This Is Chapter 25 of a Forthcoming Book Edited by K. Arrow, A. Sen, and K

Total Page:16

File Type:pdf, Size:1020Kb

This Is Chapter 25 of a Forthcoming Book Edited by K. Arrow, A. Sen, and K This is Chapter 25 of a forthcoming book edited by K. Arrow, A. Sen, and K. Suzumura. It is intended only for participants of my 2007 MAA short course on the “mathematics of voting” in New Orleans. Chapter 25 GEOMETRY OF VOTING1 Donald G. Saari Director, Institute for Mathematical Behavioral Sciences Departments of Mathematics and Economics University of California, Irvine Irvine, California 92698 1. Introduction 2. Simple Geometric Representations 2.1 A geometric profile representation 2.2 Elementary geometry; surprising results 2.3 The source of pairwise voting problems 2.4 Finding other pairwise results 3. Geometry of Axioms 3.1 Arrow’s Theorem 3.2 Cyclic voters in Arrow’s framework? 3.3 Monotonicity, strategic behavior, etc. 4. Plotting all election outcomes 4.1 Finding all positional and AV outcomes 4.2 The converse; finding election relationships 5. Finding symmetries – and profile decompositions 6. Summary Abstract. I show how to use simple geometry to analyze pairwise and posi- tional voting rules as well as those many other decision procedures, such as runoffs and Approval Voting, that rely on these methods. The value of us- ing geometry is introduced with three approaches, which depict the profiles along with the election outcomes, that help us find new voting paradoxes, compute the likelihood of disagreement among various election outcomes, and explain problems such as the “paradox of voting.” This geometry even extends McGarvey’s theorem about possible pairwise election rankings to 1This research was supported by NSF grant DMI-0233798. My thanks to K. Arrow, N. Baigent, H. Nurmi, T. Ratliff, M. Salles, and K. Sieberg among others for comments and corrections on an earlier draft. 1 indicate all possible pairwise tallies. After using geometry to provide a be- nign interpretation for Arrow’s Theorem, an intuitive argument is described to analyze a variety of seemingly disparate topics such as strategic behav- ior, monotonicity, and the “no-show” paradox. Another geometric approach identifies all possible positional and Approval Voting election outcomes ad- mitted by a given profile: the converse becomes a geometric tool that identi- fies new election relationships. Finally, a geometric “profile decomposition” is described with which we can identify and explain all possible differences in positional and pairwise voting outcomes and generate illustrating profiles for any possible paradox. 1 Introduction “Geometry of voting” is intended to capture the sense that “a picture is worth a thousand words.” After all, geometry has long served as a powerful tool that provides a global perspective of whatever we happen to be studying while exposing unexpected relationships. This is why we graph functions, plot data, study the Edgeworth box from economics, and use diagrams to enhance lectures. Similarly, the geometry of voting seeks to create appro- priate geometric tools to capture global aspects about decision and voting rules while exposing new relationships. Since most, if not all voting rules in wide use involve pairwise or positional methods, or are based on them (such as runoffs), I emphasize these methods. Why is social choice so complex? In part, it is due to the “curse of dimensionality;” e.g., this is why standard geometric tools fail the challenges offered by social choice. After all, the large dimensions of a profile space alone make it impossible to graph relationships between profiles and their election outcomes. This is displayed already with three alternatives where the 3! = 6 dimensions of profile space overwhelm any hope to use standard graphs to connect profiles with election outcomes. (In this chapter, a profile is used in the traditional manner of specifying the number of voters whose preferences are given by each ranking.) Because standard approaches will not work, we must develop new geometric tools that will offer help. In the next section, for instance, three methods are described that geometrically depict profiles along with their associated procedural outcomes. Section 3 shows how to use geometry to analyze axiomatic issues ranging from Arrow’s Theorem to concerns about strategic behavior, monotonicity, and the “no-show” paradox (where a voter does better by not voting). Ge- ometry even demonstrates why many seemingly dissimilar concerns admit a 2 strikingly similar analysis. A different theme is motivated by the temptation—one that we all expe- rience whenever we encounter a “nail-biting” close election involving three or more candidates—to explore whether the outcome would have changed had a different election rule been used. (For instance, had a different elec- tion rule been used in the 2000 US presidential election, could Gore have beaten Bush?) As published results typically consider only the better known methods, we must wonder what would have happened had any of the infinite number of other rules been used. The geometric approach in Sect. 4 resolves this problem by showing how to depict all possible positional and Approval Voting outcomes for any specified profile. The converse creates an easily used tool to identify new election relationships and to compute probability estimates. In the final section, natural geometric symmetries within a profile are identified and extracted to create a “profile decomposition.” This decom- position permits us to construct, analyze, and describe all possible election paradoxes that can occur with all election rules that are based on positional and/or pairwise election outcomes. 2 Simple geometric representations As it is not feasible to use standard graphs with choice theory, the first of three approaches described in this section addresses the problem by listing profiles in a manner that roughly mimics the structure of profile space. Advantages of using what I call the geometric profile representation are that it provides simpler and quicker ways to tally positional and pairwise ballots, it helps us develop intuition as to why the same profile can allow different rules to have conflicting election outcomes, and, later, it leads to natural profile relationships that explain the source of several problems from voting theory. The second geometric approach exposes surprisingly complex relation- ships that exist among voting rules. This approach probably can be used to analyze other decision rules because nothing more difficult than elementary geometry and algebra is needed. The third approach, which examines cycles, the paradox of voting, and other intricacies of pairwise voting, identifies all possible profiles that define specified pairwise outcomes; expect surprises in the interpretation of majority votes. Throughout the geometry unveils a common source for all voting problems: problems arise when a voting rule ignores crucial but available information about the profile. 3 2.1 Geometric profile representation A traditional way to describe a profile for the three alternatives A, B, C is to list how many voters prefer each of the six preference rankings; e.g., Number Ranking Number Ranking 7 A B C 12 C B A (1) 15 A C B 4 B C A 2 C A B 12 B A C The tedium of tallying ballots requires sifting through the data to find how many voters rank each candidate in different ways. This suggests searching for alternative ways to represent profiles that will simplify the tallying pro- cess. The following approach was developed in (Saari, 1994, 1995, 2001); for applications, see Nurmi (1999, 2000, 2002) and Tabarrok (2001). Assign each candidate to a vertex of an equilateral triangle (see Fig. 1a). Assign a ranking to each point in the triangle by its distance to each vertex where “closer is better.” This binary relationship divides the triangle into the thirteen regions depicted in Fig. 1: the six small open triangles represent strict rankings while the seven remaining ranking regions, which involve at least one tie, are portions of the lines. In Fig. 1a, for instance, the number 15 is in a region closest to the A vertex, next closest to C, and farthest from B, so it corresponds to an A C B ranking. Points on the vertical line are equal distance from the A and B vertices, so they represent the tie A ∼ B. This geometry positions the ranking regions in a manner similar to that of profile space in that adjacent “ranking regions” differ only by the ranking of an adjacent pair. 14 + 19s C C ... ... ....... ....... ....... ........ ... ... ...... ... ... ... .... ... ... ... ....... ... ... ... ... .. ... ... ... ......... ... ... ... .... ... ... ... ........... ... ... ... ............ ... ... ... .... .. ... 18 ... ... 29 .............. ... ... ... .... ... ... 2. 12 ... ............... ... ... ... ... ...... .. ... ........ ........ ........................ ........ ... ...... ...... ... ................ ..... ...... ... ... ....... ....... ... ........................... ....... ... ... ....... ....... ... .......................... .. ....... ... ... ............... ... ............................................ ... ... ......... ... ..................................... ... 34 ... 15............... 4 ... 23 ................................................. ... ... ....... ....... ... ..................................... ....... ... ... ....... ....... ... ........................................ ....... ... ... ...... ...... ... ...................................... .. ...... ... ... ....... ....... ... ........................................... ..... ....... ... ... ....... ....... ... ............................................. ..... ....... ... ... ....... ....... ... ..........................................
Recommended publications
  • On the Distortion of Voting with Multiple Representative Candidates∗
    The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) On the Distortion of Voting with Multiple Representative Candidates∗ Yu Cheng Shaddin Dughmi David Kempe Duke University University of Southern California University of Southern California Abstract voters and the chosen candidate in a suitable metric space (Anshelevich 2016; Anshelevich, Bhardwaj, and Postl 2015; We study positional voting rules when candidates and voters Anshelevich and Postl 2016; Goel, Krishnaswamy, and Mu- are embedded in a common metric space, and cardinal pref- erences are naturally given by distances in the metric space. nagala 2017). The underlying assumption is that the closer In a positional voting rule, each candidate receives a score a candidate is to a voter, the more similar their positions on from each ballot based on the ballot’s rank order; the candi- key questions are. Because proximity implies that the voter date with the highest total score wins the election. The cost would benefit from the candidate’s election, voters will rank of a candidate is his sum of distances to all voters, and the candidates by increasing distance, a model known as single- distortion of an election is the ratio between the cost of the peaked preferences (Black 1948; Downs 1957; Black 1958; elected candidate and the cost of the optimum candidate. We Moulin 1980; Merrill and Grofman 1999; Barbera,` Gul, consider the case when candidates are representative of the and Stacchetti 1993; Richards, Richards, and McKay 1998; population, in the sense that they are drawn i.i.d. from the Barbera` 2001). population of the voters, and analyze the expected distortion Even in the absence of strategic voting, voting systems of positional voting rules.
    [Show full text]
  • Approval Voting Under Dichotomous Preferences: a Catalogue of Characterizations
    Draft – June 25, 2021 Approval Voting under Dichotomous Preferences: A Catalogue of Characterizations Florian Brandl Dominik Peters University of Bonn Harvard University [email protected] [email protected] Approval voting allows every voter to cast a ballot of approved alternatives and chooses the alternatives with the largest number of approvals. Due to its simplicity and superior theoretical properties it is a serious contender for use in real-world elections. We support this claim by giving eight characterizations of approval voting. All our results involve the reinforcement axiom, which requires choices to be consistent across different electorates. In addition, we consider strategyproofness, consistency with majority opinions, consistency under cloning alternatives, and invariance under removing inferior alternatives. We prove our results by reducing them to a single base theorem, for which we give a simple and intuitive proof. 1 Introduction Around the world, when electing a leader or a representative, plurality is by far the most common voting system: each voter casts a vote for a single candidate, and the candidate with the most votes is elected. In pioneering work, Brams and Fishburn (1983) proposed an alternative system: approval voting. Here, each voter may cast votes for an arbitrary number of candidates, and can thus choose whether to approve or disapprove of each candidate. The election is won by the candidate who is approved by the highest number of voters. Approval voting allows voters to be more expressive of their preferences, and it can avoid problems such as vote splitting, which are endemic to plurality voting. Together with its elegance and simplicity, this has made approval voting a favorite among voting theorists (Laslier, 2011), and has led to extensive research literature (Laslier and Sanver, 2010).
    [Show full text]
  • Instructor's Manual
    The Mathematics of Voting and Elections: A Hands-On Approach Instructor’s Manual Jonathan K. Hodge Grand Valley State University January 6, 2011 Contents Preface ix 1 What’s So Good about Majority Rule? 1 Chapter Summary . 1 Learning Objectives . 2 Teaching Notes . 2 Reading Quiz Questions . 3 Questions for Class Discussion . 6 Discussion of Selected Questions . 7 Supplementary Questions . 10 2 Perot, Nader, and Other Inconveniences 13 Chapter Summary . 13 Learning Objectives . 14 Teaching Notes . 14 Reading Quiz Questions . 15 Questions for Class Discussion . 17 Discussion of Selected Questions . 18 Supplementary Questions . 21 3 Back into the Ring 23 Chapter Summary . 23 Learning Objectives . 24 Teaching Notes . 24 v vi CONTENTS Reading Quiz Questions . 25 Questions for Class Discussion . 27 Discussion of Selected Questions . 29 Supplementary Questions . 36 Appendix A: Why Sequential Pairwise Voting Is Monotone, and Instant Runoff Is Not . 37 4 Trouble in Democracy 39 Chapter Summary . 39 Typographical Error . 40 Learning Objectives . 40 Teaching Notes . 40 Reading Quiz Questions . 41 Questions for Class Discussion . 42 Discussion of Selected Questions . 43 Supplementary Questions . 49 5 Explaining the Impossible 51 Chapter Summary . 51 Error in Question 5.26 . 52 Learning Objectives . 52 Teaching Notes . 53 Reading Quiz Questions . 54 Questions for Class Discussion . 54 Discussion of Selected Questions . 55 Supplementary Questions . 59 6 One Person, One Vote? 61 Chapter Summary . 61 Learning Objectives . 62 Teaching Notes . 62 Reading Quiz Questions . 63 Questions for Class Discussion . 65 Discussion of Selected Questions . 65 CONTENTS vii Supplementary Questions . 71 7 Calculating Corruption 73 Chapter Summary . 73 Learning Objectives . 73 Teaching Notes .
    [Show full text]
  • Consistent Approval-Based Multi-Winner Rules
    Consistent Approval-Based Multi-Winner Rules Martin Lackner Piotr Skowron TU Wien University of Warsaw Vienna, Austria Warsaw, Poland Abstract This paper is an axiomatic study of consistent approval-based multi-winner rules, i.e., voting rules that select a fixed-size group of candidates based on approval bal- lots. We introduce the class of counting rules, provide an axiomatic characterization of this class and, in particular, show that counting rules are consistent. Building upon this result, we axiomatically characterize three important consistent multi- winner rules: Proportional Approval Voting, Multi-Winner Approval Voting and the Approval Chamberlin–Courant rule. Our results demonstrate the variety of multi- winner rules and illustrate three different, orthogonal principles that multi-winner voting rules may represent: individual excellence, diversity, and proportionality. Keywords: voting, axiomatic characterizations, approval voting, multi-winner elections, dichotomous preferences, apportionment 1 Introduction In Arrow’s foundational book “Social Choice and Individual Values” [5], voting rules rank candidates according to their social merit and, if desired, this ranking can be used to select the best candidate(s). As these rules are concerned with “mutually exclusive” candidates, they can be seen as single-winner rules. In contrast, the goal of multi-winner rules is to select the best group of candidates of a given size; we call such a fixed-size set of candidates a committee. Multi-winner elections are of importance in a wide range of scenarios, which often fit in, but are not limited to, one of the following three categories [25, 29]. The first category contains multi-winner elections aiming for proportional representation.
    [Show full text]
  • Rangevote.Pdf
    Smith typeset 845 Sep 29, 2004 Range Voting Range voting Warren D. Smith∗ [email protected] December 2000 Abstract — 3 Compact set based, One-vote, Additive, The “range voting” system is as follows. In a c- Fair systems (COAF) 3 candidate election, you select a vector of c real num- 3.1 Non-COAF voting systems . 4 bers, each of absolute value ≤ 1, as your vote. E.g. you could vote (+1, −1, +.3, −.9, +1) in a 5-candidate 4 Honest Voters and Utility Voting 5 election. The vote-vectors are summed to get a c- ~x i xi vector and the winner is the such that is maxi- 5 Rational Voters and what they’ll generi- mum. cally do in COAF voting systems 5 Previously the area of voting systems lay under the dark cloud of “impossibility theorems” showing that no voting system can satisfy certain seemingly 6 A particular natural compact set P 6 reasonable sets of axioms. But I now prove theorems advancing the thesis 7 Rational voting in COAF systems 7 that range voting is uniquely best among all possi- ble “Compact-set based, One time, Additive, Fair” 8 Uniqueness of P 8 (COAF) voting systems in the limit of a large num- ber of voters. (“Best” here roughly means that each 9 Comparison with previous work 10 voter has both incentive and opportunity to provide 9.1 How range voting behaves with respect to more information about more candidates in his vote Nurmi’s list of voting system problems . 10 than in any other COAF system; there are quantities 9.2 Some other properties voting systems may uniquely maximized by range voting.) have ....................
    [Show full text]
  • General Conference, Universität Hamburg, 22 – 25 August 2018
    NEW OPEN POLITICAL ACCESS JOURNAL RESEARCH FOR 2018 ECPR General Conference, Universität Hamburg, 22 – 25 August 2018 EXCHANGE EDITORS-IN-CHIEF Alexandra Segerberg, Stockholm University, Sweden Simona Guerra, University of Leicester, UK Published in partnership with ECPR, PRX is a gold open access journal seeking to advance research, innovation and debate PRX across the breadth of political science. NO ARTICLE PUBLISHING CHARGES THROUGHOUT 2018–2019 General Conference bit.ly/introducing-PRX 22 – 25 August 2018 General Conference Universität Hamburg, 22 – 25 August 2018 Contents Welcome from the local organisers ........................................................................................ 2 Mayor’s welcome ..................................................................................................................... 3 Welcome from the Academic Convenors ............................................................................ 4 The European Consortium for Political Research ................................................................... 5 ECPR governance ..................................................................................................................... 6 ECPR Council .............................................................................................................................. 6 Executive Committee ................................................................................................................ 7 ECPR staff attending .................................................................................................................
    [Show full text]
  • Electoral Institutions, Party Strategies, Candidate Attributes, and the Incumbency Advantage
    Electoral Institutions, Party Strategies, Candidate Attributes, and the Incumbency Advantage The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Llaudet, Elena. 2014. Electoral Institutions, Party Strategies, Candidate Attributes, and the Incumbency Advantage. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274468 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Electoral Institutions, Party Strategies, Candidate Attributes, and the Incumbency Advantage A dissertation presented by Elena Llaudet to the Department of Government in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Political Science Harvard University Cambridge, Massachusetts April 2014 ⃝c 2014 - Elena Llaudet All rights reserved. Dissertation Advisor: Professor Stephen Ansolabehere Elena Llaudet Electoral Institutions, Party Strategies, Candidate Attributes, and the Incumbency Advantage Abstract In developed democracies, incumbents are consistently found to have an electoral advantage over their challengers. The normative implications of this phenomenon depend on its sources. Despite a large existing literature, there is little consensus on what the sources are. In this three-paper dissertation, I find that both electoral institutions and the parties behind the incumbents appear to have a larger role than the literature has given them credit for, and that in the U.S. context, between 30 and 40 percent of the incumbents' advantage is driven by their \scaring off” serious opposition.
    [Show full text]
  • Perspective Chaos, but in Voting and Apportionments?
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 10568–10571, September 1999 Perspective Chaos, but in voting and apportionments? Donald G. Saari* Department of Mathematics, Northwestern University, Evanston, IL 60208-2730 Mathematical chaos and related concepts are used to explain and resolve issues ranging from voting paradoxes to the apportioning of congressional seats. Although the phrase ‘‘chaos in voting’’ may suggest the complex- A wins with the plurality vote (1, 0, 0, 0), B wins by voting ity of political interactions, here I indicate how ‘‘mathematical for two candidates, that is, with (1, 1, 0, 0), C wins by voting chaos’’ helps resolve perplexing theoretical issues identified as for three candidates, and D wins with the method proposed by early as 1770, when J. C. Borda (1) worried whether the way the Borda, now called the Borda Count (BC), where the weights French Academy of Sciences elected members caused inappro- are (3, 2, 1, 0). Namely, election outcomes can more accurately priate outcomes. The procedure used by the academy was the reflect the choice of a procedure rather than the voters’ widely used plurality system, where each voter votes for one preferences. This aberration raises the realistic worry that candidate. To illustrate the kind of difficulties that can arise in this inadvertently we may not select whom we really want. system, suppose 30 voters rank the alternatives A, B, C, and D as ‘‘Bad decisions’’ extend into, say, engineering, where one follows (where ‘‘՝’’ means ‘‘strictly preferred’’): way to decide among design (material, etc.) alternatives is to assign points to alternatives based on how they rank over Table 1.
    [Show full text]
  • Universidade Federal De Pernambuco Centro De Tecnologia E Geociências Departamento De Engenharia De Produção Programa De Pós-Graduação Em Engenharia De Produção
    UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS DEPARTAMENTO DE ENGENHARIA DE PRODUÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO GUILHERME BARROS CORRÊA DE AMORIM RANDOM-SUBSET VOTING Recife 2020 GUILHERME BARROS CORRÊA DE AMORIM RANDOM-SUBSET VOTING Doctoral thesis presented to the Production Engineering Postgraduation Program of the Universidade Federal de Pernambuco in partial fulfillment of the requirements for the degree of Doctor of Science in Production Engineering. Concentration area: Operational Research. Supervisor: Prof. Dr. Ana Paula Cabral Seixas Costa. Co-supervisor: Prof. Dr. Danielle Costa Morais. Recife 2020 Catalogação na fonte Bibliotecária Margareth Malta, CRB-4 / 1198 A524p Amorim, Guilherme Barros Corrêa de. Random-subset voting / Guilherme Barros Corrêa de Amorim. - 2020. 152 folhas, il., gráfs., tabs. Orientadora: Profa. Dra. Ana Paula Cabral Seixas Costa. Coorientadora: Profa. Dra. Danielle Costa Morais. Tese (Doutorado) – Universidade Federal de Pernambuco. CTG. Programa de Pós-Graduação em Engenharia de Produção, 2020. Inclui Referências e Apêndices. 1. Engenharia de Produção. 2. Métodos de votação. 3. Votação probabilística. 4. Racionalidade limitada. 5. Teoria da decisão. I. Costa, Ana Paula Cabral Seixas (Orientadora). II. Morais, Danielle Costa (Coorientadora). III. Título. UFPE 658.5 CDD (22. ed.) BCTG/2020-184 GUILHERME BARROS CORRÊA DE AMORIM RANDOM-SUBSET VOTING Tese apresentada ao Programa de Pós- Graduação em Engenharia de Produção da Universidade Federal de Pernambuco, como requisito parcial para a obtenção do título de Doutor em Engenharia de Produção. Aprovada em: 05 / 05 / 2020. BANCA EXAMINADORA ___________________________________ Profa. Dra. Ana Paula Cabral Seixas Costa (Orientadora) Universidade Federal de Pernambuco ___________________________________ Prof. Leandro Chaves Rêgo, PhD (Examinador interno) Universidade Federal do Ceará ___________________________________ Profa.
    [Show full text]
  • POLYTECHNICAL UNIVERSITY of MADRID Identification of Voting
    POLYTECHNICAL UNIVERSITY OF MADRID Identification of voting systems for the identification of preferences in public participation. Case Study: application of the Borda Count system for collective decision making at the Salonga National Park in the Democratic Republic of Congo. FINAL MASTERS THESIS Pitshu Mulomba Mukadi Bachelor’s degree in Chemistry Democratic Republic of Congo Madrid, 2013 RURAL DEVELOPMENT & SUSTAINABLE MANAGEMENT PROJECT PLANNING UPM MASTERS DEGREE 1 POLYTECHNICAL UNIVERSIY OF MADRID Rural Development and Sustainable Management Project Planning Masters Degree Identification of voting systems for the identification of preferences in public participation. Case Study: application of the Borda Count system for collective decision making at the Salonga National Park in the Democratic Republic of Congo. FINAL MASTERS THESIS Pitshu Mulomba Mukadi Bachelor’s degree in Chemistry Democratic Republic of Congo Madrid, 2013 2 3 Masters Degree in Rural Development and Sustainable Management Project Planning Higher Technical School of Agronomy Engineers POLYTECHICAL UNIVERSITY OF MADRID Identification of voting systems for the identification of preferences in public participation. Case Study: application of the Borda Count system for collective decision making at the Salonga National Park in the Democratic Republic of Congo. Pitshu Mulomba Mukadi Bachelor of Sciences in Chemistry [email protected] Director: Ph.D Susan Martín [email protected] Madrid, 2013 4 Identification of voting systems for the identification of preferences in public participation. Case Study: application of the Borda Count system for collective decision making at the Salonga National Park in the Democratic Republic of Congo. Abstract: The aim of this paper is to review the literature on voting systems based on Condorcet and Borda.
    [Show full text]
  • The Dinner Meeting Will Be Held at the Mcminnville Civic Hall and Will Begin at 6:00 P.M
    CITY COUNCIL MEETING McMinnville, Oregon AGENDA McMINNVILLE CIVIC HALL December 8, 2015 200 NE SECOND STREET 6:00 p.m. – Informal Dinner Meeting 7:00 p.m. – Regular Council Meeting Welcome! All persons addressing the Council will please use the table at the front of the Board Room. All testimony is electronically recorded. Public participation is encouraged. If you desire to speak on any agenda item, please raise your hand to be recognized after the Mayor calls the item. If you wish to address Council on any item not on the agenda, you may respond as the Mayor calls for “Invitation to Citizens for Public Comment.” NOTE: The Dinner Meeting will be held at the McMinnville Civic Hall and will begin at 6:00 p.m. CITY MANAGER'S SUMMARY MEMO a. City Manager's Summary Memorandum CALL TO ORDER PLEDGE OF ALLEGIANCE INVITATION TO CITIZENS FOR PUBLIC COMMENT – The Mayor will announce that any interested audience members are invited to provide comments. Anyone may speak on any topic other than: 1) a topic already on the agenda; 2) a matter in litigation, 3) a quasi judicial land use matter; or, 4) a matter scheduled for public hearing at some future date. The Mayor may limit the duration of these comments. 1. INTERVIEW AND APPOINTMENT OF MEMBER TO THE BUDGET COMMITTEE 2. INTERVIEW AND APPOINTMENT OF MEMBER TO THE McMINNVILLE HISTORIC LANDMARKS COMMITTEE 3. OLD BUSINESS a. Update from Zero Waste Regarding Fundraising Efforts to Meet Matching Funds b. Approval of Visit McMinnville Business Plan c. Consideration of a Roundabout for the Intersection of Johnson and 5th Streets 4.
    [Show full text]
  • On the Distortion of Voting with Multiple Representative Candidates
    On the Distortion of Voting with Multiple Representative Candidates Yu Cheng Shaddin Dughmi Duke University University of Southern California David Kempe University of Southern California Abstract We study positional voting rules when candidates and voters are embedded in a common metric space, and cardinal preferences are naturally given by distances in the metric space. In a positional voting rule, each candidate receives a score from each ballot based on the ballot’s rank order; the candidate with the highest total score wins the election. The cost of a candidate is his sum of distances to all voters, and the distortion of an election is the ratio between the cost of the elected candidate and the cost of the optimum candidate. We consider the case when candidates are representative of the population, in the sense that they are drawn i.i.d. from the population of the voters, and analyze the expected distortion of positional voting rules. Our main result is a clean and tight characterization of positional voting rules that have constant expected distortion (independent of the number of candidates and the metric space). Our characterization result immediately implies constant expected distortion for Borda Count and elections in which each voter approves a constant fraction of all candidates. On the other hand, we obtain super-constant expected distortion for Plurality, Veto, and approving a con- stant number of candidates. These results contrast with previous results on voting with metric preferences: When the candidates are chosen adversarially, all of the preceding voting rules have distortion linear in the number of candidates or voters.
    [Show full text]