Familial Congenital Facial Synkinesis

Total Page:16

File Type:pdf, Size:1020Kb

Familial Congenital Facial Synkinesis Familial Congenital Facial Synkinesis Due to 12q Duplication: A Case Report and Literature Review Kenneth Alexis Myers, MD, PhD, a, b Allan Micheil Innes, MD, c Jean Kit-Wah Mah, MDb Inverse Marcus Gunn phenomenon is a rare form of congenital facial abstract synkinesis in which jaw movement temporarily elicits ptosis, either unilateral or bilateral. This phenomenon is presumed to result from dysinnervation of facial muscles during development of the nervous system. We describe 2 brothers, both with inverse Marcus Gunn phenomenon in the context of multiple other congenital anomalies, all presumed secondary to a chromosomal abnormality involving 12q duplication and 1p36 deletion. Although a handful of familial cases of congenital facial synkinesis have been previously described, this is the first in which a genetic abnormality has been identified. Of the 4 genetic abnormalities previously described a Department of Neurology, Epilepsy Research Centre, in association with congenital facial synkinesis (based on isolated case Austin Health, University of Melbourne, Melbourne, reports), 1 also involved duplication at the long arm of chromosome 12. We Australia; and Departments of bPediatrics, Section of ≥ Neurology, and cMedical Genetics, Cumming School of conclude that duplication of 1 of the roughly 44 protein-coding genes in the Medicine, University of Calgary, Calgary, Alberta, Canada ∼6.3-Mb overlap region between the previously published case and our 2 patients is a likely genetic cause of congenital facial synkinesis. Dr Myers collected the data, prepared fi gures and tables, and drafted the initial manuscript; Dr Innes assisted with interpretation and description of the genomic abnormalities and reviewed and edited Congenital facial synkinesis is a rare of age with focal seizures, some of the manuscript; Dr Mah confi rmed the clinical data and reviewed and edited the manuscript; entity resulting from aberrant facial which had secondary generalization. and all authors approved the fi nal manuscript as muscle innervation. Jaw movement During his neurologic examination, submitted. that improves congenital ptosis is the rhythmic right eyelid winking and DOI: 10.1542/peds.2016-1724 classic form, known as Marcus Gunn more static ptosis of the left eye were Accepted for publication Jul 26, 2016 jaw-winking phenomenon. 1 Most noted, both observed only when instances are unilateral, although the boy sucked on his bottle ( Fig 1; Address correspondence to Kenneth Alexis Myers, MD, PhD, Austin Health, 245 Burgundy St, Heidelberg, bilateral cases have also been video in Supplemental Information). VIC, Australia 3084. E-mail: [email protected] reported.2 Rarely, jaw movement These abnormalities were not elicited PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, provokes or worsens ptosis, an entity by jaw opening or other specific 1098-4275). known as inverse Marcus Gunn or facial movements, and his parents Copyright © 2016 by the American Academy of 3 Marin–Amat syndrome. Here, we confirmed that the noted features had Pediatrics present the first case of familial been present since birth. Based on the FINANCIAL DISCLOSURE: The authors have congenital facial synkinesis with an apparent inhibition of Müller’s muscle indicated they have no fi nancial relationships identified genetic abnormality and or levator palpebrae co-occurring relevant to this article to disclose. provide evidence that chromosome with oromotor activity, a diagnosis FUNDING: No external funding. 12q24.1–q24.2 duplication is of congenital facial synkinesis, POTENTIAL CONFLICT OF INTEREST: The authors associated with this dysinnervation specifically inverse Marcus Gunn have indicated they have no potential confl icts of syndrome. phenomenon, was made. interest to disclose. The boy was born after an CASE PRESENTATION uncomplicated pregnancy via To cite: Myers KA, Innes AM, Mah JK. Familial induced vaginal delivery at 42 weeks’ Congenital Facial Synkinesis Due to 12q Dupli- The proband presented to the gestation. He had multiple congenital cation: A Case Report and Literature Review. Pedi- atrics. 2016;138(6):e20161724 neurology service at 19 months anomalies including absent patellae, Downloaded from www.aappublications.org/news by guest on September 25, 2021 PEDIATRICS Volume 138 , number 6 , December 2016 :e 20161724 CASE REPORT presumed secondary to maldevelopment of cranial nerve pathways leading to dysinnervation of facial muscles. One or both of the levator palpebrae and Müller’s muscle are presumably influenced by the trigeminal nerve in our proband and his brother. In such young children, electrophysiological techniques are invasive and impractical, so we were unable to more precisely elucidate the complex dysinnervation patterns, FIGURE 2 but the presentations are consistent Brain MRI. Midline sagittal T1 view demonstrates with bilateral inverse Marcus Gunn FIGURE 1 corpus callosum dysgenesis with thinning of the body and relative sparing of the genu phenomenon. Bilateral inverse Marcus Gunn phenomenon. and splenium. The remainder of the midline A, At baseline, the patient had no ptosis, even Genetic causes are often suspected structures have normal appearance. with jaw opening. B, When the patient was when congenital facial synkinesis actively sucking on a bottle, rhythmic winking is observed, and ≥10 familial cases, of the right upper eyelid occurred, in tandem 12q24.1-ter duplication of 18.82 Mb including both classic and inverse with sucking, while the left eyelid became (46, XY, der(1)t(1;12)(p36.3;q24.21). progressively more ptotic. Marcus Gunn, have been reported arr 1p36.33(120 840–1 361 776) ( Table 1). 4 – 11 The underlying genetic x1, 12q24.21–q24.33(114 948 776– bilateral vertical tali, left iris cause was not identified in any of 133 773 393)x3; NCBI/Hg19). The coloboma, amblyopia, imperforate those cases, and the 4 known genetic duplication of chromosome 12 anus, low-lying conus medullaris associations are based primarily on includes ~270 genes. A balanced with fatty filum terminale, and right individual case reports (Table 2). 12 –16 translocation in 1 of the parents hip dysplasia. His development was was suspected but not confirmed The only genetic anomaly that globally delayed, and at 19 months because additional genetic testing has been associated with >1 case he could not stand independently, was declined. of congenital facial synkinesis is had no pincer grasp, and was not mutation of KIF21A. 16 This gene using any words with meaning. Family history revealed that similar is mutated in the majority of Achievement of early motor eyelid abnormalities provoked by cases of congenital fibrosis of the milestones was probably complicated sucking, as well as a nearly identical extraocular muscles 1 (CFEOM1), by his musculoskeletal abnormalities pattern of congenital anomalies, an autosomal dominant inherited and multiple hospitalizations. Aside were present in the proband’s disorder involving extensive cranial from the previously mentioned younger brother. That boy had a dysinnervation resulting in bilateral musculoskeletal anomalies, his routine karyotype showing the ophthalmoplegia and ptosis, 16 neither general examination was significant same unbalanced chromosomal of which was present in our patients. for a high arched palate and translocation as the proband. Five reported cases of CFEOM1 due distinctive facial features, including Although array comparative genomic to KIF21A mutation had unilateral thin upper lip, flattened philtrum, hybridization could have confirmed Marcus Gunn phenomenon. 13, 16 broad flat nasal bridge, and short, that the precise breakpoints were Of the 3 remaining reports of upslanting palpebral fissures ( Fig the same in this boy as in his congenital facial synkinesis with 1). His neurologic examination was brother, the test was not performed. an identified genetic anomaly, 1 significant for axial hypotonia, but The karyotype was thought to be involves a patient with 12q24.1– no focal deficits were identified. MRI sufficient evidence that the same q24.2 duplication and unilateral of the brain showed a thin corpus genomic anomaly was present, and Marcus Gunn phenomenon. 12 callosum and no other abnormalities parents had declined additional Rhythmic winking of 1 eye was seen ( Fig 2). genetic testing in any case. in that patient, as in our proband, An initial karyotype and subsequent but because the patient had a array comparative genomic baseline ptosis in the same eye, the DISCUSSION hybridization showed an unbalanced abnormality was classified as classic translocation resulting in a 1.2-Mb Congenital facial synkinesis is a Marcus Gunn. That patient had deletion of chromosome 1p36 and a poorly understood phenomenon, only unilateral eyelid abnormality, Downloaded from www.aappublications.org/news by guest on September 25, 2021 e2 MYERS et al TABLE 1 Familial Cases of Congenital Facial Synkinesis Reference Clinical Syndrome Number Affected Suspected Inheritance Pattern Genetic Abnormality Current article Bilateral inverse 2 Unbalanced chromosomal translocation 1p36 deletion, 12q24.1-ter duplication Marcus Gunn secondary to parental balanced translocation Sundareswaran et al Unilateral Marcus Gunn 2 Unclear None identifi ed 2015 Conte et al 2012 Unilateral Marcus Gunn 4 Autosomal dominant with incomplete None identifi ed penetrance Oh et al 2003 Inverse unilateral 3 Autosomal dominant None identifi ed Marcus Gunn Mrabet et al 1991 (1) Bilateral Marcus Gunn 4 Autosomal dominant with incomplete None identifi ed penetrance Mrabet
Recommended publications
  • Monosomy X Turner Syndrome Information for Patients
    Monosomy X Turner syndrome Information for patients The healthcare professional responsible for your care has given you this leaflet because you have been identified by the Harmony® Prenatal Test as having a high probability of a chromosome disorder in your pregnancy. This fact sheet contains more information about the particular genetic disorder mentioned in your Harmony report. We recommend that you also discuss your result with an experienced doctor or genetic counsellor. Turner syndrome, or Monosomy X, is a sex chromosome disorder that occurs in females when there is only one copy of the X chromosome instead of the expected two (Figure 1). It occurs in at least one in every 2,500 female births. Monosomy X may be associated with an increased risk of miscarriage in the first or second trimester. More than half of those withT urner syndrome will be mosaic, meaning some of their cells have just one X chromosome and the other cells have two X chromosomes. Features and symptoms of Turner syndrome include subtle changes in physical appearance, short stature, infertility and learning difficulties, as well as some potential health conditions, including cardiac conditions, hypothyroidism, diabetes and autoimmune disease. Babies who are born with Turner syndrome could have a number of the features and symptoms of the syndrome, however, not everyone will have them all and severity will vary significantly. Mosaicism also plays a role in the varied severity of the syndrome. Although there is no cure for Turner syndrome, many of the associated symptoms can be treated. Girls with Turner syndrome may need regular health checks of their heart, kidneys and reproductive system throughout their lives.
    [Show full text]
  • Chromosome 18
    Chromosome 18 Description Humans normally have 46 chromosomes in each cell, divided into 23 pairs. Two copies of chromosome 18, one copy inherited from each parent, form one of the pairs. Chromosome 18 spans about 78 million DNA building blocks (base pairs) and represents approximately 2.5 percent of the total DNA in cells. Identifying genes on each chromosome is an active area of genetic research. Because researchers use different approaches to predict the number of genes on each chromosome, the estimated number of genes varies. Chromosome 18 likely contains 200 to 300 genes that provide instructions for making proteins. These proteins perform a variety of different roles in the body. Health Conditions Related to Chromosomal Changes The following chromosomal conditions are associated with changes in the structure or number of copies of chromosome 18. Distal 18q deletion syndrome Distal 18q deletion syndrome occurs when a piece of the long (q) arm of chromosome 18 is missing. The term "distal" means that the missing piece (deletion) occurs near one end of the chromosome arm. The signs and symptoms of distal 18q deletion syndrome include delayed development and learning disabilities, short stature, weak muscle tone ( hypotonia), foot abnormalities, and a wide variety of other features. The deletion that causes distal 18q deletion syndrome can occur anywhere between a region called 18q21 and the end of the chromosome. The size of the deletion varies among affected individuals. The signs and symptoms of distal 18q deletion syndrome are thought to be related to the loss of multiple genes from this part of the long arm of chromosome 18.
    [Show full text]
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Genevista Microdeletion and Microduplication Syndromes
    GeNeViSTA Microdeletion and Microduplication Syndromes: An Update Priya Ranganath, Prajnya Ranganath Department of Medical Genetics, Nizam’s Institute of Medical Sciences, Hyderabad, India Correspondence to: Dr Prajnya Ranganath Email: [email protected] Abstract containing dosage sensitive genes responsible for the phenotype is generally involved (Goldenberg, Microdeletion and microduplication syndromes 2018). Theoretically, for every microdeletion (MMS) also known as ‘contiguous gene syndrome there should be a reciprocal syndromes’ are a group of disorders caused microduplication syndrome, but microdeletions by sub-microscopic chromosomal deletions or are more common. Microduplications appear to duplications. Most of these conditions are typically result in a milder or no clinical phenotype. associated with developmental delay, autism, multiple congenital anomalies, and characteristic Molecular Etiopathology phenotypic features. These chromosomal abnormalities cannot be detected by conventional Copy number variation (CNV) is defined as the gain cytogenetic techniques like karyotyping and or loss of a stretch of DNA when compared with require higher resolution ‘molecular cytogenetic’ the reference human genome and may range in techniques. The advent of high throughput tests size from a kilobase to several megabases or even such as chromosomal microarray in the past one an entire chromosome. The CNVs associated with or two decades has led to a continuously growing MMS constitute only a small fraction of the total list of microdeletions and microduplication number of possible copy-number variants. There syndromes along with identification of the ‘critical are two major classes of CNVs: recurrent and region’ responsible for the main phenotypic non-recurrent. Recurrent CNVs generally result features associated with these syndromes. This from Non-Allelic Homologous Recombination review discusses the etiopathogenic mechanisms (NAHR) during meiosis.
    [Show full text]
  • Classic and Molecular Cytogenetic Analyses Reveal Chromosomal Gains and Losses Correlated with Survival in Head and Neck Cancer Patients
    Vol. 11, 621–631, January 15, 2005 Clinical Cancer Research 621 Classic and Molecular Cytogenetic Analyses Reveal Chromosomal Gains and Losses Correlated with Survival in Head and Neck Cancer Patients Na´dia Aparecida Be´rgamo,1 that acquisition of monosomy 17 was a significant (P = Luciana Caricati da Silva Veiga,1 0.0012) factor for patients with a previous family history of Patricia Pintor dos Reis,4 Ineˆs Nobuko Nishimoto,3 cancer. Conclusions: The significant associations found in this Jose´ Magrin,3 Luiz Paulo Kowalski,3 4 2 study emphasize that alterations of distinct regions of the Jeremy A. Squire, and Sı´lvia Regina Rogatto genome may be genetic biomarkers for a poor prognosis. 1Department of Genetics, Institute of Biosciences and 2NeoGene Losses of chromosomes 17 and 22 can be associated with Laboratory, Department of Urology, Faculty of Medicine, Sa˜o Paulo a family history of cancer. State University; 3Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Hospital, Sa˜o Paulo, Brazil and 4Department of Cellular and Molecular Biology, Princess Margaret INTRODUCTION Hospital, Ontario Cancer Institute, University of Toronto, Toronto, Carcinomas of the head and neck represent the sixth most Ontario, Canada frequent cancer worldwide and f90% to 95% are squamous cell carcinomas. Tobacco and alcohol consumption are the ABSTRACT most important nongenetic risk factors associated with the Purpose: Genetic biomarkers of head and neck tumors development of head and neck squamous cell carcinomas could be useful for distinguishing among patients with (HNSCC; ref. 1). Estimated age-standardized rates per similar clinical and histopathologic characteristics but 100,000 for 1990 showed 12.8 men and 3.7 women of oral having differential probabilities of survival.
    [Show full text]
  • Duchenne Muscular Dystrophy (DMD)
    Pediatric Residents Review Session A bit of a hodge podge to keep you guessing December 20, 2018 Natarie Liu, FRCPC, Pediatric Neurology Email me for resources (OSCE handbook, etc) Thanks to Dr. K. Smyth and Dr. K Murias for inspiration for some of the slides Case 3mo girl with hypotonia, hypotonic facies, 1+ symmetric DTR. What is the most likely diagnosis? a. Congenital muscular dystrophy b. Myotonic dystrophy c. SMA1 d. Nemaline rod Stem not giving this picture OR this picture What is this? Dystrophinopathies Duchenne Muscular Dystrophy Becker Muscular Dystrophy Dystrophinopathies By convention, if boy stops walking before age 12, this is Duchenne Muscular Dystrophy (DMD) If they remain ambulatory after their 16th birthday, are typically considered to have Becker Muscular Dystrophy (BMD) Anything in between is an intermediate phenotype Some centres transition to using Dystrophinopathies as the term Dystrophinopathies are X-linked disorders Dystrophinopathies: Epidemiology Duchenne Muscular Dystrophy 1:3500 live male births but newborn screening places the incidence closer to 1:5000 live male births Mean lifespan 19 years traditionally, now greater than 25 years (with multidisciplinary team management and corticosteroid use) Becker Muscular Dystrophy Incidence 1/10th-1/5th of DMD Prevalence 60-90% more than DMD DMD: Clinical Features Boys often present between 3-5 years of age Delayed motor milestones and falls, difficulty running and jumping Gain motor milestones through 6-7 years of age, progressive weakness after Wheelchair before age 12, historically Examination Calf hypertrophy Mild lordotic posture Waddling of gait Poor hip excursion during running Head lag when pulled from sitting from supine Partial Gower maneuver when rising from floor.
    [Show full text]
  • Abstracts from the 50Th European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 26:820–1023 https://doi.org/10.1038/s41431-018-0248-6 ABSTRACT Abstracts from the 50th European Society of Human Genetics Conference: Electronic Posters Copenhagen, Denmark, May 27–30, 2017 Published online: 1 October 2018 © European Society of Human Genetics 2018 The ESHG 2017 marks the 50th Anniversary of the first ESHG Conference which took place in Copenhagen in 1967. Additional information about the event may be found on the conference website: https://2017.eshg.org/ Sponsorship: Publication of this supplement is sponsored by the European Society of Human Genetics. All authors were asked to address any potential bias in their abstract and to declare any competing financial interests. These disclosures are listed at the end of each abstract. Contributions of up to EUR 10 000 (ten thousand euros, or equivalent value in kind) per year per company are considered "modest". Contributions above EUR 10 000 per year are considered "significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal and fetal echocardiography. The molecular karyotyping Genetics revealed a gain in 8p11.22-p23.1 region with a size of 27.2 Mb containing 122 OMIM gene and a loss in 8p23.1- E-P01.02 p23.3 region with a size of 6.8 Mb containing 15 OMIM Prenatal diagnosis in a case of 8p inverted gene. The findings were correlated with 8p inverted dupli- duplication deletion syndrome cation deletion syndrome. Conclusion: Our study empha- sizes the importance of using additional molecular O¨. Kırbıyık, K. M. Erdog˘an, O¨.O¨zer Kaya, B. O¨zyılmaz, cytogenetic methods in clinical follow-up of complex Y.
    [Show full text]
  • Cytogenetics, Chromosomal Genetics
    Cytogenetics Chromosomal Genetics Sophie Dahoun Service de Génétique Médicale, HUG Geneva, Switzerland [email protected] Training Course in Sexual and Reproductive Health Research Geneva 2010 Cytogenetics is the branch of genetics that correlates the structure, number, and behaviour of chromosomes with heredity and diseases Conventional cytogenetics Molecular cytogenetics Molecular Biology I. Karyotype Definition Chromosomal Banding Resolution limits Nomenclature The metaphasic chromosome telomeres p arm q arm G-banded Human Karyotype Tjio & Levan 1956 Karyotype: The characterization of the chromosomal complement of an individual's cell, including number, form, and size of the chromosomes. A photomicrograph of chromosomes arranged according to a standard classification. A chromosome banding pattern is comprised of alternating light and dark stripes, or bands, that appear along its length after being stained with a dye. A unique banding pattern is used to identify each chromosome Chromosome banding techniques and staining Giemsa has become the most commonly used stain in cytogenetic analysis. Most G-banding techniques require pretreating the chromosomes with a proteolytic enzyme such as trypsin. G- banding preferentially stains the regions of DNA that are rich in adenine and thymine. R-banding involves pretreating cells with a hot salt solution that denatures DNA that is rich in adenine and thymine. The chromosomes are then stained with Giemsa. C-banding stains areas of heterochromatin, which are tightly packed and contain
    [Show full text]
  • Prevalence of Amblyopia in Congenital Blepharoptosis: a Systematic Review and Meta-Analysis
    Int J Ophthalmol, Vol. 12, No. 7, Jul.18, 2019 www.ijo.cn Tel: 8629-82245172 8629-82210956 Email: [email protected] ·Meta-Analysis· Prevalence of amblyopia in congenital blepharoptosis: a systematic review and Meta-analysis Jia-Ying Zhang1,2, Xiao-Wei Zhu1,2, Xia Ding1,2, Ming Lin1,2, Jin Li1,2 1Department of Ophthalmology, Shanghai Ninth People’s and management of amblyopia should be integral to the Hospital, Shanghai Jiao Tong University School of Medicine, treatment of congenital ptosis. Shanghai 200011, China ● KEYWORDS: amblyopia; congenital ptosis; blepharophimosis; 2Shanghai Key Laboratory of Orbital Diseases and Ocular systematic review Oncology, Shanghai 200011, China DOI:10.18240/ijo.2019.07.21 Correspondence to: Jin Li. Department of Ophthalmology, Shanghai Ninth Peolple’s Hospital, Shanghai Jiao Tong Citation: Zhang JY, Zhu XW, Ding X, Lin M, Li J. Prevalence of University School of Medicine, No.639, Zhizaoju Road, amblyopia in congenital blepharoptosis: a systematic review and Shanghai 200011, China. [email protected] Meta-analysis. Int J Ophthalmol 2019;12(7):1187-1193 Received: 2018-09-25 Accepted: 2019-03-05 INTRODUCTION Abstract ongenital blepharoptosis is an eyelid disorder that ● AIM: To conduct a systematic review and Meta-analysis of C is characterized by an involuntary drooping of the the published literature to evaluate the pooled prevalence upper eyelid since birth. Etiologically, myogenic factors are rate of amblyopia in patients with congenital ptosis. most common, referring to dysgenesis or weakness of the ● METHODS: We searched the PubMed, Embase, the levator muscle and sometimes the superior rectus muscle. Cochrane Central Register of Controlled Trials, China The etiological subtypes of congenital ptosis include simple National Knowledge Infrastructure, Wanfang Data, and congenital ptosis, blepharophimosis-ptosis-epicanthus inversus Chongqing VIP databases for studies reporting the syndrome (BPES), Marcus Gunn jaw-winking syndrome prevalence of amblyopia in patients with congenital ptosis.
    [Show full text]
  • PG Series Ophthalmology Buster
    PG Series Ophthalmology Buster PG Series Ophthalmology Buster E Ahmed Formerly Head, Department of Ophthalmology Calcutta National Medical College Consultant, Eye Care and Research Centre Kolkata JAYPEE BROTHERS MEDICAL PUBLISHERS (P) LTD New Delhi Published by Jitendar P Vij Jaypee Brothers Medical Publishers (P) Ltd B-3, EMCA House, 23/23B Ansari Road, Daryaganj New Delhi 110 002, India Phones: +91-11-23272143, +91-11-23272703, +91-11-23282021, +91-11-23245672, Rel: 32558559 Fax: +91-11-23276490, +91-11-23245683 e-mail: [email protected] Visit our website: www.jaypeebrothers.com Branches • 2/B, Akruti Society, Jodhpur Gam Road Satellite, Ahmedabad 380 015 Phones: +91-079-26926233, Rel: +91-079-32988717, Fax: +91-079-26927094 e-mail: [email protected] • 202 Batavia Chambers, 8 Kumara Krupa Road, Kumara Park East, Bangalore 560 001 Phones: +91-80-22285971, +91-80-22382956, Rel: +91-80-32714073, Fax: +91-80-22281761 e-mail: [email protected] • 282 IIIrd Floor, Khaleel Shirazi Estate, Fountain Plaza, Pantheon Road, Chennai 600 008 Phones: +91-44-28193265, +91-44-28194897, Rel: +91-44-32972089 Fax: +91-44-28193231 e-mail: [email protected] • 4-2-1067/1-3, 1st Floor, Balaji Building, Ramkote Cross Road, Hyderabad 500 095 Phones: +91-40-66610020, +91-40-24758498, Rel:+91-40-32940929 Fax:+91-40-24758499, e-mail: [email protected] • No. 41/3098, B & B1, Kuruvi Building, St. Vincent Road, Kochi 682 018, Kerala Phones: +91-0484-4036109, +91-0484-2395739, +91-0484-2395740 e-mail: [email protected] • 1-A Indian Mirror Street, Wellington Square, Kolkata 700 013 Phones: +91-33-22451926, +91-33-22276404, +91-33-22276415, Rel: +91-33-32901926 Fax: +91-33-22456075, e-mail: [email protected] • 106 Amit Industrial Estate, 61 Dr SS Rao Road, Near MGM Hospital, Parel, Mumbai 400 012 Phones: +91-22-24124863, +91-22-24104532, Rel: +91-22-32926896 Fax: +91-22-24160828, e-mail: [email protected] • “KAMALPUSHPA” 38, Reshimbag, Opp.
    [Show full text]
  • Congenital Heart Disease and Chromossomopathies Detected By
    Review Article DOI: 10.1590/0103-0582201432213213 Congenital heart disease and chromossomopathies detected by the karyotype Cardiopatias congênitas e cromossomopatias detectadas por meio do cariótipo Cardiopatías congénitas y anomalías cromosómicas detectadas mediante cariotipo Patrícia Trevisan1, Rafael Fabiano M. Rosa2, Dayane Bohn Koshiyama1, Tatiana Diehl Zen1, Giorgio Adriano Paskulin1, Paulo Ricardo G. Zen1 ABSTRACT Conclusions: Despite all the progress made in recent de- cades in the field of cytogenetic, the karyotype remains an es- Objective: To review the relationship between congenital sential tool in order to evaluate patients with congenital heart heart defects and chromosomal abnormalities detected by disease. The detailed dysmorphological physical examination the karyotype. is of great importance to indicate the need of a karyotype. Data sources: Scientific articles were searched in MED- LINE database, using the descriptors “karyotype” OR Key-words: heart defects, congenital; karyotype; Down “chromosomal” OR “chromosome” AND “heart defects, syndrome; trisomy; chromosome aberrations. congenital”. The research was limited to articles published in English from 1980 on. RESUMO Data synthesis: Congenital heart disease is characterized by an etiologically heterogeneous and not well understood Objetivo: Realizar uma revisão da literatura sobre a group of lesions. Several researchers have evaluated the pres- relação das cardiopatias congênitas com anormalidades ence of chromosomal abnormalities detected by the karyo- cromossômicas detectadas por meio do exame de cariótipo. type in patients with congenital heart disease. However, Fontes de dados: Pesquisaram-se artigos científicos no most of the articles were retrospective studies developed in portal MEDLINE, utilizando-se os descritores “karyotype” Europe and only some of the studied patients had a karyo- OR “chromosomal” OR “chromosome” AND “heart defects, type exam.
    [Show full text]
  • Ocular Motility
    10 Ocular Motility C. Denise Pensyl, William J. Benjamin linicians are faced with the challenge of differenti­ approximately 2 rnm, below which the effects of Cating the etiologies of asthenopia, blur, diplopia, reduced retinal illuminance and diffraction outweigh and headaches associated with the use of the eyes by the beneficial aspects ofan increase in depth offield and their patients. Oculomotor deficiencies can be one of reduction of ocular spherical aberration. The entrance several possible causes of such symptoms and are the pupil also controls blur circle size at the retina for object result of defects in the central nervous system, afferent rays not originating from the far point plane of the eye. or efferent nerve pathways, or local conditions of a The entrance pupil averages 3.5 mm in diameter in nature so as to impede appropriate oculomotor func­ adults under normal illumination but can range from tion. Oculomotor function will be extensively analyzed 1.3 mm to 10 mm. It is usually centered on the optic during phorometry (see Chapter 21) in terms of binoc­ axis of the eye but is displaced temporally away from ularity and muscle balance after the subjective refraction the visual axis or line of sight an average of 5 degrees. has been completed. This chapter focuses on clinical The entrance pupil is decentered approximately procedures that are typically used to analyze oculomo­ 0.15 mm nasally and 0.1 mm inferior to the geometric tor function before the subjective refraction is per­ center ofthe cornea. J This amount ofdecentration is not formed, though in some cases the practitioner may distinguished in casual observation or by the clinician's decide to use a few of these tests after the refraction is normal examination ofthe pupils.
    [Show full text]