Deepika D Pai Asst. Professor, (Sel Grade), Department of Electronics and Communication Engineering. Vemana Institute of Technology Abstract: Li-Fi can be thought of as a light-based Wi-Fi. That is, it uses light instead of radio waves to transmit information. And instead of Wi-Fi modems, Li-Fi would use transceiver-fitted LED lamps that can light a room as well as transmit and receive information. Light is inherently safe and can be used in places where radio frequency communication is often deemed problematic, such as in aircraft cabins or hospitals. So visible light communication not only has the potential to solve the problem of lack of spectrum space, but can also enable novel application. The visible light spectrum is unused; it's not regulated, and can be used for communication at very high speeds. This paper compares the Li-Fi technology with Wi-Fi and iBeacon technologies. Keywords: Li-fi, Wi-Fi, iBeacon, visible light communication, BLE communication I. INTRODUCTION In recent trends, wireless communication Wi-Fi is gaining government licence. This new Ethernet standard was tremendous importance. CISCO reported that the compatible with devices and technology working on radio compound annual growth rate (CAGR) of mobile data waves and came to be known as ―Wi-Fi‖ only in 1999. usage per month is around 80% which has led to the saturation of the network spectrum consequently bringing iBeacon: The technology was first introduced by Apple at down its efficiency. It is unlikely that a significant new the Apple Worldwide Developers Conference in 2013. It spectrum may be made available for mobile uses beacons which are low-cost, low-powered communications; the only option is to increase the transmitters equipped with Bluetooth Low Energy or BLE spectrum efficiency of wireless systems. To resolve this that can be used to deliver proximity-based, context-aware the following problems need to be addressed which are (a) messages. the elimination of interference, (b) a massively improved reuse of the available frequency resources, and (c) Technology details of Li-Fi utilisation of the free, vast and unlicensed infrared and A. Core Technology- visible light spectrum leading to hybrid radio frequency Li-Fi: Li-Fi is a form of Visible Light Communication (RF) and optical wireless systems. These drawbacks may (VLC) technology. VLC technology is an optical wireless be overcome with the use of Li fi technology. Section II data communications medium which uses visible light gives the overview of Li-Fi technology, Section III gives between 400 and 800 THz (780–375 nm) to transmit the overview of Wi-Fi technology, Section IV gives the binary data in the form of light pulses.This Optical overview of iBeacon technology, and Section V gives the Wireless Communication technology uses light from light- brief comparison of the three technologies applications emitting diodes (LEDs) as a medium to deliver networked, and future scope of Li-Fi technology. mobile, high-speed communication in a similar manner to Wi-Fi. Origin of the three terminologies- Visible Light Communications (VLC) works by switching Li-Fi: Light Fidelity (Li-Fi) is a bidirectional, high-speed the current to the LEDs off and on at a very high rate, and fully networked wireless communication technology which is too quick to be noticed by the human eye. similar to Wi-Fi. The term was coined by Harald Has and Although Li-Fi LEDs would have to be kept on to transmit is a form of visible light communication and a subset of data, they could be dimmed to below human visibility optical wireless communications (OWC) and could be a while still emitting enough light to carry data. The light complement to RF communication (Wi-Fi or cellular waves cannot penetrate walls which makes a much shorter networks), or even a replacement in contexts of data range, though more secure from hacking, relative to Wi-Fi. broadcasting. This technology has been proposed as a Direct line of sight is not necessary for Li-Fi to transmit a solution to the RF-bandwidth limitations. signal; light reflected off the walls can achieve 70 Mbit/s. Wi-Fi: Introduced by the visionary ruling by Federal It uses common household LED (light emitting diodes) Communications Commission (FCC) in 1985 allowing the light bulbs to enable data transfer, boasting speeds of up to use of bands of wireless spectrum without the need for a 224 gigabits per second. Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.41122 116 ISSN (Online) 2321 – 2004 IJIREEICE ISSN (Print) 2321 – 5526 International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering ISO 3297:2007 Certified Vol. 4, Issue 11, November 2016 B. How it works- Steps involved in the working: Li-Fi: Li-Fi consists of four primary sub-assemblies as shown in figure 1: Fig 1: Sub-assemblies of Li-Fi Fig 4: Working Principle of Li-Fi Bulb RF power amplifier circuit (PA) As shown in figure 4 the working principle of Li-Fi Printed Circuit Board(PCB) technology can be explained in three steps: Enclosure Power supply. Step-1: A radio frequency signal is generated by the solid state Power Amplifier is guided into an electric field The functions of the individual sub-assemblies are enlisted about the bulb. below Step-2:The high concentration of energy in the electric field vaporizes the contents of the bulb to a plasma state at Function of the Bulb Assembly: the bulb‘s centre. The heart of the Li-Fi is the bulb sub-assembly where a Step-3: This controlled plasma generates an intense source sealed bulb is embedded into a dielectric material which of light. serves as a waveguide and electric field as shown in figure All of these sub- assemblies are enclosed in an aluminium 2. enclosure. Li-Fi and Wi-Fi are quite similar as both transmit data electromagnetically. However, Wi-Fi uses radio waves while Li-Fi is a Visible Light Communications (VLC) system a medium that uses visible light between 400 and 800 terahertz (THz).It accommodates a photo-detector to receive light signals and a signal processing element to convert the data into 'stream-able' content. Fig 2: Bulb sub assembly An LED light bulb is a semi-conductor light source meaning that the constant current of electricity supplied to Function of the RF driver: an LED light bulb can be dipped and dimmed, similar to As shown in figure 3, the power amplifier (PA) assembly switching a torch on and off according to a certain pattern uses an LDMOS device which converts electrical energy to relay a secret message. Flicking an LED on and off at to RF power. This assembly is designed for ruggedness extreme speeds can be used to write and transmit things in and efficiency. The RF driver also controls circuit for binary code. up and down at extremely high speeds, digital and analog lighting controls. without being visible to the human eye to write and transmit things in binary code. For example, as shown in figure 5, data is fed into an LED light bulb (with signal processing technology), it then sends data (embedded in its beam) at rapid speeds to the photo-detector (photodiode).The tiny changes in the rapid dimming of LED bulbs is then converted by the 'receiver' into electrical signal. The signal is then converted back into a binary data stream that we would recognise as web, video and audio applications that run on internet enables Fig3: RF driver sub assembly devices [2]. Copyright to IJIREEICE DOI 10.17148/IJIREEICE.2016.41122 117 ISSN (Online) 2321 – 2004 IJIREEICE ISSN (Print) 2321 – 5526 International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control Engineering ISO 3297:2007 Certified Vol. 4, Issue 11, November 2016 3. When the Wi-Fi enabled device encounters a hotspot the device can then connect to that network wirelessly. 4. A single access point can support up to 30 users and can function within a range of 100-150 feet indoors and 300 feet outdoors. 5. Many access points can be connected to each other via Ethernet cables to create a single large network. Once the network is built the connection works through a transmitting antenna which is connected to a DSL or cable internet connection.The antenna on the router will beam the radio signals through a specific range and another antenna which is on the laptop or computer will recive the signal as shown in figure 7 below. Fig 5: Overview of the Li-fi technology II. TECHNOLOGY DETAILS OF WI-FI Wi-Fi: Wi-Fi is based on Radio Frequency (RF) technology which uses a frequency within the electromagnetic spectrum associated with radio wave propagation. When a radio frequency current is supplied to an antenna, it creates an electromagnetic field capable of propagating through space. Devices equipped with wireless network adapters detect the wireless signal broadcasted by access points and tune into it. There are three elements that constitute the Wi-Fi network. Figure 7: Practical implementation of Wi-Fi They are: Applications include Home, Small Businesses, Large Access point (AP)-It is a wireless transceiver or ―base Corporations and Campuses, Health care etc. station‖ that can connect one or more wireless devices simultaneously to the Internet. III. TECHNOLOGY DETAILS OF IBEACON Wi-Fi cards: They can be external or internal.
Recommended publications
  • Flight Inspection History Written by Scott Thompson - Sacramento Flight Inspection Office (May 2008)
    Flight Inspection History Written by Scott Thompson - Sacramento Flight Inspection Office (May 2008) Through the brief but brilliant span of aviation history, the United States has been at the leading edge of advancing technology, from airframe and engines to navigation aids and avionics. One key component of American aviation progress has always been the airway and navigation system that today makes all-weather transcontinental flight unremarkable and routine. From the initial, tentative efforts aimed at supporting the infant air mail service of the early 1920s and the establishment of the airline industry in the 1930s and 1940s, air navigation later guided aviation into the jet age and now looks to satellite technology for direction. Today, the U.S. Federal Aviation Administration (FAA) provides, as one of many services, the management and maintenance of the American airway system. A little-seen but still important element of that maintenance process is airborne flight inspection. Flight inspection has long been a vital part of providing a safe air transportation system. The concept is almost as old as the airways themselves. The first flight inspectors flew war surplus open-cockpit biplanes, bouncing around with airmail pilots and watching over a steadily growing airway system predicated on airway light beacons to provide navigational guidance. The advent of radio navigation brought an increased importance to the flight inspector, as his was the only platform that could evaluate the radio transmitters from where they were used: in the air. With the development of the Instrument Landing System (ILS) and the Very High Frequency Omni-directional Range (VOR), flight inspection became an essential element to verify the accuracy of the system.
    [Show full text]
  • Wireless Technologies and the SAFECOM Sor for Public Safety Communications
    Wireless Technologies and the SAFECOM SoR for Public Safety Communications Leonard E. Miller Wireless Communication Technologies Group Advanced Network Technologies Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, Maryland 2005 Cover photo: Santa Clara County antenna farm, from http://www.sccfd.org/frequencies.html ii Wireless Technologies and the SAFECOM SoR for Public Safety Communications Preface The Problem: Lack of Capacity, Interoperability, and Functionality National assessments of public safety communications (PSC) that were made in the 1990s found that the nation’s public safety agencies faced several important problems in their use of radio communications1: • First, the radio frequencies allocated for Public Safety use have become highly congested in many, especially urban, areas…. • Second, the ability of officials from different Public Safety agencies to communicate with each other is limited…. Interoperability is hampered by the use of multiple frequency bands, incompatible radio equipment, and a lack of standardization in repeater spacing and transmission formats. • Finally, Public Safety agencies have not been able to implement advanced features to aid in their mission. A wide variety of technologies—both existing and under development —hold substantial promise to reduce danger to Public Safety personnel and to achieve greater efficiencies in the performance of their duties. Broadband data systems, for example, offer greater access to databases and information that can save lives and contribute to keeping criminals “off the street.” Video systems promise better surveillance capabilities, increased use of robotics in toxic and hazardous environments, and better monitoring and tracking of both personnel and equipment. The national assessments of PSC have had significant impact on legislation, regulation, and funding.
    [Show full text]
  • 25 Years of Bluetooth Technology
    future internet Article 25 Years of Bluetooth Technology Sherali Zeadally 1,*, Farhan Siddiqui 2 and Zubair Baig 3 1 College of Communication and Information, University of Kentucky, Lexington, KY, 40506, USA 2 Department of Mathematics and Computer Science, Dickinson College, Carlisle, PA 17013, USA 3 School of Information Technology, Deakin University, Geelong 3216, Victoria, Australia * Correspondence: [email protected] Received: 12 August 2019; Accepted: 2 September 2019; Published: 9 September 2019 Abstract: Bluetooth technology started off as a wireless, short-range cable replacement technology but it has undergone significant developments over the last two decades. Bluetooth radios are currently embedded in almost all computing devices including personal computers, smart phones, smart watches, and even micro-controllers. For many of us, Bluetooth is an essential technology that we use every day. We provide an insight into the history of Bluetooth and its significant design developments over the last 25 years. We also discuss related issues (including security) and Bluetooth as a driving technology for the Internet of Things (IoT). Finally, we also present recent research results obtained with Bluetooth technology in various application areas. Keywords: bluetooth; internet of things; low-energy; mesh; networking; protocol; security 1. Introduction The Bluetooth radio technology was developed by L. M. Ericsson in 1994. The standard is named after the King of Denmark, Harald Blaatand (“Bluetooth”). Major mobile phone manufacturers and technology providers comprising IBM, Nokia, Intel, Ericsson, and Toshiba created the Bluetooth Special Interest Group (SIG). The aim of the group was to invent an open specification for wireless technologies of short range. Bluetooth SIG continues to oversee the Bluetooth technology today.
    [Show full text]
  • History of Radio Broadcasting in Montana
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1963 History of radio broadcasting in Montana Ron P. Richards The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Richards, Ron P., "History of radio broadcasting in Montana" (1963). Graduate Student Theses, Dissertations, & Professional Papers. 5869. https://scholarworks.umt.edu/etd/5869 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE HISTORY OF RADIO BROADCASTING IN MONTANA ty RON P. RICHARDS B. A. in Journalism Montana State University, 1959 Presented in partial fulfillment of the requirements for the degree of Master of Arts in Journalism MONTANA STATE UNIVERSITY 1963 Approved by: Chairman, Board of Examiners Dean, Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number; EP36670 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oiuartation PVUithing UMI EP36670 Published by ProQuest LLC (2013).
    [Show full text]
  • Glossary of Terminology
    Glossary of Broadband Terminology This glossary was compiled by Ray Elseth of Broadband Development 3 (http://www.bbd3.com) and Thomas Asp of Virchow Krause (http://virchowkrause.com), and is a supplement to “Broadband Access: The Local Government Role” by Thomas Asp, Harvey L. Reiter, Jerry Schulz, and Ronald L. Vaden (IQ Report 36, no. 2 [Washington, D.C.: ICMA, 2004]). 802.11 A family of specifications covering wireless connectivity between devices normally located within 100’ to 300’ of each other. Often referred to as Wireless Local Area Network (WLAN). Most common implementation is 802.11b (see Wi- Fi), but 802.11a and 802.11g are also in active use. 802.15 A family of specifications covering wireless connectivity between devices normally located within 10’ to 30’ of each other. Often referred to as Wireless Personal Area Network (WPAN). Implemented as “Bluetooth.” 802.16 A family of specifications covering wireless connectivity between devices normally located within 1 to 30 miles of each other. Often referred to as Wireless Metropolitan Area Network (WMAN). Access Point (AP) A hardware device that acts as a connectivity hub to permit users of a wireless device to connect to a wired local area network. Provides a bridge between Ethernet wired LANs (local area networks) and the wireless network. Access points are the connectivity point between Ethernet wired networks and devices equipped with a wireless LAN adapter card. Antenna The equipment that allows the transmission or reception of radio frequency energy. Asynchronous Digital A technology that allows high-speed data to be sent over a Subscriber Line single pair of existing copper telephone lines, with data rates (ADSL) for receiving data differing from data rates for sending data.
    [Show full text]
  • Iot Systems Overview
    IoT systems overview CoE Training on Traffic engineering and advanced wireless network planning Sami TABBANE 30 September -03 October 2019 Bangkok, Thailand 1 Objectives •Present the different IoT systems and their classifications 2 Summary I. Introduction II. IoT Technologies A. Fixed & Short Range B. Long Range technologies 1. Non 3GPP Standards (LPWAN) 2. 3GPP Standards IoT Specificities versus Cellular IoT communications are or should be: Low cost , Low power , Long battery duration , High number of connections , Low bitrate , Long range , Low processing capacity , Low storage capacity , Small size devices , Relaxed latency , Simple network architecture and protocols . IoT Main Characteristics Low power , Low cost (network and end devices), Short range (first type of technologies) or Long range (second type of technologies), Low bit rate (≠ broadband!), Long battery duration (years), Located in any area (deep indoor, desert, urban areas, moving vehicles …) Low cost 3GPP Rel.8 Cost 75% 3GPP Rel.8 CAT-4 20% 3GPP Rel.13 CAT-1 10% 3GPP Rel.13 CAT-M1 NB IoT Complexity Extended coverage +20dB +15 dB GPRS CAT-M1 NB-IoT IoT Specificities IoT Specificities and Impacts on Network planning and design Characteristics Impact • High sensitivity (Gateways and end-devices with a typical sensitivity around -150 dBm/-125 dBm with Bluetooth/-95 dBm in 2G/3G/4G) Low power and • Low frequencies strong signal penetration Wide Range • Narrow band carriers far greater range of reception • +14 dBm (ETSI in Europe) with the exception of the G3 band with +27 dBm, +30 dBm but for most devices +20 dBm is sufficient (USA) • Low gateways cost Low deployment • Wide range Extended coverage + strong signal penetration and Operational (deep indoor, Rural) Costs • Low numbers of gateways Link budget: UL: 155 dB (or better), DL: Link budget: 153 dB (or better) • Low Power Long Battery life • Idle mode most of the time.
    [Show full text]
  • Bluetooth® Low Energy Tree Structure Network
    Application Report SWRA648–May 2019 Bluetooth® Low Energy Tree Structure Network Stanford Li, Yan Zhang, and Marie Hernes ABSTRACT This application report presents the concept of the wireless tree structure using Bluetooth Low Energy technology. The important steps when designing a Bluetooth Low Energy tree structure are elaborated on a detailed level throughout the document. With the use of the TI SimpleLink™ Bluetooth low energy software Stack, the tree structure can be done in a simple and intuitive way. The accompanying software example can be found on github. Contents 1 Introduction ................................................................................................................... 2 2 Bluetooth Low Energy Basic Knowledge ................................................................................. 2 3 Three Kinds of Bluetooth Low Energy Network Structure.............................................................. 2 4 Bluetooth Low Energy Tree Structure Network Analysis ............................................................... 4 5 Bluetooth Low Energy Tree Structure Network Realization............................................................ 6 6 Bluetooth Low Energy tree Structure Network Test ................................................................... 10 7 References .................................................................................................................. 11 List of Figures 1 Star Network.................................................................................................................
    [Show full text]
  • Signalling and Beacon Sites in Dorset
    THE DORSET DIGGER THE NEWSLETTER OF THE DORSET DIGGERS COMMUNITY ARCHAEOLOGY GROUP No 43 December 2016 Signalling and Beacon Sites in Dorset Richard Hood has kicked off this new project. He needs somemorevolunteerstohelpwith the research Introduction The ability to send or receive a message over a distance to warn of impending attack has been used to mobilise troops for defence since the Roman times. The Romans developed a system using five flags or torches to carry a simple message over short distances. This was usually used in battle to pass information out to army commanders. To carry a simple message further, a bonfire was used set on a high point, usually from a mini fort within vision of one or more other sites. This type of warning system was used during the invasion of Britain, when vexation forts could come under attack from tribes yet to be persuaded of the advantages of Roman living. Near the end of the Roman occupation signal stations were employed on the East and South coasts to warn of Saxon pirates. Roman signal stations on the NE coast of England took the form of mini forts, with a ditch and bank for defence. Black Down in Dorset, excavated by Bill Putnam and re examined by Dorset Diggers in 2016 is of this type. The Saxons appear to have had a system of inter divisible beacon sites to warn of Viking attack from the ninth century onwards. Later, beacons were erected to warn of the approach of the Spanish Armada, followed by a similar, but unused system, to warn of Napoleonic invasion.
    [Show full text]
  • Car Access Bluetooth®+ CAN Satellite Module Reference Design
    Design Guide: TIDA-020032 Car Access Bluetooth®+ CAN Satellite Module Reference Design Description Features This satellite module reference design is intended for • CAN, CAN-FD communications Bluetooth® Low Energy passive entry passive start • CAN auto-addressing (PEPS) and phone as a key (PaaK) Digital key car • 25-µA system sleep state (typical) access systems. The design demonstrates how control area network flexible data rate (CAN-FD) • Capable of measuring Bluetooth AoA and RSSI communication capabilities can be implemented with • Small 47.625-mm × 76.2-mm (1.875 in × 3 in) PCB our Bluetooth wireless MCUs for systems that require • Improved system performance with Bluetooth higher bandwidth in-vehicle network communications. connection monitoring capabilities Further benefits include reduced power consumption in the sleep state, CAN auto-addressing method for Applications improved manufacturing, connection monitor capabilities for improved Bluetooth localization • Phone as a key (PaaK), Digital key accuracy, and a compact printed-circuit board (PCB) • Passive entry passive start (PEPS) capable of measuring Bluetooth angle of arrival (AoA) and received signal strength index (RSSI). Resources TIDA-020032 Design Folder CC2642R-Q1 Product Folder TCAN4550-Q1 Product Folder TLV713P-Q1 Product Folder Search Our E2E™ support forums Phone as a key Module Rest of the Vehicle (may be integrated in BLE Satellite Modules Outside of the Vehicle the BCM) TLV713-Q1 Car Battery 5 V Power Supply TCAN4550-Q1 3.3 V Phone as a key 2 x 2.4 GHz (SBC) Communication Antennas Interface + Wide Input Voltage LDO Body Control CAN PaaK Module Module (BCM) CAN CC2642R-Q1 Back-up key MCU An IMPORTANT NOTICE at the end of this TI reference design addresses authorized use, intellectual property matters and other important disclaimers and information.
    [Show full text]
  • Device-To-Device Communications in LTE-Advanced Network Junyi Feng
    Device-to-Device Communications in LTE-Advanced Network Junyi Feng To cite this version: Junyi Feng. Device-to-Device Communications in LTE-Advanced Network. Networking and Internet Architecture [cs.NI]. Télécom Bretagne, Université de Bretagne-Sud, 2013. English. tel-00983507 HAL Id: tel-00983507 https://tel.archives-ouvertes.fr/tel-00983507 Submitted on 25 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre : 2013telb0296 Sous le sceau de l’Université européenne de Bretagne Télécom Bretagne En habilitation conjointe avec l’Université de Bretagne-Sud Ecole Doctorale – sicma Device-to-Device Communications in LTE-Advanced Network Thèse de Doctorat Mention : Sciences et Technologies de l’information et de la Communication Présentée par Junyi Feng Département : Signal et Communications Laboratoire : Labsticc Pôle: CACS Directeur de thèse : Samir Saoudi Soutenue le 19 décembre Jury : M. Charles Tatkeu, Chargé de recherche, HDR, IFSTTAR - Lille (Rapporteur) M. Jean-Pierre Cances, Professeur, ENSIL (Rapporteur) M. Jérôme LE Masson, Maître de Conférences, UBS (Examinateur) M. Ramesh Pyndiah, Professeur, Télécom Bretagne (Examinateur) M. Samir Saoudi, Professeur, Télécom Bretagne (Directeur de thèse) M. Thomas Derham, Docteur Ingénieur, Orange Labs Japan (Encadrant) Acknowledgements This PhD thesis is co-supervised by Doctor Thomas DERHAM fromOrangeLabs Tokyo and by Professor Samir SAOUDI from Telecom Bretagne.
    [Show full text]
  • TMRA Amateur Radio Beacon April 2020
    TMRA Amateur Radio Beacon April 2020 From Rob, KV8P News from the President – April 2020 Hi everyone. All I can say is, "wow". Who knew we'd all be in this position, having cancelled our 2020 Great Lakes Convention and TMRA Hamfest and now looking at cancelling many of our other events early this spring due to this global pandemic COVID- 19 Virus? I don't even know what to say. I just hope everyone is protecting themselves and staying home during this time. We'll get back to normal soon enough. Relax/Breathe! I feel like sharing the meme I saw I facebook the other day where someone mentioned, "Ok now, that thing someone found in Area 51 recently? Yah, please put it back!". haha So, some related updates. We obviously won't be meeting for anything "in-person" right away until given direction by our elected officials to do so. Therefore, I'M NEWLY LICENSED, NOW WHAT" CLASS - Originally scheduled for April 18th is cancelled. We'll pick this one up again next fall. 1 GENERAL MEETINGS: We'll only be holding on-the air Nets on 147.270 (and linked repeaters) in lieu of General meetings until then. Please watch for updates going forward as, starting in May we also may add some facebook live programs and/or zoom programs as well. Please check into our nets on the 2nd Wednesdays at 7pm for some updates. We'll be discussing our next likely operation for Museum Ships on the air in early June during the April net.
    [Show full text]
  • The Future of Personal Area Networks in a Ubiquitous Computing World
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. The Future of Personal Area Networks in a Ubiquitous Computing World A thesis presented in partial fulfillment of the requirements for the degree of Master of Information Sciences in Information Systems at Massey University, Auckland New Zealand Fei Zhao 2008 ABSTRACT In the future world of ubiquitous computing, wireless devices will be everywhere. Personal area networks (PANs), networks that facilitate communications between devices within a short range, will be used to send and receive data and commands that fulfill an individual’s needs. This research determines the future prospects of PANs by examining success criteria, application areas and barriers/challenges. An initial set of issues in each of these three areas is identified from the literature. The Delphi Method is used to determine what experts believe what are the most important success criteria, application areas and barriers/challenges. Critical success factors that will determine the future of personal area networks include reliability of connections, interoperability, and usability. Key application areas include monitoring, healthcare, and smart things. Important barriers and challenges facing the deployment of PAN are security, interference and coexistence, and regulation and standards. i ACKNOWLEDGEMENTS Firstly, I would like to take this opportunity to express my sincere gratitude to my supervisor – Associate Professor Dennis Viehland, for all his support and guidance during this research. Without his advice and knowledge, I would not have completed this research.
    [Show full text]