Hull Protection for Ice-Going Vessels Part I: Introduction Part I

Total Page:16

File Type:pdf, Size:1020Kb

Hull Protection for Ice-Going Vessels Part I: Introduction Part I White paper 14_Opmaak 1 3/10/14 15:07 Pagina 1 WHITE PAPER Hull Protection for Ice-going Vessels N°14 PAPER WHITE HYDREX Tackling the special coating requirements of the hulls and running gear of ice-going ships and icebreakers The Hydrex Group www.hydrex.be White paper 14_Opmaak 1 3/10/14 15:07 Pagina 2 Copyright 2014 by Hydrex, nv. All rights reserved. White paper 14_Opmaak 1 3/10/14 15:07 Pagina 1 Hull Protection for Ice-going Vessels Part I: Introduction Part I. Introduction ce represents a severe hazard to ships. reduction in the ship’s scantlings of up to IIcy waters, icebergs, packed ice, old 1 mm in thickness of steel plate. This can add ice, first year ice, lava- or gravel-laden up to a significant reduction of steel or other ice or any other form of ice are all substrate and in the overall weight of the significantly more challenging to a ship vessel. than water. More than in any other marine The fuel efficiency of the hull coating is application, choices regarding ships that also very important, especially when one will sail in ice can be a matter of life or considers current fuel prices. A hull coating A hull coating that death. that reduces friction and remains smooth reduces friction over the ship’s life cycle will result in and remains There are many ice-specific class regulations tremendous fuel savings for the operator. smooth over the ship’s life cycle intended to reduce the risk of that hazard and But this is not just a point of economy. will result in promote safety for ships sailing in such Reduced fuel consumption means fewer tremendous fuel conditions. noxious, harmful atmospheric emissions savings for the When it comes to choosing a hull coating such as CO2, NOx, SOx and Particulate operator. for icebreakers and ships that sail or trade in Matter including black carbon. Hull fuel icy waters and their rudders and running gear, efficiency comes down to two main factors: certain key factors must be looked for. 1) long-term hydrodynamic smoothness and The first and most important is protection. low friction of the hull; 2) freedom from The steel or other material from which the biofouling, either by repelling it or by hull is made must be protected from this removing it before it accumulates to any harshest of harsh environments. This means large degree. While not nearly as significant a really tough coating which is resistant to a factor in icy waters as in temperate or the abrasion of the ice, which will adhere tropical climes, the control of fouling must under the constant pounding and scraping still be taken into account when choosing the that accompany sea voyages through ice. It best hull coating for trading or sailing in ice. also means a coating that is not brittle or Low friction is a key property of a hull inflexible and therefore subject to cracking or coating for an ice-going vessel or icebreaker. disbonding when the panels that make up This permits the vessel to move through the hull flex and bend, even permanently ice more rapidly, or at least less slowly, denting, under the impact the ship receives especially when the ice friction is increased from the ice. As soon as the hull coating is by a covering of snow. It also makes it easier damaged, corrosion of the underlying hull for an icebreaker to ram onto and reverse off can set in and spread. There is an economic the ice during icebreaking operations. This factor here too. Certain ice abrasion resistant is an economic factor but also a safety hull coatings are certified as such by the factor. Less fuel will be consumed by a classification societies. This certification ship operating in ice which has a low friction includes the provision that the coating, if coating on its hull. The danger of running correctly applied to the ice belt, will permit a out of fuel or having to curtail a voyage is - 1 - White paper 14_Opmaak 1 3/10/14 15:07 Pagina 2 Hull Protection for Ice-going Vessels Part I: Introduction reduced. application? How long will it last? Does it Environmental considerations are very need frequent and expensive repair or important. The Arctic, the Baltic, the Great replacement in dry-dock? If so, how difficult Lakes, the Antarctic, southern South America and/or expensive is it to repair/replace? Can and many other environments where ships it be safely cleaned in the water without operate in icy conditions tend to be relatively damage to the coating or harm to the marine pristine when compared to the much more environment? traveled sea routes and other waterways. These then are the main points which can Certain pollutants such as black carbon are be greatly influenced, for better or for worse, much more harmful in the same volume in by the choice of coating used on the hulls of polar waters than in tropical or temperate ice-going vessels and icebreakers: zones. These areas are particularly sensitive 1. Protection and safety. to the invasions of alien species and to the 2. Economy of operation and reduction of effects of heavy metals and other toxic total ownership costs. substances such as those leached by biocidal 3. Environmental sustainability. antifouling coatings and many foul-release 4. Ease of application. coatings. A further aspect which must be This White Paper examines the subject, considered when choosing a coating for the the types of coating available and the best hull of ice-going ships is the ease of applica- approach to choosing the right coating for the tion and maintenance of the coating. Does it hull and running gear of ice-going ships. require special conditions and equipment for - 2 - White paper 14_Opmaak 1 3/10/14 15:07 Pagina 3 Hull Protection for Ice-going Vessels Part II: Climate of change Part II. Climate of change or icy waters, particularly the Arctic precautions specifically for vessels operating FOcean, shipping traffic is in a major in polar regions. A number of suggestions state of flux. This has been big news, were put forward, and preliminary work was attributed to climate change and receding done, concentrating more on the safety aspects summer ice, opening heretofore impass- than the environmental ones. These suggested able ship routes and making Arctic travel or desired requirements included the use of ice possible or easier. Reports are somewhat abrasion resistant, non-toxic hull coatings, and conflicting on the subject but in general measures for preventing hull-borne invasions the forecasts are for increased or greatly of non-indigenous species in the form of increased shipping in icy waters. biofouling, which would mean ships sailing into Polar regions having a macrofouling-free Offshore oil and gas exploration and produc- hull. While work on the Polar Code had not tion activities in Polar regions, particularly been completed at time of original publication the Arctic, are increasing. The reserves of oil of this White Paper, shipowners and operators and gas in Arctic regions are estimated to be planning to sail in these waters need to take about one quarter of the world’s proven the possibilities into consideration as they sources.1 The countries that border the Arctic build new vessels or replace the hull coating Ocean are all increasing or planning to on ships in service. increase their shipping activities in the icy If delays on developing an acceptable waters of the Arctic region. Remote offshore Polar Code continue, it is quite likely that vessels are expected to stay on station for individual ports and States affected will long periods of time without going to dry- develop and impose their own requirements. dock. This poses a challenge to hull coatings This is far from optimum since the various in that they need to protect the vessel from nations and authorities involved are unlikely corrosion and be cleanable for underwater to come up with the same set of regulations, inspections in lieu of dry-docking (UWILD) and ships traveling between and among the by classification societies. Toxic antifouling various ports and States will need to keep coatings and other soft coatings are not track of and follow different sets of rules. Far appropriate for ice-going vessels since they simpler would be a rapidly completed, IMO- are easily damaged or scraped off by contact led Polar Code which can be agreed on by all with the ice. The additional factor of not affected States. going to dry-dock as in the case of off-shore These various factors are all coming exploration, production and storage vessels together to pressure shipbuilders, shipyards, The question is, how does one imposes severe requirements for toughness shipowners and ship operators to make the choose the best and durability on the coating used to protect correct decisions concerning the application hull coating the hulls of such vessels. and repair of hull coatings on ice-going vessels. system for this Work was started by the IMO in 2009 on a The question is, how does one choose the harsh and Polar Code supposed to recommend or dictate best hull coating system for this harsh and unforgiving safety and environment-related conditions and unforgiving environment? environment? 1Cambos, Philippe, et. al. “Technical Challenges Associated with Arctic LNG Developments: A Class Society Approach,” Bureau Veritas, Paris, (2013). - 3 - White paper 14_Opmaak 1 3/10/14 15:07 Pagina 4 Hull Protection for Ice-going Vessels Part III: Issues with Hull Coatings for Ice-going Ships Part III. Issues with Hull Coatings for Ice-going Ships hat are the special requirements eats away at the hull which then becomes Wfor hull coatings on ice-going thinner and less able to withstand the forces ships? of sea and ice.
Recommended publications
  • Northern Sea Route Cargo Flows and Infrastructure- Present State And
    Northern Sea Route Cargo Flows and Infrastructure – Present State and Future Potential By Claes Lykke Ragner FNI Report 13/2000 FRIDTJOF NANSENS INSTITUTT THE FRIDTJOF NANSEN INSTITUTE Tittel/Title Sider/Pages Northern Sea Route Cargo Flows and Infrastructure – Present 124 State and Future Potential Publikasjonstype/Publication Type Nummer/Number FNI Report 13/2000 Forfatter(e)/Author(s) ISBN Claes Lykke Ragner 82-7613-400-9 Program/Programme ISSN 0801-2431 Prosjekt/Project Sammendrag/Abstract The report assesses the Northern Sea Route’s commercial potential and economic importance, both as a transit route between Europe and Asia, and as an export route for oil, gas and other natural resources in the Russian Arctic. First, it conducts a survey of past and present Northern Sea Route (NSR) cargo flows. Then follow discussions of the route’s commercial potential as a transit route, as well as of its economic importance and relevance for each of the Russian Arctic regions. These discussions are summarized by estimates of what types and volumes of NSR cargoes that can realistically be expected in the period 2000-2015. This is then followed by a survey of the status quo of the NSR infrastructure (above all the ice-breakers, ice-class cargo vessels and ports), with estimates of its future capacity. Based on the estimated future NSR cargo potential, future NSR infrastructure requirements are calculated and compared with the estimated capacity in order to identify the main, future infrastructure bottlenecks for NSR operations. The information presented in the report is mainly compiled from data and research results that were published through the International Northern Sea Route Programme (INSROP) 1993-99, but considerable updates have been made using recent information, statistics and analyses from various sources.
    [Show full text]
  • Ice Navigation Training
    Training for maritime operations in polar waters-fulfillment of the Polar code Sergey Aysinov, MBA, PhD, Director of Professional development programmes Institute Head of Makarov training centre Historical Background Number of Students (2015/2016 academic year) Full time training 5168 Distance learning (all Faculties) 2712 Maritime College (all forms of education) 1376 3317 Teaching Staff (Higher Education) Professors, PH.D. Full time 431 Part time 154 Assistant Professors 221 Branches 72 International Maritime Activity The University experts participate in Russian Federation Delegations as well as IALA, ITF delegations to the regulatory organizations: International Maritime Organization (IMO) and International Labour Organization (ILO) University is a member of: . Executive Committee of International Association of Maritime Universities (IAMU); . International Maritime Lecturers Association (IMLA); . International Sail Training Association (ISTA); . International Maritime Simulator Forum (IMSF); . STENA Association of Maritime Institutions (STAMI) acting under the patronage of shipping company STENA (Sweden) Technological and Personnel resourses Makarov Training Centre: . 46 Modern training simulators, . More than 200 highly professional Engineers, Instructors, Managers, Experts, . More than 170 training programs, . 20+ years of operation, . Approval from Russian Ministry of Transport, Federal Marine and River Transport Agency, other Flag state Administrations, Certification Association “Russian Register”, Russian Maritime Register of Shipping, The Nautical Institute, and others. MTC provides professional simulator training to more than 15 000 trainees from 23+ countries annually without any boundaries. MAKAROV TRAINING CENTRE ICE NAVIGATION TRAINING Start May, 2003 Main Sailing Areas – the Baltics: - St. Petersburg - Primorsk - Vysotsk - Ust’-Luga Number of trainees: 900 + Unicom (Cyprus) – the first partner 2003-2016. What have been changed ? Regulatory base – Polar code, SOLAS and STCW amendments.
    [Show full text]
  • Structural Challenges Faced by Arctic Ships
    NTIS # PB2011- SSC-461 STRUCTURAL CHALLENGES FACED BY ARCTIC SHIPS This document has been approved For public release and sale; its Distribution is unlimited SHIP STRUCTURE COMMITTEE 2011 Ship Structure Committee RADM P.F. Zukunft RDML Thomas Eccles U. S. Coast Guard Assistant Commandant, Chief Engineer and Deputy Commander Assistant Commandant for Marine Safety, Security For Naval Systems Engineering (SEA05) and Stewardship Co-Chair, Ship Structure Committee Co-Chair, Ship Structure Committee Mr. H. Paul Cojeen Dr. Roger Basu Society of Naval Architects and Marine Engineers Senior Vice President American Bureau of Shipping Mr. Christopher McMahon Mr. Victor Santos Pedro Director, Office of Ship Construction Director Design, Equipment and Boating Safety, Maritime Administration Marine Safety, Transport Canada Mr. Kevin Baetsen Dr. Neil Pegg Director of Engineering Group Leader - Structural Mechanics Military Sealift Command Defence Research & Development Canada - Atlantic Mr. Jeffrey Lantz, Mr. Edward Godfrey Commercial Regulations and Standards for the Director, Structural Integrity and Performance Division Assistant Commandant for Marine Safety, Security and Stewardship Dr. John Pazik Mr. Jeffery Orner Director, Ship Systems and Engineering Research Deputy Assistant Commandant for Engineering and Division Logistics SHIP STRUCTURE SUB-COMMITTEE AMERICAN BUREAU OF SHIPPING (ABS) DEFENCE RESEARCH & DEVELOPMENT CANADA ATLANTIC Mr. Craig Bone Dr. David Stredulinsky Mr. Phil Rynn Mr. John Porter Mr. Tom Ingram MARITIME ADMINISTRATION (MARAD) MILITARY SEALIFT COMMAND (MSC) Mr. Chao Lin Mr. Michael W. Touma Mr. Richard Sonnenschein Mr. Jitesh Kerai NAVY/ONR / NAVSEA/ NSWCCD TRANSPORT CANADA Mr. David Qualley / Dr. Paul Hess Natasa Kozarski Mr. Erik Rasmussen / Dr. Roshdy Barsoum Luc Tremblay Mr. Nat Nappi, Jr. Mr.
    [Show full text]
  • Ice Trials in Antarctica • New Rules on the Northern Sea Route • Processing Barge to the Arctic • Equipment for the Navy in This Issue
    Arctic Passion News No. 1 | 2020 | issue 19 • Ice trials in Antarctica • New rules on the Northern Sea Route • Processing barge to the Arctic • Equipment for the Navy In this issue Page 4 Page 8 Page 11 Page 16 New rules on the Northern Xue Long 2 in Equipment for the Navy Barge for mining project Sea Route ice trials Table of contents From the Managing Director.................................. 3 Front cover New regime and regulations on the NSR...............4 Sami Saarinen spent six weeks travelling to Antarctica Xue Long 2 in successful ice trials.......................... 8 and back, onboard both of China’s icebreakers Xue Equipment for Navy corvettes.......................... ….11 Long and Xue Long 2. Read about his voyage and Safe and reliable shipping of crude oil................. 12 Xue Long 2’s ice trials on page 8. Feasibility study for Qilak LNG.........................….14 Aalto Ice Tank opens.............................................15 Contact details Pavlovskoe mining project.....................................16 AKER ARCTIC TECHNOLOGY INC Reducing ice friction since 1969 ...........................18 Merenkulkijankatu 6, FI-00980 HELSINKI Active Heeling systems.........................................20 Tel.: +358 10 323 6300 News in brief.........................................................21 www.akerarctic.fi Announcements....................................................23 Study tour to Gothenburg.....................................24 Join our subscription list Our services Please send your message to www.akerarctic.fi
    [Show full text]
  • Modern Day Pioneering and Its Safety in the Floating Ice Offshore
    Modern Day Pioneering and its Safety in the Floating Ice Offshore Arno J. Keinonen AKAC INC. Victoria, B.C. Canada [email protected] Evan H. Martin AKAC INC. Victoria, B.C. Canada [email protected] ABSTRACT al. (2006a), Keinonen et al. (2006b), Keinonen et al. (2000), Pilkington et al. (2006a), Pilkington et al. (2006b), Reed (2006), Tambovsky et al. Floating ice offshore pioneering has been performed since the mid (2006), Wright (1999), and Wright (2000). 1970s. This paper presents the key lessons learned from 5 such operations of wide geographic as well as operational range. The intent FLOATING STATIONARY OPERATIONS IN PACK ICE is to present the safety related lessons from these operations for the OFFSHORE benefit of the future safety of similar operations. Beaufort Sea Drillships KEY WORDS: ice offshore operations; station keeping in ice; ice management; safety in ice. When four open water drillships, upgraded to an ice class and winterized, entered the Beaufort Sea mid seventies, together with INTRODUCTION several ice class supply vessels, the operators had an expectation of having an open water season of a few months each year to be able to Several early pioneers going to the Arctic went all out, all thinking that explore for oil and gas (Keinonen and Martin, 2010). The operation they were well prepared, yet some were clearly not prepared for what itself was expected to be a seasonal summer operation only and not to could happen. Some became heroes while others left their names on interact with ice. pages of history books for not completing their missions, at times paying the ultimate price, losing their lives, equipment and leaving The first pioneering lesson was that the so-called summer season had behind a low level, local pollution to the environment.
    [Show full text]
  • Coatings and Cold Hard Truths | International Paint
    Ice Class Vessels Coatings and cold hard truths The sophisticated ships destined to recover hard to reach resources under ice-covered polar seas have required new thinking on design and construction. No matter how profound that thinking has been, however, owner preference for the protective coating Intershield® 163 Inerta 160 has remained a constant. Despite the challenges posed the Arctic Circle promises to yield around 22% of the world’s oil and gas still known to be available. hile the wider harshest of environments. natural gas liquids. newbuilding market Despite the challenges posed by their More than a fifth of Russian territory for ships may only now recovery, the Arctic Circle promises to lies north of the polar circle. The W be showing any signs of yield around 22% of the world’s oil and nation’s Arctic and sub-Arctic regions recovery, few can doubt that sustained gas still known to be available, in the account for 90% of its gas reserves and high oil and gas prices dictate the shape of up to an estimated 90 billion over 20% of its crude oil. Accordingly, future need for increasing numbers barrels of oil, 1,670 trillion cubic feet Russian gas giant Gazprom, for of vessels capable of operating in the of natural gas, and 44 billion barrels of example, has gone on record as saying 1 Ice Class Vessels that field development offshore Russia to 2020 alone will drive orders for over 10 production platforms, over 50 ice class tankers and other specialised ships, and at least 23 liquefied natural gas carriers.
    [Show full text]
  • Role of Classification Society in Arctic Shipping
    ROLE OF CLASSIFICATION SOCIETY IN ARCTIC SHIPPING Seppo Liukkonen, Station Manager, DNVGL Station Helsinki Abstract The core mission of a classification society is “to protect human lives, property and the environment”. In first place the classification societies are fulfilling this function in marine environment, because the classification business in its current form started within sea transportation and shipping. Since then the function of the classification societies has widened to comprise shipbuilding, different kinds of off- shore activities and also some on-shore activities. When fulfilling their function the classification societies are using their own classification rules as their main, own tool. Additionally, the classification societies are often fulfilling their above-mentioned function by working together with and on behalf of the flag state administrations. Here the so-called IMO instruments such as the SOLAS and MARPOL conventions, for instance, are the main basis of the work. Also, international standards, such as the EN-ISO and IEC standards, for instance, and other national and international regulations, such as the Finnish-Swedish Ice Class Rules and Canadian Arctic Pollution Prevention Regulations, for instance, are used by the classification societies. Basically, the work of the classification societies is to ensure that the object in question, e.g., a ship, an off-shore structure, a quality management system, etc., is in compliance with the above-mentioned relevant rules and regulations. In practice this can be done, e.g., with plan approvals, supervision of manufacturing, surveys, inspections and audits. This presentation gives an overview about the role of the classification societies in ensuring and developing the safe Arctic shipping.
    [Show full text]
  • Towards an Automatic Ice Navigation Support System in the Arctic Sea
    International Journal of Geo-Information Article Towards an Automatic Ice Navigation Support System in the Arctic Sea Xintao Liu, Shahram Sattar and Songnian Li * Department of Civil Engineering, Ryerson University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada; [email protected] (X.L.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +1-416-979-5000 Academic Editors: Suzana Dragicevic, Xiaohua Tong and Wolfgang Kainz Received: 18 January 2016; Accepted: 8 March 2016; Published: 14 March 2016 Abstract: Conventional ice navigation in the sea is manually operated by well-trained navigators, whose experiences are heavily relied upon to guarantee the ship’s safety. Despite the increasingly available ice data and information, little has been done to develop an automatic ice navigation support system to better guide ships in the sea. In this study, using the vector-formatted ice data and navigation codes in northern regions, we calculate ice numeral and divide sea area into two parts: continuous navigable area and the counterpart numerous separate unnavigable area. We generate Voronoi Diagrams for the obstacle areas and build a road network-like graph for connections in the sea. Based on such a network, we design and develop a geographic information system (GIS) package to automatically compute the safest-and-shortest routes for different types of ships between origin and destination (OD) pairs. A visibility tool, Isovist, is also implemented to help automatically identify safe navigable areas in emergency situations. The developed GIS package is shared online as an open source project called NavSpace, available for validation and extension, e.g., indoor navigation service.
    [Show full text]
  • Ice Navigation in Canadian Waters
    Ice Navigation in Canadian Waters Published by: Icebreaking Program, Maritime Services Canadian Coast Guard Fisheries and Oceans Canada Ottawa, Ontario K1A 0E6 Cat. No. Fs154-31/2012E-PDF ISBN 978-1-100-20610-3 Revised August 2012 ©Minister of Fisheries and Oceans Canada 2012 Important Notice – For Copyright and Permission to Reproduce, please refer to: http://www.dfo-mpo.gc.ca/notices-avis-eng.htm Note : Cette publication est aussi disponible en français. Cover photo: CCGS Henry Larsen in Petermann Fjord, Greenland, by ice island in August 2012. Canadian Coast Guard Ice Navigation in Canadian Waters Record of Amendments RECORD OF AMENDMENTS TO ICE NAVIGATION IN CANADIAN WATERS (2012 VERSION) FROM MONTHLY NOTICES TO MARINERS NOTICES TO INSERTED DATE SUBJECT MARINERS # BY Note: Any inquiries as to the contents of this publication or reports of errors or omissions should be directed to [email protected] Revised August 2012 Page i of 153 Canadian Coast Guard Ice Navigation in Canadian Waters Foreword FOREWORD Ice Navigation in Canadian Waters is published by the Canadian Coast Guard in collaboration with Transport Canada Marine Safety, the Canadian Ice Service of Environment Canada and the Canadian Hydrographic Service of Fisheries and Oceans Canada. The publication is intended to assist ships operating in ice in all Canadian waters, including the Arctic. This document will provide Masters and watchkeeping crew of vessels transiting Canadian ice-covered waters with the necessary understanding of the regulations, shipping support services, hazards and navigation techniques in ice. Chapter 1, Icebreaking and Shipping Support Services, pertains to operational considerations, such as communications and reporting requirements as well as ice advisories and icebreaker support within Canadian waters.
    [Show full text]
  • Ice Class Strengthening of Existing Reefer Vessels Trading in the Baltic Sea - a Comparative Study of Ice Classifications 1D and 1C
    Kungliga Tekniska Högskolan Centre for Naval Architecture Bachelor Thesis in Mechanical Engineering SA118X Ice Class Strengthening of Existing Reefer Vessels Trading in the Baltic Sea - A comparative study of ice classifications 1D and 1C Authors Dennis Bremberg ([email protected]) Sara Högdahl ([email protected]) Supervisor Ivan Stenius Date 2016-05-02 Abstract This bachelor thesis strives to perspicuously answer what an ice strengthening of two different existing reefer vessels might mean for operations in the Baltic Sea and illustrate what factors a shipping company needs to consider when initiating such a project. The main purpose is to provide an information basis facilitating the communication between different parties in the shipping industry. The existing specialized reefer fleet is old and few new ships are being built or commissioned. At the same time, there is an increasing demand of shipping perishables to St. Petersburg, inciting the strengthening of existing ships to meet market demands. The methodology used in this report is a compilation of selective literature research (primarily providing qualitative, secondary data) and a comparative study in which the secondary data is applied on the reefer classes Crown and Family. While other classification societies are mentioned, this report focuses on Lloyd’s Register and the ice classes 1D and 1C, suitable for very light and light ice conditions and sailing in convoy with icebreaker assistance. Although ice class 1C is designated for tougher ice conditions than 1D, they share many strengthening requirements. Most substantially, the requirements for 1C concerning the forward region and steering arrangements, stipulated by the Swedish Maritime Administration (Swedish: Sjöfartsverket), are also applicable to 1D.
    [Show full text]
  • 7 Information About Navigation in Ice
    Notices to Mariners 1 to 46 Section A – Aids to Navigation and Marine Safety 7 Information about Navigation in Ice Ice Navigation in Canadian Waters is published by the Canadian Coast Guard in collaboration with Transport Canada Marine Safety, the Canadian Ice Service of Environment Canada and the Canadian Hydrographic Service of Fisheries and Oceans Canada. The publication is intended to assist ships operating in ice in all Canadian waters, including the Arctic. This document will provide Masters and watchkeeping crew of vessels transiting Canadian ice-covered waters with the necessary understanding of the regulations, shipping support services, hazards, and navigation techniques in ice. The nautical publication is available for download, free-of-charge, from https://www.ccg-gcc.gc.ca/publications/icebreaking-deglacage/ice-navigation-glaces/page01-eng.html (It is important to note that the paper version of the document is no longer available.) 7.1 General Ice is an obstacle to any ship, even an icebreaker, and the inexperienced Navigation Officer is advised to develop a healthy respect for the latent power and strength of ice in all its forms. However, it is quite possible, and continues to be proven so, for well-found ships in capable hands to navigate successfully through ice-covered waters. The first principle of successful ice navigation is to maintain freedom of manoeuvre. Once a ship becomes trapped, the vessel goes wherever the ice goes. Ice navigation requires great patience and can be a tiring business with or without icebreaker escort. The open water long way round a difficult ice area whose limits are known is often the fastest and safest way to port, or to the open sea when leaving a port.
    [Show full text]
  • Lloyd's Register – Written Evidence (ARC0048)
    Lloyd’s Register – Written evidence (ARC0048) 1. Summary The objectives of this submission of evidence to the Select Committee on the Arctic are: To offer supporting data and insights on transit and destination shipping in the Arctic and, in addition, the characteristics of the UK registered Arctic shipping fleet. To contribute evidence on the technological challenges for future Arctic shipping activities To contribute evidence on the regulatory framework that will govern Arctic shipping To contribute advice, and views, on Arctic shipping to support consideration of the “UK dimension” by the Select Committee Considering each objective in turn: Key points on supporting data and insights on transit and destination shipping in the Arctic: 1. Very small numbers of ships use Arctic transits for voyages between ocean basins (i.e. Pacific and Atlantic basins) as an alternative shipping route to transits through the Panama or Suez canal 2. Shipping in the Russian Arctic is likely to increase, but will be mainly export shipping for dedicated natural resources projects. Transit of commercial ships through the Russian Arctic is likely to occur during the summer season only 3. The UK registered ice-classed fleet is small, with 119 ice classed ships, and just 8 ships potentially suitable for transiting the Russian Northern Sea Route independently in an average summer season Figure 1.1 % of Ice Classed UK Fleet Figure 1.2 Ice Classes assigned to UK flagged ships 1 Key points on the technological challenges for future Arctic shipping activities: 1. Technological challenges remain for efficient Arctic shipping with a significant build and operating cost premium associated with current generation of Arctic capable ships 2.
    [Show full text]