Introduction to Optical Communication Systems

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Optical Communication Systems 1. Introduction to Optical Communication Systems Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 2/ 52 Historical perspective • 1626: Snell dictates the laws of reflection and refraction of light • 1668: Newton studies light as a wave phenomenon – Light waves can be considered as acoustic waves • 1790: C. Chappe “invents” the optical telegraph – It consisted in a system of towers with signaling arms, where each tower acted as a repeater allowing the transmission coded messages over hundred km. – The first Optical telegraph line was put in service between Paris and Lille covering a distance of 200 km. • 1810: Fresnel sets the mathematical basis of wave propagation • 1870: Tyndall demonstrates how a light beam is guided through a falling stream of water • 1830: The optical telegraph is replaced by the electric telegraph, (b/s) until 1866, when the telephony was born • 1873: Maxwell demonstrates that light can be considered as electromagnetic waves http://en.wikipedia.org/wiki/Claude_Chappe Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 3/ 52 Historical perspective • 1800: In Spain, Betancourt builds the first span between Madrid and Aranjuez • 1844: It is published the law for the deployment of the optical telegraphy in Spain – Arms supporting 36 positions, 10º separation Alphabet containing 26 letters and 10 numbers – Spans: Madrid - Irún, 52 towers. Madrid - Cataluña through Valencia, 30 towers. Madrid - Cádiz, 59 towers. • 1855: It is published the law for the deployment of the electrical telegraphy network in Spain • 1880: Graham Bell invents the “photofone” for voice communications TRANSMITTER RECEIVER The transmitter consists of a The receiver is also a mirror made to be vibrated by parabolic reflector in which a the person’s voice, and then selenium cell is placed in its modulating the incident light focus to collect the variations beam towards the receiver. of the light intensity. Pictures: http://en.wikipedia.org/wiki/Photo phone Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 4/ 52 Historical perspective • 1910: D. Hondros and P. Debye use glass rods as waveguides (circular cylindrical dielectric structures were patented by French in 1934 for voice transmission) • 1927: Baird and Hansell patent a system for images transmission through silica fibers • 1936: EEUU begins to use optical fibers in communications • 1960: First LASER (light amplification by stimulated emission of radiation) is presented • 1970: Corning Glass Works achieves optical fibers with 20dB/km attenuation at 633 nm • 1978: First singlemode optical fibers are built, achieving an attenuation of 0.2 dB/km at 1550 nm in 1979 Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 5/ 52 Historical perspective The Nobel Prize in Physics 2009 was awarded jointly to three American pioneers whose researches have supposed pillars of the modern Information Society: Charles Kuen Kao, Willard Sterling Boyle y George Elwood Smith. “… for their contribution to the materials research and development that resulted in practial low loss optical fibers, one of the cornerstones of optical communication technology…” Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 6/ 52 Wavelength (m) Frequency (Hz) Bands Applications − 1024 10-15 − 10-15 rays Food irradiation Cancer therapy E.M. Spectral region used for − 1021 10-12 − 10-12 Optical Communications X rays Medical diagnosis 18 -9 − 10-9 10 (nm) − 10 (nmUltraviolet) Sterelization Visible 15 -6 − 10-6 10 (m)− 10 (m) VISIBLE Infrared Nigth vision ULTRAVIOLET INFRARED 12 (nm) -3 − 10 (THz) Millimetrics 2 -3 10 3 104 10 (mm) − 10 (mm) EHF (30 – 300 GHz) Radar, space exploration 10 =1m Windows for optical SHF (3 – 30 GHz) Radar, Satellite communication communications 9 f (GHz) − 10 (GHz) UHF (300 – 3000 MHz) Tadar, TV, navegation 4 1 (m) − 1 (m) 106 105 10 VHF (30 – 300 MHz) TV, FM, police, mobile radio HF (3 – 30 MHz) Facsimil, short wave radio 6 E (eV) − 10 (MHz) MF (300 – 3000 kHz) AM, maritime radio, 103 (km) − 103 (km) 10 1 0.1 LF (30 – 300 Khz) Navegation, radio signals GaAs Si GaP Gap VLF (3 – 30 kHz) Navegation, sonar InP − 103 (kHz) energy 106 (Mm) − 106 (Mm) ULF (300 – 3000 Hz) Audio interval for telephony SLF (30 – 300 Hz) Submarine communication ELF ( 3 – 30 Hz) Metals detection − 1 (Hz) Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 7/ 52 Frequency – Wavelength Duality . Frequency scale or magnitude has been traditionally used in Telecommunication Engineering for desinging spectrum bands comprised between DC and microwaves region . In Optical Communications, frequencies around 1014 Hz are used, resulting a little impractical four such magnitudes . It is very common to use the wavelength scale, being the nanometer scale (1nm = 10-9 m) and micron scale (1µm = 10-6 m) the most used . The specturm band usually employed in Optical Communications is comprised between 800 and 1600 nm f Sinusoidal and monochromatic E.M. 1 wave propagated along z axis f1 2 f2 Approx. 1 2 Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 8/ 52 Optical Communication Systems Optical Communications Physic Optics + Quantum Electronics + Communication Theory (1970, Procedings IEEE) Physics of Materials + Quantum Physics + Information Theory + Nonlinear Optics + Interaction of Radiation with Matter CHANNEL Optical signal Receiver Transmitter Guided Communication optical fiber Non-guided communication free space Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 9/ 52 Introduction Carrier signal Unmodulated Laser (optical emision in continuous wave, CW) spectrum Delta (ideally) Unmodulated LED spectrum t f f0 Modulating signal (Baseband Modulation electrical signal) Baseband process (directly spectrum or externally) t f Modulated signal (optical domain/format) t f f0 TIME DOMAIN SPECTRAL DOMAIN Modulation is the process of varying one or more properties The modulating signal contains information of a high-frequency periodic waveform (carrier signal) to be transmitted Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 10/ 52 Modulation formats Optical carrier: E(t) = A0 cos(0t − 0) ê “1” “0” “1” “0” “1” “0” Electric signal (Bit sequence) • Amplitude modulation A0: ASK, Amplitude-shift keying ASK • Phase modulation 0: PSK, Phase-shift keying • Frequency modulation 0: FSK, Frequency-shift PSK keying • Polarization modulation ê: PoSK, information FSK coded by polarization state (not allowed in optical systems based on fiber) . Most commercial systems are based on ASK (These systems are also known as on–off keying, OOK) IM/DD (intensity modulation and Direct Detection) . First Differential PSK (DPSK) are being deployed recently Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 11/ 52 Free-Space Optics (FSO) Technology . Nowadays, FSO systems are used for covering connection needs in last-mile access networks, point-to-point interconnections, as a redundant support in temporal or permanent links, etc. Provides robust links with the following advantages: − RF / EM free interferences − High rate systems − Operation license not required − Quick deployment − Network survivability Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 12/ 52 RedIris: An example of Optical Networks in Spain . Rediris is the Spanish National Research and Education ENTITIES IN THE COMMUNITY OF VALENCIA Network wich serves over 370 institutions, including all Spanish universities and the main public research entities. GVA Generalitat Valenciana, DICV.CSIC Delegación del CSIC en la Comunidad de . It is built over a dark fiber-based infraestructure with over Valencia, FIB Fundacion Valenciana de 12500 km of optical fiber for nation wide-coverage. Investigaciones, Institutos.CSIC, IBV.CSIC Instituto de Biomedicina de Valencia,, IN.UMH.CSIC Instituto de Neurociencias, INGENIO.CSIC Instituto de Gestión de la Innovación y del Conocimiento, IMPIVA Instituto de la Mediana y Pequeña Industria Valenciana, IVE Institut Valencia d'Estadistica, IVIE Instituto Valenciano de Investigaciones Economicas, UA Universitat d'Alacant, UCH-CEU Universidad Cardenal Herrera, UJI Universitat Jaume I, UMH Universidad Miguel Hernández de Elche, UPV Universitat Politécnica de Valéncia, UV Universitat de Valéncia. Source: www.rediris.es Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 13/ 52 FTTH: An example of the evolution of Optical Networks in Spain Optical Communication Systems and Networks Lecture 1: Introduction to Optical Communication Systems 14/ 52 Operation Spectral Windows in Guided Optical Communications 1st window 2nd window 3rd window 850 nm 1310 nm 1550 nm Optical amplifiers Attenuation optical fiber photodetectors Fiber InGaAs Optical Responsivity attenuation sources EDFA (W/A in sources) Si (dB/km) (A/W in detectors) AR Tema 1: Introducción Tema GaAlAs Ge InGaAsP Based on figure published in “Sistemas y Redes Ópticas de InGaAsP Comunicaciones” J. A. Martín Pereda”Ed. Pearson 2004 700 900 1100 1300 1500 1700 Wavelength (nm) Optical Communication Systems and Networks Lecture 1: Introduction to
Recommended publications
  • SYLLABUS Optical Fiber Communication
    Optical Fiber Communication 10EC72 SYLLABUS Optical Fiber Communication Subject Code : 10EC72 IA Marks : 25 No. of Lecture Hrs/Week : 04 Exam Hours : 03 Total no. of Lecture Hrs. : 52 Exam Marks : 100 PART - A UNIT - 1 OVERVIEW OF OPTICAL FIBER COMMUNICATION: Introduction, Historical development, general system, advantages, disadvantages, and applications of optical fiber communication, optical fiber waveguides, Ray theory, cylindrical fiber (no derivations in article 2.4.4), single mode fiber, cutoff wave length, mode filed diameter. Optical Fibers: fiber materials, photonic crystal, fiber optic cables specialty fibers. 8 Hours UNIT - 2 TRANSMISSION CHARACTERISTICS OF OPTICAL FIBERS: Introduction, Attenuation, absorption, scattering losses, bending loss, dispersion, Intra modal dispersion, Inter modal dispersion. 5 Hours UNIT - 3 OPTICAL SOURCES AND DETECTORS: Introduction, LED’s, LASER diodes, Photo detectors, Photo detector noise, Response time, double hetero junction structure, Photo diodes, comparison of photo detectors. 7 Hours UNIT - 4 FIBER COUPLERS AND CONNECTORS: Introduction, fiber alignment and joint loss, single mode fiber joints, fiber splices, fiber connectors and fiber couplers. 6 Hours Dept of ECE, SJBIT Page 1 Optical Fiber Communication 10EC72 PART - B UNIT - 5 OPTICAL RECEIVER: Introduction, Optical Receiver Operation, receiver sensitivity, quantum limit, eye diagrams, coherent detection, burst mode receiver operation, Analog receivers. 6 Hours UNIT - 6 ANALOG AND DIGITAL LINKS: Analog links – Introduction, overview of analog links, CNR, multichannel transmission techniques, RF over fiber, key link parameters, Radio over fiber links, microwave photonics. Digital links – Introduction, point–to–point links, System considerations, link power budget, resistive budget, short wave length band, transmission distance for single mode fibers, Power penalties, nodal noise and chirping.
    [Show full text]
  • Wireless Networks
    SUBJECT WIRELESS NETWORKS SESSION 2 WIRELESS Cellular Concepts and Designs" SESSION 2 Wireless A handheld marine radio. Part of a series on Antennas Common types[show] Components[show] Systems[hide] Antenna farm Amateur radio Cellular network Hotspot Municipal wireless network Radio Radio masts and towers Wi-Fi 1 Wireless Safety and regulation[show] Radiation sources / regions[show] Characteristics[show] Techniques[show] V T E Wireless communication is the transfer of information between two or more points that are not connected by an electrical conductor. The most common wireless technologies use radio. With radio waves distances can be short, such as a few meters for television or as far as thousands or even millions of kilometers for deep-space radio communications. It encompasses various types of fixed, mobile, and portable applications, including two-way radios, cellular telephones, personal digital assistants (PDAs), and wireless networking. Other examples of applications of radio wireless technology include GPS units, garage door openers, wireless computer mice,keyboards and headsets, headphones, radio receivers, satellite television, broadcast television and cordless telephones. Somewhat less common methods of achieving wireless communications include the use of other electromagnetic wireless technologies, such as light, magnetic, or electric fields or the use of sound. Contents [hide] 1 Introduction 2 History o 2.1 Photophone o 2.2 Early wireless work o 2.3 Radio 3 Modes o 3.1 Radio o 3.2 Free-space optical o 3.3
    [Show full text]
  • Long-Range Free-Space Optical Communication Research Challenges Dr
    Long-Range Free-Space Optical Communication Research Challenges Dr. Scott A. Hamilton, MIT Lincoln Laboratory and Prof. Joseph M. Khan, Stanford University The substantial benefits of free-space optical (FSO) or laser communications (lasercom) have been well known to system designers for quite some time, c.f. [1]. The free-space channel, similar to the fiber channel, provides many benefits at optical frequencies compared to radio frequencies (RF) including extremely wide unregulated bandwidth and tightly confined beams (i.e. narrow beam divergence), both of which enable low size, weight and power (SWaP) terminals. However, significant challenges are still perceived: stochastic intensity fluctuations in a received optical signal after propagating through the atmosphere, power-starved link mode of operation, and narrow transmit beams that must be precisely pointed and tracked. Since the late 1970’s the United States [2], Europe [3] and Japan [4] have actively been developing FSO technology motivated primarily for long-haul spaceborne communication systems. While early efforts were focused on maturing FSO technology, the past decade has seen significant progress toward demonstrating the practicality of FSO for multiple applications. The first high-rate demonstration of FSO between a satellite in Geosynchronous (GEO) orbit and the ground was achieved by the US during the GeoLITE experiment in 2001. A short time later, the European Space Agency (ESA) demonstrated a 50- Mbps FSO link operating at 800-nm wavelengths between their Artemis GEO satellite and: i) another ESA spacecraft in Low-Earth orbit (LEO) in 2001 [5]; ii) a ground station located in Tenerife, Spain in 2001 [6]; and iii) an airplane flying at altitudes as low as 6,000 meters outfitted with an FSO terminal developed by France’s Astrium EADS in 2006 [7].
    [Show full text]
  • Optical Communications and Networks - Review and Evolution (OPTI 500)
    Optical Communications and Networks - Review and Evolution (OPTI 500) Massoud Karbassian [email protected] Contents Optical Communications: Review Optical Communications and Photonics Why Photonics? Basic Knowledge Optical Communications Characteristics How Fibre-Optic Works? Applications of Photonics Optical Communications: System Approach Optical Sources Optical Modulators Optical Receivers Modulations Optical Networking: Review Core Networks: SONET, PON Access Networks Optical Networking: Evolution Summary 2 Optical Communications and Photonics Photonics is the science of generating, controlling, processing photons. Optical Communications is the way of interacting with photons to deliver the information. The term ‘Photonics’ first appeared in late 60’s 3 Why Photonics? Lowest Attenuation Attenuation in the optical fibre is much smaller than electrical attenuation in any cable at useful modulation frequencies Much greater distances are possible without repeaters This attenuation is independent of bit-rate Highest Bandwidth (broadband) High-speed The higher bandwidth The richer contents Upgradability Optical communication systems can be upgraded to higher bandwidth, more wavelengths by replacing only the transmitters and receivers Low Cost For fibres and maintenance 4 Fibre-Optic as a Medium Core and Cladding are glass with appropriate optical properties!!! Buffer is plastic for mechanical protection 5 How Fibre-Optic Works? Snell’s Law: n1 Sin Φ1 = n2 Sin Φ2 6 Fibre-Optics Fibre-optic cable functions
    [Show full text]
  • Free Space Optics Vs Radio Frequency Wireless Communication
    I.J. Information Technology and Computer Science, 2016, 9, 1-8 Published Online September 2016 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2016.09.01 Free Space Optics Vs Radio Frequency Wireless Communication Rayan A. Alsemmeari and Sheikh Tahir Bakhsh Faculty of Computing and Information Technology, King Abdulaziz University, Saudi Arabia E-mail: {ralsemmeari, stbakhsh}@kau.edu.sa Hani Alsemmeari Institute of Public Administration Information and Technology department E-mail: [email protected] Abstract—This paper presents the free space optics (FSO) but on very low data rates. Laser technology enhanced and radio frequency (RF) wireless communication. The the use of free space optics and is now highly dependent paper explains the feature of FSO and compares it with on the laser technology. FSO in original form was the already deployed technology of RF communication in developed by the NASA and used for the military terms of data rate, efficiency, capacity and limitations. purposes in different era as fast communication link. The The data security is also discussed in the paper for technology has many commonalities with the fiber optics identification of the system to be able to use in normal technology but behaves differently in the field due to the circumstances. These systems are also discussed in a way method of transmission for both the technologies [5, 6]. that they could efficiently combine to form the single RF technology is very old technology for system with greater throughput and higher reliability. communication. It is the wireless technology for data communication. It is considered to be in use for more Index Terms—Free Space Optics, Radio frequency, than 100 years.
    [Show full text]
  • Comparative Study of Optical and RF Communication Systems H
    I . , , comparative study of optical and RF Communication Systems for a MrJrs Mission H. Hernmati, K. Wilson, M. Sue, D. Rascoe, F. Lansing, h4. Wilhelm, L. Harcke, and C. Chen Jet Propulsion Laboratory California Institute of Technology Pasadena, CA 91109 AIISTRACT We luwc performed a study on tclcconmnmication sj’s[cnrs for a hypothetical mission to Mars. The objcctivc cf t hc study was to evaluate and compare lhc bcncfils that .rnicrowavc. (X-band. and Ka-band) and Optical conmumications $clmo]ogi$s afford to future missions. TIE lclcconmwnicatio]; systems were required to return data ‘atlcr launch and in-ohit at 2.7 AU with daily data volumes of 0.1, 1, or 10 Gbits. Space-borne tcnnimls capable of delivering each of the three data rates WCJC proposed and charactcnmd in terms of mass, power consumption, sire, and cost. The estimated panwnctcw for X- band, Ka-band, and Optical frcqucncics arc compared and presented here. For data volumes of 0.1 and 1 Gigs-bit pcr day, the X-band downlink system has a mass 1.5 times that of Ka-band, and 2.5 times that of Optical systcm. Ka-band oftcrcd about 20% power saving at 10 Gbit/day over X-band. For all data volumes, the optical communication terminals were lower in mass than the RF terminals. For data volumes of 1 and 10 Gb/day, the space-borne optical terminal also had a lower required DC power. ln all three cases, optical communications had a slightly higher development cost for the space tcnninal, 1. 1NTI{OD[JCTION The deep space cxTloration program has been steadily increasing the frequcncic$ used for planctmy radio communication since the inception of NASA in 1957.
    [Show full text]
  • Optical Satellite Communication Toward the Future of Ultra High
    No.466 OCT 2017 Optical Satellite Communication toward the Future of Ultra High-speed Wireless Communications No.466 OCT 2017 National Institute of Information and Communications Technology CONTENTS FEATURE Optical Satellite Communication toward the Future of Ultra High-speed Wireless Communications 1 INTERVIEW New Possibilities Demonstrated by Micro-satellites Morio TOYOSHIMA 4 A Deep-space Optical Communication and Ranging Application Single photon detector and receiver for observation of space debris Hiroo KUNIMORI 6 Environmental-data Collection System for Satellite-to-Ground Optical Communications Verification of the site diversity effect Kenji SUZUKI 8 Optical Observation System for Satellites Using Optical Telescopes Supporting safe satellite operation and satellite communication experiment Tetsuharu FUSE 10 Development of "HICALI" Ultra-high-speed optical satellite communication between a geosynchronous satellite and the ground Toshihiro KUBO-OKA TOPICS 12 NICT Intellectual Property -Series 6- Live Electrooptic Imaging (LEI) Camera —Real-time visual comprehension of invisible electromagnetic waves— 13 Awards 13 Development of the “STARDUST” Cyber-attack Enticement Platform Cover photo Optical telescope with 1 m primary mirror. It receives data by collecting light from sat- ellites. This was the main telescope used in experiments with the Small Optical TrAn- sponder (SOTA). This optical telescope has three focal planes, a Cassegrain, a Nasmyth, and a coudé. The photo in the upper left of this page shows SOTA mounted in a 50 kg-class micro- satellite. In a world-leading effort, this was developed to conduct basic research on technology for 1.5-micron band optical communication between low-earth-orbit sat- ellite and the ground and to test satellite-mounted equipment in a space environment.
    [Show full text]
  • Fundamentals of Optical Communications
    FundamentalsFundamentals ofof OpticalOptical CommunicationsCommunications Raj Jain The Ohio State University Nayna Networks Columbus, OH 43210 Milpitas, CA 95035 Email: [email protected] http://www.cis.ohio-state.edu/~jain/ ©2002 Raj Jain 1 OverviewOverview ! Characteristics of Light ! Optical components ! Fibers ! Sources ! Receivers, ! Switches ©2002 Raj Jain 2 ElectromagneticElectromagnetic SpectrumSpectrum ! Infrared light is used for optical communication ©2002 Raj Jain 4 AttenuationAttenuation andand DispersionDispersion Dispersion 0 850nm 1310nm 1550nm©2002 Raj Jain 5 WavebandsWavebands O E S C L U 770 910 1260 1360 14601530 1625 1565 1675 ©2002 Raj Jain 6 WavebandsWavebands (Cont)(Cont) O E S C L U 770 910 1260 1360 1460 1530 1625 1565 1675 Band Descriptor Range (nm) 770-910 O Original 1260-1360 E Extended 1360-1460 S Short Wavelength 1460-1530 C Conventional 1530-1565 L Long 1565-1625 U Ultralong 1625-1675 ©2002 Raj Jain 7 OpticalOptical ComponentsComponents Fiber Sources Mux Amplifier Demux Receiver ! Fibers ! Sources/Transmitters ! Receivers/Detectors ! Amplifiers ! Optical Switches ©2002 Raj Jain 8 TypesTypes ofof FibersFibers II ! Multimode Fiber: Core Diameter 50 or 62.5 μm Wide core ⇒ Several rays (mode) enter the fiber Each mode travels a different distance ! Single Mode Fiber: 10-μm core. Lower dispersion. Cladding Core ©2002 Raj Jain 9 ReducingReducing ModalModal DispersionDispersion ! Step Index: Index takes a step jump ! Graded Index: Core index decreases parabolically ©2002 Raj Jain 11 TypesTypes ofof FibersFibers IIII
    [Show full text]
  • Fiber Optics
    Fundamentals of Photonics Bahaa E. A. Saleh, Malvin Carl Teich Copyright © 1991 John Wiley & Sons, Inc. ISBNs: 0-471-83965-5 (Hardback); 0-471-2-1374-8 (Electronic) CHAPTER 8 FIBER OPTICS 8.1 STEP-INDEX FIBERS A. Guided Rays B. Guided Waves C. Single-Mode Fibers 8.2 GRADED-INDEX FIBERS A. Guided Waves B. Propagation Constants and Velocities 8.3 ATTENUATION AND DISPERSION A. Attenuation B. Dispersion C. Pulse Propagation Dramatic improvements in the development of low-loss materials for optical fibers are responsible for the commercial viability of fiber-optic communications. Corning Incorpo- rated pioneered the development and manu- facture of ultra-low-loss glass fibers. C 0 R N I N G 272 An optical fiber is a cylindrical dielectric waveguide made of low-loss materials such as silica glass. It has a central core in which the light is guided, embedded in an outer cladding of slightly lower refractive index (Fig. 8.0-l). Light rays incident on the core-cladding boundary at angles greater than the critical angle undergo total internal reflection and are guided through the core without refraction. Rays of greater inclina- tion to the fiber axis lose part of their power into the cladding at each reflection and are not guided. As a result of recent technological advances in fabrication, light can be guided through 1 km of glass fiber with a loss as low as = 0.16 dB (= 3.6 %). Optical fibers are replacing copper coaxial cables as the preferred transmission medium for electro- magnetic waves, thereby revolutionizing terrestrial communications.
    [Show full text]
  • What Is Lifi? Harald Haas, Member, IEEE,Liangyin, Student Member, IEEE, Yunlu Wang, Student Member, IEEE, and Cheng Chen, Student Member, IEEE
    JOURNAL OF LIGHTWAVE TECHNOLOGY 1 What is LiFi? Harald Haas, Member, IEEE,LiangYin, Student Member, IEEE, Yunlu Wang, Student Member, IEEE, and Cheng Chen, Student Member, IEEE Abstract—This paper attempts to clarify the difference between wave communication. LiFi uses light emitting diodes (LEDs) for visible light communication (VLC) and light-fidelity (LiFi). In par- high speed wireless communication, and speeds of over 3Gb/s ticular, it will show how LiFi takes VLC further by using light from a single micro-light emitting diode (LED) [3] have been emitting diodes (LEDs) to realise fully networked wireless systems. Synergies are harnessed as luminaries become LiFi attocells result- demonstrated using optimised direct current optical orthogonal ing in enhanced wireless capacity providing the necessary connec- frequency division multiplexing (DCO-OFDM) modulation [4]. tivity to realise the Internet-of-Things, and contributing to the key Given that there is a widespread deployment of LED lighting in performance indicators for the fifth generation of cellular systems homes, offices and streetlights because of the energy-efficiency (5G) and beyond. It covers all of the key research areas from LiFi of LEDs, there is an added benefit for LiFi cellular deployment components to hybrid LiFi/wireless fidelity (WiFi) networks to il- lustrate that LiFi attocells are not a theoretical concept any more, in that it can build on existing lighting infrastructures. Moreover, but at the point of real-world deployment. the cell sizes can be reduced further compared with mm-wave communication leading to the concept of LiFi attocells [5]. LiFi Index Terms—Base stations, communication networks, com- munication systems, handover, millimeter wave communication, attocells are an additional network layer within the existing mobile communication, modulation, multiaccess communication, heterogeneous wireless networks, and they have zero interfer- wireless communication.
    [Show full text]
  • Free Space Optical Communication
    A SEMINAR REPORT ON Free Space optic Submitted in Partial fulfillment of the requirements for the Degree of BACHELOR OF TECHNOLOGY Affiliated to RTU, Kota IN ELECTRONICS & COMMUNICATION ENGINEERING Session: 2009 -10 SUBMITTED TO: SUBMITTED BY: H.O.D. (Electronics & Comm..) (VIII Sem.) ECE DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGG. P REFACE Technology has rapidly grown in past two-three decades. An engineer without practical knowledge and skills cannot survive in this technical era. Theoretical knowledge does matter but it is the practical knowledge that is the difference between the best and the better. Organizations also prefer experienced engineers than fresher ones due to practical knowledge and industrial exposure of the former. So it can be said the industrial exposure has to be very much mandatory for engineers nowadays. The practical training is highly conductive for solid foundation for: Solid foundation of knowledge and personality. Exposure to industrial environment. Confidence building. Enhancement of creativity A CKNOWLEDGEMENT I express my sincere thanks to my seminar guide Prof. R.L.Dua (Electronics Department) for guiding me right from the inception till the successful completion of the seminar . I sincerely acknowledge him for extending their valuable guidance , support for literature , critical reviews of seminar and the report and above all the oral support he had provide to me with all stages of this seminar. C ONTENT • Introduction • History • Theory • Optical Communication • Free Space Optical Communication • Optical fiber communication • How FSO Works???? • Benefits of FSO • Comparison with FSO • Optical Access Communication • Challenges • Usage and technologies • Applications • Advantages • Conclusion I NTRODUCTION Free space optics (FSO) is an optical communication technology that uses light propagating in free space to transmit data between two points.The technology is useful where the physical connections by the means of fibre optic cable are impractical due to high costs or other considerations.
    [Show full text]
  • Optical Fiber Transmission System
    Components for Optical Networks Optical Fiber Transmission System • Optical fiber – Propagation in fiber –Fiber modes – Attenuation – Dispersion – Non-linear effects •Optical transmitters – Laser principles –Modulation • Fiber •Optical receivers • Transmitter • Optical amplifiers – Laser or LED – fixed or tunable •Couplers – Modulator • Multiplexers • Receiver • Filters – Photodetector • Optical switches and crossconnects • Amplifier • Wavelength converters • Multiplexers/filters Optical Fiber Numerical Aperture of Fiber • Core and cladding – silica (SiO2) 2 2 •n1: refractive index of core n − n θmax = 1 2 •n2: refractive index of cladding • Acceptance angle: 0 n0 •n1 > n2 (~1.45) • θ1: angle of incidence max • For total internal reflection: θ0 < θ0 • θ2: angle of refraction • Snell’s Law: n1 sin θ1 = n2 sin θ2 max -1 • Numerical aperture: n0 sin θ0 •Critical angle: θcrit = sin (n2/n1) • Total internal reflection: θ1 > θcrit Fiber Modes Modal Dispersion • Modes corresponds to solutions of wave equations • Dispersion: spreading of signal in the time domain • Geometric interpretation: A mode is one possible path that a • Modal dispersion caused by multiple modes propagating along a guided ray may take in a fiber fiber • Each mode travels at a different speed • Limits bit rate and/or distance that signal can travel 1 Multimode vs. Single-Mode Fiber Graded-Index Fiber • Fiber will capture only a single mode for wavelength λ if: Δ 2π 2 2 •n1 > n2 > n3 > n4 > n5 V = a n1 − n2 < 2.405 λ • Reduces modal dispersion (number of modes reduced by
    [Show full text]