Contributions to Large-Scale Distributed Systems the Infrastructure Viewpoint - Toward Fog and Edge Computing As the Next Utility Computing Paradigm? Adrien Lebre

Total Page:16

File Type:pdf, Size:1020Kb

Contributions to Large-Scale Distributed Systems the Infrastructure Viewpoint - Toward Fog and Edge Computing As the Next Utility Computing Paradigm? Adrien Lebre Contributions to Large-scale Distributed Systems The infrastructure Viewpoint - Toward Fog and Edge Computing as The Next Utility Computing Paradigm? Adrien Lebre To cite this version: Adrien Lebre. Contributions to Large-scale Distributed Systems The infrastructure Viewpoint - To- ward Fog and Edge Computing as The Next Utility Computing Paradigm?. Distributed, Parallel, and Cluster Computing [cs.DC]. Université de Nantes, 2017. tel-01664343 HAL Id: tel-01664343 https://tel.archives-ouvertes.fr/tel-01664343 Submitted on 14 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Bretagne Loire Habilitation à Diriger des recherches Presentée par Adrien Lebre École Doctorale Sciences et technologies de l’information, et mathématiques Discipline : Informatique et applications, section CNU 27 Unité de recherche : IMT Atlantique, Inria, LS2N Soutenue le 1er Sept. 2017 Contributions to Large-scale Distributed Systems The infrastructure Viewpoint Toward Fog and Edge Computing as The Next Utility Computing Paradigm? Contributions aux systèmes distribués à large échelle la vision infrastructure Vers le Fog et l’Edge computing comme nouveau modèle d’informatique utilitaire ? M. Claude Jard, Président Professor in Computer Science at University of Nantes Head of Nantes Digital Science Laboratory (LS2N). M. Erik Elmroth, Rapporteur Professor in Computing Science at Umea University, Sweden Head of Umea University research on distributed systems. M. Manish Parashar, Rapporteur Distinguished Professor of Computer Science at Rutgers University, USA Director of the Rutgers Discovery Informatics Institute (RDI2). M. Pierre Sens, Rapporteur Professor at the University of Pierre et Marie Curie (Paris 6), France Head of the REGAL Resarch Group. M. Frédéric Desprez, Examinateur Senior Researcher at Inria Deputy Scientific Director at Inria It does not matter how slowly you go as long as you do not stop. — Confucius Acknowledgments Because I see now how overloaded can be the schedule of senior researchers, I would like to start these acknowledgments by expressing my gratitude to all the members of the committee for accepting to evaluate m work despite their respective obligations. It is a real honor for me to have such a prestigious committee. This document covers most of the activities I made since the defense of my Phd in 2006. During these ten years, I had the opportunities to work with many French as well as Foreign colleagues. While these are acknowledged throughout the document, I would like, here, to warmly thank all of them for the collaborations we had and that have made the researcher I am today. I should highlight that I am much indebted to • Dr. Christine Morin for showing me what a community can accomplish ; • Prof. Mario Südholt for the freedom and trust he has given me in each action I have wanted to achieve since my arrival in his team ; • Dr. Frédéric Desprez for his confidence and guidance he has never stopped to give me during this period. Special thanks go to the Phd candidates, Post-docs and Engineers I had the chance to work with. In addition to performing the real work that makes research progress- ing, they have been key persons that through their competences and efforts have kept my enthusiasm and my energy to conduct research activities intact. The contribu- tionstothefieldofdistributedcomputingIam gladtopresentinthisdocumentcould not have been achieved without them. Finally, my most affectionate thanks go to: • My Friends who are throught our weekend outings and meals the best way for me to “recharge my batteries” ; • My parents-in-law who indirectly have participated to the work presented in this manuscript, in particular by taking care of my kids each time it has been necessary ; • My parents who after 39 years still continue to impress me for the devotion they have for their five children ; • My brothers, sister(s) (in-law) and their kids with whom I should have spent much more times than what I have done ; • Mychildren,Elie-LouandJonaswhoare,bytheirdailysmiles,anendlesssource of happiness ; • And, my lovely wife, Dorothée, who is, in good times and bad, the most won- derful person I have met. iii Table of Contents I Introduction 1 1 Introduction 3 1.1 GeneralContext.............................. 3 1.2 ScientificContributions . 4 1.2.1 DynamicschedulingofVMs . 5 1.2.2 VirtualizationandSimulationtoolkits . 6 1.2.3 BeyondtheClouds........................ 7 1.3 LookingBacktotheFuture . 7 1.4 OrganizationoftheDocument . 9 II Dynamic Virtual Machine Scheduling 10 2 VM Cluster-Wide Context Switch 13 2.1 ChallengeDescription . 13 2.2 OurProposal:AGenericVMsContextSwitch . 15 2.2.1 Fundamentals........................... 15 2.2.2 ArchitectureOverview. 16 2.3 Proof-of-Concept&Validations . 20 2.3.1 Proof-of-Concept . .. .. .. .. .. .. .. .. .. .. .. 20 2.3.2 Experiments ........................... 20 2.4 RelatedWork ............................... 22 2.5 Summary.................................. 23 3 Distributed Virtual Machine Scheduler 25 3.1 Addressing Scalability, Reactivity and Fault-tolerant Aspects . 25 3.1.1 ChallengeDescription . 25 3.1.2 OurProposal:DVMS ...................... 27 3.1.3 Proof-Of-Concept&Validation. 30 3.1.4 Summary ............................. 33 3.2 LocalityAware-SchedulingStrategy. 34 3.2.1 ChallengeDescription . 34 3.2.2 OurProposal:ALocality-awareOverlayNetwork . 35 3.2.3 Proof-of-Concept&Validation . 38 3.2.4 Summary ............................. 40 3.3 RelatedWork ............................... 41 4 Conclusion & Open Research Issues 43 III Virtualization and Simulation toolkits 46 5 Adding virtualization capabilities to SimGrid 49 5.1 ChallengeDescription . 49 5.2 SimGridOverview ............................ 50 5.3 Ourproposal:SimgridVM. 51 5.3.1 AddingaVMWorkstationModel . 52 5.3.2 AddingaLiveMigrationModel. 54 5.3.3 SimGridVMAPI(CandJava). 58 5.4 Validation ................................. 59 5.4.1 ExperimentalConditions . 61 5.4.2 EvaluationoftheVMWorkstationModel . 62 5.4.3 LivemigrationswithvariousCPUlevels. 63 5.4.4 LiveMigrationsunderCPUContention . 64 5.4.5 LiveMigrationsunderNetworkContention . 65 v vi TableofContents 5.5 RelatedWork ............................... 66 5.6 Summary.................................. 67 6 Virtual Machine Placement Simulator 69 6.1 ChallengeDescription . 69 6.2 OurProposal:VMPlaceS. 70 6.3 DynamicVMPPAlgorithms . 72 6.4 Experiments................................ 74 6.4.1 AccuracyEvaluation . 74 6.4.2 AnalysisofEntropy,SnoozeandDVMS . 75 6.5 RelatedWork ............................... 77 6.6 Summary.................................. 78 7 Conclusion & Open Research Issues 81 IV Beyond the Clouds: Recent, Ongoing and Future Work 85 8 The DISCOVERY Initiative 87 8.1 Context&Motivations . 87 8.2 FromCloudtoFog/EdgeComputingFacilities . 89 8.3 RevisingOpenStackThroughaBottom/UpApproach . 91 8.3.1 DesignConsiderations. 91 8.3.2 TheChoiceofOpenStack . 92 8.4 InnovationOpportunities . 94 8.5 Summary.................................. 96 9 Revising OpenStack to Operate Fog/Edge Computing Infrastruc- tures: a First Proof-Of-Concept 99 9.1 ChallengeDescription . 99 9.2 RevisingOpenStack............................ 100 9.2.1 DistributingtheAMPQBus. 101 9.2.2 DistributingtheDatabases . 101 9.2.3 TheNovaPOC:FromMySQLtoRedis . 102 9.3 ExperimentalValidation . 103 9.3.1 ImpactofRedisw.r.tMySQL . 104 9.3.2 Multi-siteScenarios . 106 9.3.3 CompatibilitywithAdvancedFeatures. 107 9.4 Summary.................................. 108 10 Conducting Scientific Evaluations of OpenStack 109 10.1 ChallengeDescription . 109 10.2 Background ................................ 110 10.2.1 DeployingOpenStackandcontrollingExperiments . 110 10.2.2 EnosDefaultBenchmarks. 110 10.2.3 MonitoringandGatheringMetrics. 111 10.3 EnOS.................................... 111 10.3.1 EnOS Description Language for Flexible Topologies . 111 10.3.2 EnOSWorkflow ......................... 112 10.4 Experiments................................ 113 10.5 RelatedWork ............................... 115 10.6 Summary.................................. 116 11 Ongoing and Future Work: A Software Stack for Fog/Edge In- frastructures 119 Bibliography 125 V Appendix 135 A Résumé long en francais 137 a.1 Contextegénérale............................. 137 a.2 ContributionsScientifiques . 138 a.2.1 Placementdynamiquedemachinesvirtuelles . 138 TableofContents vii a.2.2 Virtualisationetbibliothèquesdesimulation . 140 a.2.3 Audelàdel’informatiqueennuage . 142 a.3 Unerecherchedirigéeparl’expérimentation . 143 B Detailled Curriculum Vitae/List of Publications/Invited Talks 145 Part I INTRODUCTION This habilitation thesis presents an overview of the major research activities I conducted as part of the ASCOLA Research Group of the Ecole des Mines de Nantes (now IMT Atlantique), where I have held an Associate Professor position since October 2008. ASCOLA is a joint team oftheAutomation,ProductionandComputerScienceDepartmentofIMTAtlantique,theInria research center in Rennes, and the “Laboratoire des Sciences du Numérique de Nantes” (LS2N,
Recommended publications
  • ENOS: a Holistic Framework for Conducting Scientific
    ENOS: a Holistic Framework for Conducting Scientific Evaluations of OpenStack Ronan-Alexandre Cherrueau, Adrien Lebre, Dimitri Pertin, Anthony Simonet, Matthieu Simonin To cite this version: Ronan-Alexandre Cherrueau, Adrien Lebre, Dimitri Pertin, Anthony Simonet, Matthieu Simonin. ENOS: a Holistic Framework for Conducting Scientific Evaluations of OpenStack. [Technical Report] RT-0485, Inria Rennes Bretagne Atlantique; Nantes. 2016. hal-01415522v2 HAL Id: hal-01415522 https://hal.inria.fr/hal-01415522v2 Submitted on 13 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ENOS: a Holistic Framework for Conducting Scientific Evaluations of OpenStack Ronan-Alexandre Cherrueau , Adrien Lebre , Dimitri Pertin , Anthony Simonet , Matthieu Simonin TECHNICAL REPORT N° 485 November 2016 Project-Teams Ascola and ISSN 0249-0803 ISRN INRIA/RT--485--FR+ENG Myriads ENOS: a Holistic Framework for Conducting Scientific Evaluations of OpenStack Ronan-Alexandre Cherrueau , Adrien Lebre , Dimitri Pertin , Anthony Simonet , Matthieu Simonin Project-Teams Ascola and Myriads Technical Report n° 485 — version 2 — initial version November 2016 — revised version Décembre 2016 — 13 pages Abstract: By massively adopting OpenStack for operating small to large private and public clouds, the industry has made it one of the largest running software project.
    [Show full text]
  • Towards Measuring and Understanding Performance in Infrastructure- and Function-As-A-Service Clouds
    Thesis for the Degree of Licentiate of Engineering Towards Measuring and Understanding Performance in Infrastructure- and Function-as-a-Service Clouds Joel Scheuner Division of Software Engineering Department of Computer Science & Engineering Chalmers University of Technology and Gothenburg University Gothenburg, Sweden, 2020 Towards Measuring and Understanding Performance in Infrastructure- and Function-as-a-Service Clouds Joel Scheuner Copyright ©2020 Joel Scheuner except where otherwise stated. All rights reserved. Technical Report ISSN 1652-876X Department of Computer Science & Engineering Division of Software Engineering Chalmers University of Technology and Gothenburg University Gothenburg, Sweden This thesis has been prepared using LATEX. Printed by Chalmers Reproservice, Gothenburg, Sweden 2020. ii ∼100% of benchmarks are wrong. - Brendan Gregg, Senior Performance Architect iv Abstract Context Cloud computing has become the de facto standard for deploying modern software systems, which makes its performance crucial to the efficient functioning of many applications. However, the unabated growth of established cloud services, such as Infrastructure-as-a-Service (IaaS), and the emergence of new services, such as Function-as-a-Service (FaaS), has led to an unprecedented diversity of cloud services with different performance characteristics. Objective The goal of this licentiate thesis is to measure and understand performance in IaaS and FaaS clouds. My PhD thesis will extend and leverage this understanding to propose solutions for building performance-optimized FaaS cloud applications. Method To achieve this goal, quantitative and qualitative research methods are used, including experimental research, artifact analysis, and literature review. Findings The thesis proposes a cloud benchmarking methodology to estimate application performance in IaaS clouds, characterizes typical FaaS applications, identifies gaps in literature on FaaS performance evaluations, and examines the reproducibility of reported FaaS performance experiments.
    [Show full text]
  • Towards a Library for Deterministic Failure Testing of Distributed Systems
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Towards a Library for Deterministic Failure Testing of Distributed Systems Permalink https://escholarship.org/uc/item/6h90g8rz Author Balalaie, Armin Publication Date 2020 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Towards a Library for Deterministic Failure Testing of Distributed Systems THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Software Engineering by Armin Balalaie Thesis Committee: Associate Professor James A. Jones, Chair Professor Cristina V. Lopes Professor Michael J. Carey 2020 c 2020 Armin Balalaie DEDICATION To Sara, my love, without whom and her patience, this wasn't possible .. and My mom without her help, dedication and sacrifices, I wouldn't be where I am today .. ii TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF LISTINGS vi LIST OF TABLES vii ACKNOWLEDGMENTS viii ABSTRACT OF THE THESIS ix 1 Introduction 1 2 Existing Work 5 2.1 Deployment-Focused Testing Frameworks . .5 2.2 Random Failure Injection . .6 2.3 Systematic Failure Injection . .8 2.4 Failure-specific Frameworks . .9 2.5 Model-based Approaches . .9 3 Example Failify Test Case for HDFS 11 4 Design Goals 14 4.1 Minimum Learning Curve . 14 4.2 Easy and Deterministic Failure Injection and Environment Manipulation . 15 4.3 Cross-Platform and Multi Language . 16 4.4 Seamless Integration . 17 4.5 Multiple Runtime Engines . 17 4.6 Research Infrastructure . 17 5 Architecture and Implementation 19 5.1 Java-based DSL .
    [Show full text]
  • Go in Tidb Yao Wei | Pingcap About Me
    Go in TiDB Yao Wei | PingCAP About me ● Yao Wei (姚维) ● TiDB Kernel Expert, General Manager of South Region, China ● 360 Infra team / Alibaba-UC / PingCAP ● Atlas/MySQL-Sniffer ● Infrastructure software engineer Why a new database? Brief History RDBMS NoSQL NewSQL ● Standalone RDBMS 1970s 2010 2015 Present ● NoSQL MySQL Redis Google Spanner PostgreSQL HBase Google F1 Oracle Cassandra TiDB ● Middleware & Proxy DB2 MongoDB ... ... ● NewSQL Architecture Stateless SQL Layer Metadata / Timestamp request TiDB ... TiDB ... TiDB Placement Driver (PD) Raft Raft Raft TiKV ... TiKV TiKV TiKV Control flow: Balance / Failover Distributed Storage Layer TiKV - Overview • Region: a set of continuous key-value pairs • Data is organized/stored/replicated by Regions • Highly layered TiKV Key Space RPC (gRPC) Node A Transaction 256MB MVCC [ start_key, Raft end_key) RocksDB (-∞, +∞) Raft Raft Sorted Map Node B Node C Raft PD - Overview ● Meta data management ● Load balance management Route Info TiKV Client PD Node/Region Management Info Command TiKV TiKV TiKV TiKV … ... TiKV Cluster TiKV - Multi-Raft Multiple raft groups in the cluster, one group for each region. Client RPC RPC RPC RPC Store 1 Store 2 Store 3 Store 4 Region 1 Region 1 Region 2 Region 1 Region 3 Region 2 Region 5 Region 2 Raft Region 5 Region 4 Region 3 Region 5 Group Region 4 Region 3 Region 4 TiKV node 1 TiKV node 2 TiKV node 3 TiKV node 4 TiKV - Horizontal Scale Node B Region 1^ Region 1 Region 2 Region 3 Region 1* Node D Region 2 Region 2 Region 3 Region 3 Node C Node A Add Replica Three
    [Show full text]
  • Architecting Cloud-Native NET Apps for Azure (2020).Pdf
    EDITION v.1.0 PUBLISHED BY Microsoft Developer Division, .NET, and Visual Studio product teams A division of Microsoft Corporation One Microsoft Way Redmond, Washington 98052-6399 Copyright © 2020 by Microsoft Corporation All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means without the written permission of the publisher. This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions, and information expressed in this book, including URL and other Internet website references, may change without notice. Some examples depicted herein are provided for illustration only and are fictitious. No real association or connection is intended or should be inferred. Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks” webpage are trademarks of the Microsoft group of companies. Mac and macOS are trademarks of Apple Inc. The Docker whale logo is a registered trademark of Docker, Inc. Used by permission. All other marks and logos are property of their respective owners. Authors: Rob Vettor, Principal Cloud System Architect/IP Architect - thinkingincloudnative.com, Microsoft Steve “ardalis” Smith, Software Architect and Trainer - Ardalis.com Participants and Reviewers: Cesar De la Torre, Principal Program Manager, .NET team, Microsoft Nish Anil, Senior Program Manager, .NET team, Microsoft Jeremy Likness, Senior Program Manager, .NET team, Microsoft Cecil Phillip, Senior Cloud Advocate, Microsoft Editors: Maira Wenzel, Program Manager, .NET team, Microsoft Version This guide has been written to cover .NET Core 3.1 version along with many additional updates related to the same “wave” of technologies (that is, Azure and additional third-party technologies) coinciding in time with the .NET Core 3.1 release.
    [Show full text]
  • Using Rust to Build a Distributed Transactional Key-Value Database Liutang | [email protected] About Me
    Using Rust to Build a Distributed Transactional Key-Value Database LiuTang | [email protected] About me ● Chief Architect at PingCAP ● TiDB and TiKV ● Open source projects ○ LedisDB ○ go-mysql ○ go-mysql-elasticsearch ○ rust-prometheus ○ ... Agenda ● Introduction ● Hierarchy ○ Storage ○ Raft ○ Transaction ○ RPC Framework ○ Monitor ○ Test ● Combine them all When we want to build a distributed transactional key-value database... Consistency Performance Scalability ACID Stability HA Others… A High Building, A Low Foundation Language Let’s start from scratch!!! RocksDB Immutable Memory Memory Table Table WAL Flush Memory Disk Compaction SST Info Log Level 0 SST SST …... SST Manifest Level 1 Current SST SST …... SST Level 2 https://github.com/pingcap/rust-rocksdb Raft Client State State State Machine Raft Machine Raft Machine Raft a = 1 Module a = 1 Module a = 1 Module b = 2 b = 2 b = 2 Log a = 1 b = 2 Log a = 1 b = 2 Log a = 1 b = 2 Multi-Raft Key Space A - B Raft Group Region 1 Region 1 Region 1 Raft Group Region 2 Region 2 Region 2 B - C Raft Group Region 3 Region 3 Region 3 C - D Multi-Raft - Scalability A B C D Region 1 Region 1 Region 1 Region 2 Region 2 Region 2 Multi-Raft - Scalability A B C D Region 1 Region 1 Region 1 Region 2 Region 2 Region 2 Region 2 Raft ConfChange - AddNode Multi-Raft - Scalability A B C D Region 1 Region 1 Region 1 Region 2 Region 2 Region 2 Raft ConfChange - RemoveNode https://github.com/pingcap/raft-rs Transaction Transaction How to keep consistency crossing multi-Raft Groups? let mut txn = store.begin() let value1 = txn.get(region1_key) let value2 = txn.get(region2_key) // do something with value txn.set(region1_key, new_value1) txn.set(region2_key, new_value2) txn.commit() // or txn.rollback() Transaction 1.
    [Show full text]
  • Measuring Cloud Network Performance with Perfkit Benchmarker
    Measuring Cloud Network Performance with PerfKit Benchmarker A Google Cloud Technical White Paper January 2020 For more information visit ​google.com/cloud Table of Contents 1. Abstract ​3 2. Introduction ​3 2.1 PerfKit Benchmarker ​4 2.1.1 PerfKit Benchmarker Basic Example ​5 2.1.2 PerfKit Benchmarker Example with Config file ​5 3. Benchmark Configurations ​6 3.1 Basic Benchmark Specific Configurations ​7 3.1.1 Latency (ping and netperf TCP_RR) ​7 3.1.2 Throughput (iperf and netperf) ​7 3.1.3 Packets per Second ​8 3.2 On-Premises to Cloud Benchmarks ​9 3.3 Cross Cloud Benchmarks ​10 3.4 VPN Benchmarks ​11 3.5 Kubernetes Benchmarks ​12 3.6 Intra-Zone Benchmarks ​13 3.7 Inter-Zone Benchmarks ​13 3.8 Inter-Region Benchmarks ​14 3.9 Multi Tier ​15 4. Inter-Region Latency Example and Results ​16 5. Viewing and Analyzing Results ​18 5.1 Visualizing Results with BigQuery and Data Studio ​18 6. Summary ​21 For more information visit ​google.com/cloud 1. Abstract Network performance is of vital importance to any business or user operating or running part of their infrastructure in a cloud environment. As such, it is also important to test the performance of a cloud provider’s network before deploying a potentially large number of virtual machines and other components of virtual infrastructure. Researchers at SMU’s AT&T Center for Virtualization (see smu.edu/provost/virtualization) have been working in conjunction with a team ​ ​ at Google to run network performance benchmarks across various cloud providers using automation built around PerfKit Benchmarker (see github.com/GoogleCloudPlatform/PerfKitBenchmarker) to track changes in network ​ performance over time.
    [Show full text]
  • Towards a Library for Deterministic Failure Testing of Distributed Systems
    UNIVERSITY OF CALIFORNIA, IRVINE Towards a Library for Deterministic Failure Testing of Distributed Systems THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Software Engineering by Armin Balalaie Thesis Committee: Associate Professor James A. Jones, Chair Professor Cristina V. Lopes Professor Michael J. Carey 2020 c 2020 Armin Balalaie DEDICATION To Sara, my love, without whom and her patience, this wasn't possible .. and My mom without her help, dedication and sacrifices, I wouldn't be where I am today .. ii TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF LISTINGS vi LIST OF TABLES vii ACKNOWLEDGMENTS viii ABSTRACT OF THE THESIS ix 1 Introduction 1 2 Existing Work 5 2.1 Deployment-Focused Testing Frameworks . .5 2.2 Random Failure Injection . .6 2.3 Systematic Failure Injection . .8 2.4 Failure-specific Frameworks . .9 2.5 Model-based Approaches . .9 3 Example Failify Test Case for HDFS 11 4 Design Goals 14 4.1 Minimum Learning Curve . 14 4.2 Easy and Deterministic Failure Injection and Environment Manipulation . 15 4.3 Cross-Platform and Multi Language . 16 4.4 Seamless Integration . 17 4.5 Multiple Runtime Engines . 17 4.6 Research Infrastructure . 17 5 Architecture and Implementation 19 5.1 Java-based DSL . 19 5.1.1 Deterministic Failure Injection . 21 5.2 Verification Engine . 23 5.3 Workspace Manager . 24 5.4 Instrumentation Engine . 24 5.5 Runtime Engine . 25 iii 6 Evaluation 28 6.1 Compactness and Generality of the Deployment API . 28 6.2 Effectiveness of Deterministic Environment Manipulation API .
    [Show full text]
  • ENOS: a Holistic Framework for Conducting Scientific Evaluations Of
    ENOS: a Holistic Framework for Conducting Scientific Evaluations of OpenStack Ronan-Alexandre Cherrueau, Adrien Lebre, Dimitri Pertin, Anthony Simonet, Matthieu Simonin To cite this version: Ronan-Alexandre Cherrueau, Adrien Lebre, Dimitri Pertin, Anthony Simonet, Matthieu Si- monin. ENOS: a Holistic Framework for Conducting Scientific Evaluations of OpenStack . [Technical Report] RT-0485, Inria Rennes Bretagne Atlantique; Nantes. 2016. <hal- 01415522v2> HAL Id: hal-01415522 https://hal.inria.fr/hal-01415522v2 Submitted on 13 Dec 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. ENOS: a Holistic Framework for Conducting Scientific Evaluations of OpenStack Ronan-Alexandre Cherrueau , Adrien Lebre , Dimitri Pertin , Anthony Simonet , Matthieu Simonin TECHNICAL REPORT N° 485 November 2016 Project-Teams Ascola and ISSN 0249-0803 ISRN INRIA/RT--485--FR+ENG Myriads ENOS: a Holistic Framework for Conducting Scientific Evaluations of OpenStack Ronan-Alexandre Cherrueau , Adrien Lebre , Dimitri Pertin , Anthony Simonet , Matthieu Simonin Project-Teams Ascola and Myriads Technical Report n° 485 — version 2 — initial version November 2016 — revised version Décembre 2016 — 13 pages Abstract: By massively adopting OpenStack for operating small to large private and public clouds, the industry has made it one of the largest running software project.
    [Show full text]
  • Optimal Allocation of Virtual Machines in Multi-Cloud Environments with Reserved and On-Demand Pricing
    Optimal allocation of virtual machines in multi-cloud environments with reserved and on-demand pricing Jos´eLuis D´ıaz∗, Joaqu´ınEntrialgo, Manuel Garc´ıa, Javier Garc´ıa, Daniel Fernando Garc´ıa Dept. of Informatics, University of Oviedo, Campus de Viesques, 33204 Gij´on(Spain) Abstract In the Cloud Computing market, a significant number of cloud providers offer Infrastructure as a Service (IaaS), including the capability of deploying virtual machines of many different types. The deployment of a service in a public provider generates a cost derived from the rental of the allocated virtual machines. In this paper we present LLOOVIA (Load Level based OpimizatiOn for VIrtual machine Allocation), an optimization technique designed for the optimal allocation of the virtual machines required by a service, in order to minimize its cost, while guaranteeing the required level of performance. LLOOVIA considers virtual machine types, different kinds of limits imposed by providers, and two price schemas for virtual machines: reserved and on-demand. LLOOVIA, which can be used with multi-cloud environments, provides two types of solutions: (1) the optimal solution and (2) the approximated solution based on a novel approach that uses binning applied on histograms of load levels. An extensive set of experiments has shown that when the size of the problem is huge, the approximated solution is calculated in a much shorter time and is very close to the optimal one. The technique presented has been applied to a set of case studies, based on the Wikipedia workload. These cases demonstrate that LLOOVIA can handle problems in which hundreds of virtual machines of many different types, multiple providers, and different kinds of limits are used.
    [Show full text]
  • Cloud Container Engine
    Cloud Container Engine FAQs Issue 01 Date 2021-08-09 HUAWEI TECHNOLOGIES CO., LTD. Copyright © Huawei Technologies Co., Ltd. 2021. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd. Trademarks and Permissions and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders. Notice The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied. The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied. Issue 01 (2021-08-09) Copyright © Huawei Technologies Co., Ltd. i Cloud Container Engine FAQs Contents Contents 1 Common Questions.................................................................................................................1 2 Billing........................................................................................................................................
    [Show full text]
  • Duplicate-Sensitivity Guided Transformation Synthesis for DBMS Correctness Bug Detection
    Duplicate-sensitivity Guided Transformation Synthesis for DBMS Correctness Bug Detection Yushan Zhang Peisen Yao Department of Computer Science and Engineering Department of Computer Science and Engineering HKUST HKUST Hong Kong, China Hong Kong, China [email protected] [email protected] Rongxin Wu Charles Zhang Department of Cyber Space Security Department of Computer Science and Engineering School of School of Informatics HKUST Xiamen University Hong Kong, China Xiamen, China [email protected] [email protected] Abstract—Database Management System (DBMS) plays a core skills [4] and the hand-written test cases only cover a very role in modern software from mobile apps to online banking. It is small part of the possible input query space [5], leading to critical that the DBMS provides correct data to all applications. insufficient testing of the DBMS. In what follows, we refer to When the DBMS returns incorrect data, a correctness bug is triggered. Current production-level DBMSs still suffer from a test case for the purpose of DBMS correctness testing as a insufficient testing due to the limited hand-written test cases. test query and an expected result set. Recently several works proposed to automatically generate many Recent studies [6]–[10] have proposed several approaches test cases with query transformation, a process of generating an to better explore the query space. They all use automated equivalent query pair and testing a DBMS by checking whether random query generation to enlarge the explored query space. the system returns the same result set for both queries. However, all of them still heavily rely on manual work to provide a However, the key challenge is the test oracle problem, i.e., transformation which largely confines their exploration of the how to find the expected result set of a given query.
    [Show full text]