Optogenetics: 10 Years After Chr2 in Neurons—Views from the Community
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
2018 Rapport Annuel
Rapport annuel 2018 Mai 2019 - TABLE DES MATIÈRES À propos de Gairdner 2 Message du président du conseil 3 Message de la présidente et directrice scientifique 4 Revue de l’année 2018 5 Lauréats des prix Canada Gairdner 2018 7 Programme de sensibilisation des étudiants 2018 9 Programme national 2018 13 Conférence des lauréats des Prix Gairdner 2018 16 Symposium de recherche Canada Gairdner 2018 17 Autres programmes de Gairdner à travers le Canada 18 Gairdner remercie ses bailleurs de fonds de 2018 23 L’année à venir : objectifs pour 2019 24 Gouvernance 25 Conseil d’administration 2018 25 Comités permanents du conseil d’administration 26 Comités de la Fondation Gairdner 27 Comité d’examen médical 27 Conseil consultatif médical 28 Comité consultatif du Prix Wightman 30 Comité consultatif du Prix en santé mondiale 30 Faits saillants financiers de 2018 31 Personnel de la Fondation Gairdner 32 Rapport d’audit 33 Fondation Gairdner – Rapport annuel 2018 1 À PROPOS DE GAIRDNER Historique La Fondation Gairdner a été créée en 1957 dans le but de décerner des prix annuels à des chercheurs individuels dont les découvertes en sciences biomédicales ont eu un impact majeur sur le progrès de la science et sur la santé humaine. Chaque année, sept prix sont décernés : cinq Prix internationaux Canada Gairdner, pour l’excellence en recherche biomédicale, le Prix Canada Gairdner en santé mondiale John Dirks, pour des réalisations exceptionnelles en recherche sur la santé mondiale, et le Prix Canada Gairdner Wightman, réservé à un scientifique canadien ayant démontré un leadership exceptionnel en sciences médicales au Canada. -
From Channelrhodopsins to Optogenetics ACCESS
Perspective OPEN From channelrhodopsins to optogenetics ACCESS From channelrhodopsins to optogenetics We did not expect that research on the and identified the role of Ca2þ influx in forming a single protein complex (Braun molecular mechanism of algal phototaxis flagellar beat frequency changes (Halldal, & Hegemann, 1999). or archaeal light-driven ion transport 1957, Schmidt & Eckert, 1976). Then Oleg In parallel, biophysicists had character- might interest readers of a medical Sineshchekov from Moscow State Uni- ized the precise nature of light-regulated journal when we conceived and per- versity recorded electrical light responses ion transport across cellular membranes. formed our experiments a decade ago. On from Haematococcus pluvialis, an alga Some of these studies started with the other hand, it did not escape our known for the production of the anti- investigations on animal rhodopsin and attention that channelrhodopsin is helping oxidant Astaxanthine (Litvin et al, 1978). even suggested rhodopsin-mediated an ever-increasing number of researchers Oleg used a suction pipette technique light-induced calcium entry with rhodop- to address their specific questions. For applied at the time by Dennis Baylor for sin itself as the carrier for calcium (Cone, example, the channelrhodopsin approach recording photocurrents from bovine 1972). Several decades later, we know is used to study the molecular events photoreceptor rods and cones. But Oleg’s that animal-type rhodopsins are G pro- during the induction of synaptic plasticity publication gave no hints about the type tein-coupled receptors indirectly modu- or to map long-range connections from of photoreceptor involved. Kenneth W. lating ion channel activity via signalling one side of the brain to the other, and to Foster however, a physicist at Mount molecules. -
Optogenetics: Using Light to Control the Brain by Edward S. Boyden, Ph.D
Optogenetics: Using Light to Control the Brain By Edward S. Boyden, Ph.D. Courtesy of the MIT McGovern Institute, Julie Pryor, Charles Jennings, Sputnik Animation, and Ed Boyden. Editor’s note: The brain is densely packed with interconnected neurons, but until about six years ago, it was difficult for researchers to isolate neurons and neuron types to determine their individual roles in brain processes. In 2004 however, scientists, including author Edward S. Boyden, Ph.D., found that the neural expression of a protein, channelrhodopsin-2 (ChR2), allowed light to activate or silence brain cells. This technology, now known as optogenetics, is helping scientists determine the functions of specific neurons in the brain, and could play a significant role in treating medical issues as diverse as sleep disorders and vision impairment. Article available online at http://dana.org/news/cerebrum/detail.aspx?id=34614 1 The brain is an incredibly densely wired computational circuit, made out of an enormous number of interconnected cells called neurons, which compute using electrical signals. These neurons are heterogeneous, falling into many different classes that vary in their shapes, molecular compositions, wiring patterns, and the ways in which they change in disease states. It is difficult to analyze how these different classes of neurons work together in the intact brain to mediate the complex computations that support sensations, emotions, decisions, and movements—and how flaws in specific neuron classes result in brain disorders. Ideally, one would study the brain using a technology that would enable the control of the electrical activity of just one type of neuron, embedded within a neural circuit, in order to determine the role that that type of neuron plays in the computations and functions of the brain. -
Mind the Gender Gap!
THIS WEEK WORLD VIEW Cuts to the US HEADACHE? The brain stress FOSSILS Preserved remains disaster response are a false signals that produce of the half-billion-year- EDITORIALS economy p.7 migraine pain p.8 old jellyfish p.8 Science for all Many women are deterred from pursuing a career in science at the highest levels. Much more must be done to address the reasons behind this potential waste of human talent. hether female scientists will want to young female scientists have female role models. celebrate International Women’s Day WOMEN IN SCIENCE Some argue that setting a quota for women in on 8 March may depend on how far The gender gap and how to close it leading academic positions such as professor- Wthey look back in time. Things have changed, and nature.com/women ships will result in mediocre female candidates if you talk in terms of decades, there are consid- being promoted. But there is a gap in reasoning erable victories to cheer about. But despite those victories, progress here. Women and men are equally talented, so if men occupy a large now seems to have stalled. majority of high-level posts, there must be an awful lot of mediocrity That is clear from the package of articles in this week’s Nature (see among their number. Is mediocrity more acceptable in men? Quotas on page 21) that exposes the dismaying extent to which sexism still exists decision-making committees, however, do come with the inbuilt prob- in science. In the United States and Europe, around half of those who lem of overburdening the few women who already hold top positions. -
On the Technology Prospects and Investment Opportunities for Scalable Neuroscience
On the Technology Prospects and Investment Opportunities for Scalable Neuroscience Thomas Dean1,2,3 Biafra Ahanonu3 Mainak Chowdhury3 Anjali Datta3 Andre Esteva3 Daniel Eth3 Nobie Redmon3 Oleg Rumyantsev3 Ysis Tarter3 1 Google Research, 2 Brown University, 3 Stanford University Contents 1 Executive Summary 1 2 Introduction 4 3 Evolving Imaging Technologies 6 4 Macroscale Reporting Devices 10 5 Automating Systems Neuroscience 14 6 Synthetic Neurobiology 16 7 Nanotechnology 20 8 Acknowledgements 28 A Leveraging Sequencing for Recording — Biafra Ahanonu 28 B Scalable Analytics and Data Mining — Mainak Chowdhury 32 C Macroscale Imaging Technologies — Anjali Datta 35 D Nanoscale Recording and Wireless Readout — Andre Esteva 38 E Hybrid Biological and Nanotechnology Solutions — Daniel Eth 41 F Advances in Contrast Agents and Tissue Preparation — Nobie Redmon 44 G Microendoscopy and Optically Coupled Implants — Oleg Rumyantsev 46 H Opportunities for Automating Laboratory Procedures — Ysis Tarter 49 i 1 Executive Summary Two major initiatives to accelerate research in the brain sciences have focused attention on devel- oping a new generation of scientific instruments for neuroscience. These instruments will be used to record static (structural) and dynamic (behavioral) information at unprecedented spatial and temporal resolution and report out that information in a form suitable for computational analysis. We distinguish between recording — taking measurements of individual cells and the extracellu- lar matrix — and reporting — transcoding, packaging and transmitting the resulting information for subsequent analysis — as these represent very different challenges as we scale the relevant technologies to support simultaneously tracking the many neurons that comprise neural circuits of interest. We investigate a diverse set of technologies with the purpose of anticipating their devel- opment over the span of the next 10 years and categorizing their impact in terms of short-term [1-2 years], medium-term [2-5 years] and longer-term [5-10 years] deliverables. -
Optogenetic Replacement of Odor Stimuli in Drosophila Group Conditioning Experiments
Optogenetic replacement of Odor stimuli in Drosophila group conditioning experiments Max Planck Institute for Neurobiologie and Ludwig-Maximilians-Universit¨at Munchen¨ Master Thesis for physics by Marc Eppler 6th of December 2016 2 Optogenetic als Ersatz fur¨ Duft bei langzeit-stimulations-konditionierungs- Experimente in Drosophila Max Planck Institute fur¨ Neurobiologie and Ludwig-Maximilians-Universit¨at Munchen¨ Master Arbeit fur¨ Physik von Marc Eppler 6ter Dezember 2016 2 Optogenetic replacement of Odor stimuli in Drosophila group conditioning experiments Developed in the Lab of and supervised by Dr. Ilona Grunwald-Kadow Chemosensory coding and decision-making Marc Christian Eppler Bietigheim-Bissingen 7. November 1988 Handed over at the 6th of December by Marc Eppler Corrector: Prof. Dr. Wilfried Denk 3 Abstract Optogenetics is one of the most powerful recenty discovered tools for the field of Neuroscience and does represent very well the interdisciplinary way modern research is more and more conducted. While replacing traditional way of doing experiments and bringing further possibilities to it, there are also difficulties occurring by the artificial nature of inducing signals into a living model organism. Specially when trying to reconstruct behavior to explore the underlining complexity of the brain it is not trivial to get the the complex circuits within the brain to recognize the stimulus in a way that makes contextual sense and then perform tasks like learning and forming conditioned memories. This work explores a way to have groups of the model organism Drosophila melanogaster being conditioned by imitating an odor stimulus with optogenetics over longer periods of time, which always has been a problem with real odor due to its invisible and hard to control dynamic nature. -
Coherent Control of Optogenetic Switching by Stimulated Depletion
Coherent Control of Optogenetic Switching by Stimulated Depletion Quenching Zachary Quine1, Alexei Goun1, Karl Gerhardt, 2, Jeffrey Tabor2, Herschel Rabitz1 1Department of Chemistry, Princeton University 2Department of Bioengineering, Rice University October 29, 2018 Abstract Optogenetics is a revolutionary new field of biotechnology, achieving optical control over biological functions in living cells by genetically inserting light sensitive proteins into cellular signaling pathways. Applications of optogenetic switches are expanding rapidly, but the technique is hampered by spectral cross-talk: the broad absorption spectra of compatible biochemical chromophores limits the number of switches that can be independently controlled and restricts the dynamic range of each switch. In the present work we develop and implement a non-linear optical photoswitching capability, Stimulated Depletion Quenching (SDQ), is used to overcome spectral cross-talk by exploiting the molecules' unique dynamic response to ultrashort laser pulses. SDQ is employed to enhance the control of Cph8, a photo- reversible phytochrome based optogenetic switch designed to control gene expression in E. Coli bacteria. The Cph8 switch can not be fully converted to it's biologically inactive state (PFR) by linear photos- witching, as spectral cross-talk causes a reverse photoswitching reaction to revert to it back to the active state (PR). SDQ selectively halts this reverse reaction while allowing the forward reaction to proceed. arXiv:1810.11432v1 [q-bio.QM] 26 Oct 2018 The -
Chronic Neurovascular Dysfunction in a Preclinical Model of Repeated Mild Traumatic Brain Injury
Chronic Neurovascular Dysfunction in a Preclinical Model of Repeated Mild Traumatic Brain Injury by Conner Adams A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Medical Biophysics University of Toronto © Copyright by Conner Adams 2018 Chronic Neurovascular Dysfunction in a Preclinical Model of Repeated Mild Traumatic Brain Injury Conner Adams Master of Science Department of Medical Biophysics University of Toronto 2018 Abstract: Outcomes associated with repeated mild traumatic brain injury (mTBI) are considerably worse than those of a single mTBI. Despite higher prevalence relative to moderate injuries, the repeated mTBI’s pathological progression has been understudied. For moderate-to-severe TBI, metabolic mismatch has been identified as a key component in pathological progression, and hence amenable to therapeutic targeting. Here, I present a mouse model of repeated mTBI induced via three controlled cortical impacts delivered at three day intervals for purpose of probing the aspects of the neurovascular coupling in chronic repeated mTBI in Thy1-ChR2 mice. Resting cerebral blood flow and cerebrovascular reactivity were investigated via arterial spin labelling MRI, and intracranial electrophysiological measurements of evoked neuronal responses to optogenetic photostimulation were performed. Immunohistochemistry revealed alterations in vascular organization and astrocyte reactivity. This work provided the first insights into the neurophysiological alterations post repeated mTBI and enables new understanding of the associated cerebrovascular deficits. ii Acknowledgements I would like to thank Bojana for demonstrating true leadership throughout my time in the lab. As my supervisor, she taught me a great deal about science and enforced the importance of character and dedication in all facets of life. -
Ion Channels in Health and Disease: a Symposium to Celebrate the 50Th Anniversary of the Award of the Nobel Prize to Alan Hodgkin and Andrew Huxley
Ion Channels in Health and Disease: A Symposium to Celebrate the 50th Anniversary of the Award of the Nobel Prize to Alan Hodgkin and Andrew Huxley Preliminary Symposium Programme Symposium Day One: Monday 16th September, 2013 Registration from 08.00 Opening of the Symposium Chair: Professor Ole Paulsen / Dr Hugh Robinson, Dept of Physiology, Development and Neuroscience 08.45-09.00 Welcome by The Master of Trinity College, Sir Gregory Winter 09.00-09.40 Professor King-Wai Yau, John Hopkins University, USA <The History and Legacy of Hodgkin and Huxley> 09.40-10.10 Refreshments Session One: Sodium channels and neuronal excitability Chair: Professor Alastair Compston, Department of Clinical Neurosciences 10.10-10.50 Professor Bill Catterall, University of Washington, USA “Structure and function of voltage-gated sodium channels at atomic resolution” 10.50-11.20 Professor Simon Laughlin, Department of Zoology, University of Cambridge ”Why does a low power Brain use high power action potentials?” 11.20-12.00 Professor Stephen Waxman, Yale School of Medicine, USA “Fire, Fantoms and Fugu: Sodium Channels from Squid to Clinic” 12.00-13.15 Lunch and Poster Session / Hodgkin-Huxley exhibition Session Two: Potassium channels and neuronal function Chair: Professor Bill Harris, Department of Physiology, Development and Neuroscience 13.15-13.55 Professor Lily Jan, Howard Hughes Medical Centre, USA ”Voltage-gated potassium channels in health and disease” 13.55-14.25 Dr Hugh Robinson, Department of PDN, University of Cambridge “Potassium channels and -
CV Ernst Bamberg
Curriculum Vitae Prof. Dr. Ernst Bamberg Name: Ernst Bamberg Geboren: 9. November 1940 Forschungsschwerpunkte: Channelrhodopsin (Transportproteine), lichtgesteuerte Ionen, Informationsübertragung zwischen Nervenzellen, Optogenetik Ernst Bamberg ist Biophysiker. Gemeinsam mit Georg Nagel und Peter Hegemann entdeckte er die Channelrhodopsine (ChR1, 2). Ihre Anwendung als Licht-gesteuerte Kationenkanäle hat zu der inzwischen weltweit eingesetzten Methode der Optogenetik geführt. Akademischer und beruflicher Werdegang seit 1993 Direktor der Abteilung Biophysikalische Chemie am Max-Planck-Institut für Biophysik, Frankfurt/Main 1993 - 2009 C4-Professor für Biophysikalische Chemie an der Universität Frankfurt/Main 1983 Leiter einer Arbeitsgruppe am Max-Planck-Institut für Biophysik, Frankfurt/Main 1979 - 1983 Heisenberg-Stipendiat der Deutschen Forschungsgemeinschaft 1977 Habilitation mit einem biophysikalischen Thema zur Ionenpermeabilität und zur Kinetik von Peptidionenkanälen, Universität Konstanz seit 1971 Mitarbeiter der Universität Konstanz 1971 Promotion mit Untersuchungen zum Ionentransport an künstlichen Lipidmembranen, Universität Basel, Schweiz Studium der Physikalischen Chemie an der Universität Basel, Schweiz Auszeichnungen und verliehene Mitgliedschaften 2019 Rumford-Preis der Academy of Arts and Sciences Nationale Akademie der Wissenschaften Leopoldina www.leopoldina.org 1 2013 The Brain Prize, Grete Lundbeck European Brain Research Foundation 2012 K. J. Zülch-Preis der Gertrud Reemtsma-Stiftung seit 2011 Mitglied der Nationalen -
CV Peter Hegemann
Curriculum Vitae Prof. Dr. Peter Hegemann Name: Peter Hegemann Geboren: 11. Dezember 1954 Forschungsschwerpunkte: Kanalrhodopsine, Optogenetik, neuronale Netzwerke, Photobiologie der Grünalge (Chlamydomonas reinhardtii), Photorezeptoren Peter Hegemann ist Biophysiker. Schwerpunkt seiner Arbeit ist die Algenforschung. Er analysiert sensorische Photorezeptoren aus Mikroalgen und gilt als einer der Entdecker der Kanalrhodopsine. Diese lichtempfindlichen Proteine sind die Grundlage für das Wissenschaftsgebiet der Optogenetik, das Peter Hegemann mitbegründet hat. Die Optogenetik ermöglicht neuartige Untersuchungen von neuronalen Netzwerken. Akademischer und beruflicher Werdegang seit 2015 Hertie-Senior-Forschungsprofessur Neurowissenschaften, Hertie-Stiftung seit 2012 Gastwissenschaftler am Howard Hughes Medical Institute, Janelia Farm, Ashburn, USA seit 2005 Professor für experimentelle Biophysik an der Humboldt-Universität zu Berlin 1993 - 2004 Professor für Biochemie an der Universität Regensburg 1992 Habilitation an der Ludwig-Maximilians-Universität München 1986 - 1992 Forschungsgruppenleiter am Max-Planck-Institut für Biochemie in Martinsried 1985 - 1986 Forschungsaufenthalt am Physics Department der Universität Syracuse, USA 1984 Promotion am Max-Planck-Institut für Biochemie in Martinsried 1980 Diplom im Fach Biochemie 1975 - 1980 Studium der Chemie, Westfälische Wilhelms-Universität Münster und Ludwig- Maximilians-Universität München Nationale Akademie der Wissenschaften Leopoldina www.leopoldina.org 1 Funktionen in wissenschaftlichen -
Translational Examination of the Orbitofrontal Cortex and Striatum in Obsessive Compulsive Disorder
Title Page Translational examination of the orbitofrontal cortex and striatum in obsessive compulsive disorder by Sean Christopher Piantadosi B.A., St. Mary’s College of Maryland, 2010 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2019 Committee Membership Page UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Sean Christopher Piantadosi It was defended on April 17, 2019 and approved by Anthony Grace, Professor, Department of Neuroscience, University of Pittsburgh Sandra Kuhlman, Associate Professor, Department of Biological Sciences, Carnegie Mellon University Byron Yu, Associate Professor, Departments of Electrical & Computer Engineering and Biomedical Engineering, Carnegie Mellon University Yanhua Huang, Associate Professor, Department of Psychiatry, University of Pittsburgh Bernardo Sabatini, Professor, Department of Neurobiology, Harvard Medical School Dissertation Director: Susanne Ahmari, Assistant Professor, Department of Psychiatry, University of Pittsburgh ii Copyright © by Sean Christopher Piantadosi 2019 iii Abstract Translational examination of the orbitofrontal cortex and striatum in obsessive compulsive disorder Sean Christopher Piantadosi, PhD University of Pittsburgh, 2019 For decades a causal role for orbitofrontal cortex (OFC) and striatal dysfunction in obsessive compulsive disorder (OCD) has been hypothesized. Structural as well as functional MRI studies have implicated