Jason D. Eastman [email protected] 617-840-3045 Educational Background 2011 the Ohio State University, Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

Jason D. Eastman Jason.Eastman@Cfa.Harvard.Edu 617-840-3045 Educational Background 2011 the Ohio State University, Ph.D Jason D. Eastman [email protected] https://www.cfa.harvard.edu/~jeastman/ 617-840-3045 Educational Background 2011 The Ohio State University, Ph.D. in Astronomy Thesis: DEMONEX: The DEdicated MONitor of EXotransits Advisor: B. Scott Gaudi 2007 The Ohio State University, M.S. in Astronomy 2005 Boston University, B.A. in Astronomy and Physics, Cum Laude Appointments 2016-Present Harvard Lecturer (Harvard College) 2014-Present Research Associate (Harvard-Smithsonian Center for Astrophysics) 2011-2014 Postdoctoral Fellow (Las Cumbres Observatory Global Telescope) 2010-2011 Presidential Fellow (The Ohio State University) The Graduate School's most prestigious award 2008-2010 Teaching Assistant and Research Assistant (The Ohio State University) 2006 Research Assistant (The Ohio State University) 2005, 2007 Price Instrumentation Fellow (The Ohio State University) Select Instrumentation Experience 2018-Present G-CLEF Scientist PRV spectrograph for the GMT 2014-Present MINERVA lead, instrument scientist 4 Robotic telescopes + PRV spectrograph 2011-2014 NRES grant, design, commissioning, software 6 Robotic PRV spectrographs 2011-2014 LCOGT commissioning, metrics, operations World-wide network of robotic 1 meters 2008-Present DEMONEX design, assembly, automation Robotic telescope/imager 2005-2011 MODS lab characterization LBT multi-object spectrograph 2006, 2007 LBT primary mirror aluminization (2x) 8.4m mirror aluminization 2007 4K commissioning, reduction pipeline Optical imager 2006 LBC/LBT commissioning, wavefront sensing Telescope, imager, active optics 2002-2005 PRISM development, testing, commissioning Multi-object spectrograph, imager Honors and Awards 2010 Allan Markowitz Award in Observational Astronomy (The Ohio State University) 2005 College Prize Recipient (Boston University) 2005 Institute for Astrophysical Research Prize Recipient (Boston University) 2001-2005 Dean's Scholar (Boston University) Grants Since 2012, I have played a critical role in writing six successful grants totaling $4.9M. I conceived and wrote the entirety of the $0.5M ADAP proposal, on which I was the Science PI. On the two MINERVA grants, totaling $1.6M, I was the primary author and operate as the Principal Investigator, though my appointment did not allow me to be the PI in fact. My appointment at LCOGT did not allow me to be a Co-I on the three NRES grants totaling $2.8M, though I did the majority of the work behind the scenes, wrote ∼ 30% of the text, and contributed at a similar level to the ideas and its presentation. 2019-2022 Science-PI of successful NASA ROSES grant 18-ADAP18-006 { $499,940 \A homogeneous, global analysis of all Kepler and K2 planets" (18-ADAP18-0062) PI John A. Johnson Institutional rules forbid me from being the Principal Investigator 2016-2019 Co-I of successful NSF ATI grant AST-1608203 { $1,089,517 \MINERVA: Purchase of Kiwispec, a robotic precision RV spectrograph" PI John A. Johnson Institutional rules forbid me from being the Principal Investigator 2015-2018 Co-I of successful NSF AAG grant AST-1516242 { $468,755 \MINERVA: A dedicated observatory for exoplanet science" PI John A. Johnson Institutional rules forbid me from being the Principal Investigator 2015-2018 Co-author of successful NSF ATI grant AST-1508464 { $285,057 \Production and deployment of environment-controlled enclosures for NRES" PI John Hygelund Institutional rules forbid me from being the Principal Investigator 2014-2017 Co-author of successful NSF ATI grant AST-1407666 { $61,691 \Development of environment-controlled enclosures for NRES" PI John Hygelund Institutional rules forbid me from being the Principal Investigator 2012-2016 Co-author of successful NSF MRI grant AST-1229720 { $2,459,389 \Development of the Global Network of Robotic Echelle Spectrographs - NRES" PI Timothy M. Brown Institutional rules forbid me from being a Co-Investigator Professional Activities 2013-Present Referee for AAS, PASP, JATIS, and MNRAS 2013-Present NASA Panel Reviewer 2015-Present CfA Stars & Planets Seminar Committee Member 2015-Present Advisor for Banneker Institute 2015 SOC member for Extreme Precision Radial Velocities 2013-2014 LCOGT Science Seminar Chair Students Supervised Name Year My Role Outcome Maurice Wilson 2015 Banneker Research Advisor Grad student at CfA 2015-2019 Graduate Advisor NSF GRF Wilson et al., 2019 Amber Medina 2015-2018 Research Co-Advisor Medina et al., 2018 2018-Present PhD Thesis Committee Member Carissa Avina-Beltran 2019 Banneker Research Advisor Gabriel Grell 2017-2018 Undergraduate Thesis Advisor Grad Student at UMD Juliana Garcia-Mejia 2016 Banneker Research Advisor 2017-2018 Undergraduate Thesis Advisor Hoopes Prize Grad student at CfA Kevin O'Rivera Garc´ıa 2016 Banneker Research Advisor Samson Johnson 2015-2016 Research Advisor Grad student at OSU Moiya McTier 2015 Undergraduate Thesis Co-Advisor Grad student at Columbia Ana Col´on 2015 Banneker Research Advisor Grad student at U Oregon Logan Brammer 2012 High School Research Advisor Bibliography 4,842 total citations on 210 abstracts Three first-author refereed publications cited in the top 1 percent of comparable papers (See 27, 15, 81) H-index of 32 According to ADS as of December 2, 2019 (8 years since PhD) Refereed Publications 91. \A Full Implementation of Spectro-perfectionism for Precise Radial Velocity Exoplanet Detection: A Test Case With the MINERVA Reduction Pipeline", Cornachione, et. al., (incl. Eastman, J.D.), 2019, PASP, 131, 124503 90. \Minerva-Australis. I. Design, Commissioning, and First Photometric Results", Addison, et. al., (incl. Eastman, J.D.), 2019, PASP, 131, 115003 89. \TOI-677 b: A Warm Jupiter (P=11.2d) on an eccentric orbit transiting a late F-type star", Jord´an,et. al., (incl. Eastman, J.D.), 2019, AJ, Submitted (arXiv:1911.05574) 88. \TESS Reveals HD 118203 b to be a Transiting Planet", Pepper, et. al., (incl. Eastman, J.D.), 2019, AJ, Submitted (arXiv:1911.05150) 87. \KELT-24b: A 5M J Planet on a 5.6 day Well-aligned Orbit around the Young V = 8.3 F-star HD 93148", Rodriguez, et. al., (incl. Eastman, J.D.), 2019, AJ, 158, 197 86. \Near-resonance in a system of sub-Neptunes from TESS", Quinn, et al., (incl. Eastman, J.D.), 2019, AJ, 158, 177 85. \Photon-weighted barycentric correction and its importance for precise radial velocities", Trans- gaard, et. al., (incl. Eastman, J.D.), 2019, MNRAS, 489, 2395 84. \Three Red Suns in the Sky: A Transiting, Terrestrial Planet in a Triple M-dwarf System at 6.9 pc", Winters, et. al., (incl. Eastman, J.D.), 2019, AJ, 158, 152 83. \First Radial Velocity Results From the MINiature Exoplanet Radial Velocity Array (MINERVA)", Wilson, M., Eastman, J.D et. al., 2019, PASP, 131, 1005 82. \KELT-23b: A Hot Jupiter Transiting a Near-Solar Twin Close to the TESS and JWST Continuous Viewing Zones", Johns et al., (incl. Eastman, J.D.), 2019, AJ, 158, 78 81. \EXOFASTv2: A public, generalized, publication-quality exoplanet modeling code", Eastman, et. al., 2019, PASP, Submitted (arXiv:1907.09480) 80. \A hot rocky and a warm puffy super-Earth orbiting TOI-402 (HD 15337)", Dumusque, et al., (incl. Eastman, J.D.), 2019, A&A, 627, 43 79. \Qatar Exoplanet Survey: Qatar-8b, 9b and 10b | A Hot Saturn and Two Hot Jupiters", Alsubai, et al., (incl. Eastman, J.D.), 2019, AJ, 157, 224 78. \An Eccentric Massive Jupiter Orbiting a Sub-Giant on a 9.5 Day Period Discovered in the Tran- siting Exoplanet Survey Satellite Full Frame Images", Rodriguez, et al., (incl. Eastman, J.D.), 2019, AJ, 157, 191 77. \TESS Delivers Its First Earth-sized Planet and a Warm Sub-Neptune", Dragomir et al., (incl. Eastman, J.D.), 2019, ApJL, 875, 7 76. \HD 202772A b: A Transiting Hot Jupiter around a Bright, Mildly Evolved Star in a Visual Binary Discovered by TESS," Wang, et al., (incl. Eastman, J.D.), 2019, AJ, 157, 2 75. \KELT-22Ab: A Massive Hot Jupiter Transiting a Near Solar Twin" Labadie-Bartz, et al., (incl. Eastman, J.D.), 2019, ApJS, 240, 13 74. \EPIC 246851721 b: A Tropical Jupiter Transiting a Rapidly Rotating Star in a Well-aligned Orbit", Yu, et al., (incl. Eastman, J.D.), 2018, AJ, 156, 250 73. \Techniques for Finding Close-in, Low-mass Planets around Evolved Intermediate-mass Stars", Medina, et al., (incl. Eastman, J.D.), 2018, ApJ, 867, 32 72. \A Compact Multi-planet System with a Significantly Misaligned Ultra Short Period Planet", Rodriguez et al., (incl. Eastman, J.D.), 2018, AJ, 156, 245 71. \Transiting Exoplanet Monitoring Project (TEMP). I. Refined System Parameters and Transit Timing Variations of HAT-P-29b", Wang et al., (incl. Eastman, J.D.), 2018, AJ, 156, 181 70. \Two warm, low-density sub-Jovian planets orbiting bright stars in K2 campaigns 13 and 14" Yu, et al., (incl. Eastman, J.D.), 2018, AJ, 156, 127 69. \A survey of eight hot Jupiters in secondary eclipse using WIRCam at CFHT" Eder, et al., (incl. Eastman, J.D.), 2017, MNRAS, 474, 4264 68. \KELT-21b: A Hot Jupiter Transiting the Rapidly-Rotating Metal-Poor Late-A Primary of a Likely Hierarchical Triple System" Marshall, et al., (incl. Eastman, J.D.), 2017, AJ, 155, 100 67. \A System of Three Super Earths Transiting the Late K-Dwarf GJ 9827 at Thirty Parsecs" Ro- driguez, et al., (incl. Eastman, J.D.), 2017, AJ, 155, 72 66. \The DEdicated MONitor of EXotransits and Transients (DEMONEXT): System Overview and Year One Results from a Low-Cost Robotic Telescope for Follow-Up of Exoplanetary Transits and Transients" Villanueva, et al., (incl. Eastman, J.D.), 2017, PASP, 130, 500 65. \KELT-19Ab: A P 4.6 Day Hot Jupiter Transiting a Likely Am Star with a Distant Stellar Com- panion" Siverd, et al., (incl. Eastman, J.D.), 2017, AJ, 155, 35 64. \WASP-167b/KELT-13b: joint discovery of a hot Jupiter transiting a rapidly rotating F1V star" Temple, et al., (incl. Eastman, J.D.), 2017, MNRAS, 471, 2743 63.
Recommended publications
  • Qatar Exoplanet Survey: Qatar-6B--A Grazing Transiting Hot Jupiter
    DRAFT VERSION JULY 2, 2018 Typeset using LATEX preprint2 style in AASTeX61 QATAR EXOPLANET SURVEY: QATAR-6B – A GRAZING TRANSITING HOT JUPITER KHALID ALSUBAI,1 ZLATAN I. TSVETANOV,1 DAVID W. LATHAM,2 ALLYSON BIERYLA,2 GILBERT A. ESQUERDO,2 DIMITRIS MISLIS,1 STYLIANOS PYRZAS,1 EMMA FOXELL,3, 4 JAMES MCCORMAC,3, 4 CHRISTOPH BARANEC,5 NICOLAS P. E. VILCHEZ,1 RICHARD WEST,3, 4 ALI ESAMDIN,6 ZHENWEI DANG,6 HANI M. DALEE,1 AMANI A. AL-RAJIHI,7 AND ABEER KH.AL-HARBI8 1Qatar Environment and Energy Research Institute (QEERI), HBKU, Qatar Foundation, PO Box 5825, Doha, Qatar 2Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK 4Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK 5Institute for Astronomy, University of Hawai‘i at Manoa,¯ Hilo, HI 96720-2700, USA 6Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 150 Science 1-Street, Urumqi, Xinjiang 830011, China 7Qatar Secondary Independent High School, Doha, Qatar 8Al-Kawthar Secondary Independent High School, Doha, Qatar (Received Oct 6, 2017; Revised Dec 4, 2017; Accepted Dec 5, 2017) Submitted to AJ ABSTRACT We report the discovery of Qatar-6b, a new transiting planet identified by the Qatar Exoplanet Survey (QES). The planet orbits a relatively bright (V=11.44), early-K main-sequence star at an orbital period of P ∼ 3:506 days. An SED fit to available multi-band photometry, ranging from the near-UV to the mid-IR, yields a distance of d = 101 ± 6 pc to the system.
    [Show full text]
  • Physical Parameters of the Multiplanet Systems HD 106315 and GJ 9827*†
    The Astronomical Journal, 161:47 (16pp), 2021 January https://doi.org/10.3847/1538-3881/abca39 © 2020. The American Astronomical Society. All rights reserved. Physical Parameters of the Multiplanet Systems HD 106315 and GJ 9827*† Molly R. Kosiarek1,35 , David A. Berardo2 , Ian J. M. Crossfield3, Cesar Laguna1,4 , Caroline Piaulet5 , Joseph M. Akana Murphy1,35 , Steve B. Howell6 , Gregory W. Henry7 , Howard Isaacson8,9 , Benjamin Fulton10 , Lauren M. Weiss11 , Erik A. Petigura12 , Aida Behmard13 , Lea A. Hirsch14 , Johanna Teske15, Jennifer A. Burt16 , Sean M. Mills17 , Ashley Chontos18,35 , Teo Močnik19 , Andrew W. Howard17 , Michael Werner16 , John H. Livingston20 , Jessica Krick21 , Charles Beichman22 , Varoujan Gorjian16 , Laura Kreidberg23,24 , Caroline Morley25 , Jessie L. Christiansen21 , Farisa Y. Morales16 , Nicholas J. Scott6 , Jeffrey D. Crane26 , Sharon Xuesong Wang27,28 , Stephen A. Shectman26, Lee J. Rosenthal17 , Samuel K. Grunblatt29,30 , Ryan A. Rubenzahl17,35 , Paul A. Dalba31,36 , Steven Giacalone32 , Chiara Dane Villanueva1,4, Qingtian Liu1,4, Fei Dai13 , Michelle L. Hill31 , Malena Rice33 , Stephen R. Kane31 , and Andrew W. Mayo32,34 1 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA; [email protected] 2 Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3 Department of Physics & Astronomy, University of Kansas, 1082 Malott,1251 Wescoe Hall Dr., Lawrence, KS 66045, USA 4 Department
    [Show full text]
  • Homogeneous Spectroscopic Parameters for Bright Planet Host Stars from the Northern Hemisphere the Impact on Stellar and Planetary Mass (Research Note)
    A&A 576, A94 (2015) Astronomy DOI: 10.1051/0004-6361/201425227 & c ESO 2015 Astrophysics Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere The impact on stellar and planetary mass (Research Note) S. G. Sousa1,2,N.C.Santos1,2, A. Mortier1,3,M.Tsantaki1,2, V. Adibekyan1, E. Delgado Mena1,G.Israelian4,5, B. Rojas-Ayala1,andV.Neves6 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 3 SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK 4 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 5 Departamento de Astrofísica, Universidade de La Laguna, 38205 La Laguna, Tenerife, Spain 6 Departamento de Física, Universidade Federal do Rio Grande do Norte, Brazil Received 27 October 2014 / Accepted 19 February 2015 ABSTRACT Aims. In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods. To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius.
    [Show full text]
  • NASA's Goddard Space Flight Center Laboratory for High Energy
    1 NASA’s Goddard Space Flight Center Laboratory for High Energy Astrophysics Greenbelt, Maryland 20771 @S0002-7537~99!00301-7# This report covers the period from July 1, 1997 to June 30, Toshiaki Takeshima, Jane Turner, Ken Watanabe, Laura 1998. Whitlock, and Tahir Yaqoob. This Laboratory’s scientific research is directed toward The following investigators are University of Maryland experimental and theoretical research in the areas of X-ray, Scientists: Drs. Keith Arnaud, Manuel Bautista, Wan Chen, gamma-ray, and cosmic-ray astrophysics. The range of inter- Fred Finkbeiner, Keith Gendreau, Una Hwang, Michael Loe- ests of the scientists includes the Sun and the solar system, wenstein, Greg Madejski, F. Scott Porter, Ian Richardson, stellar objects, binary systems, neutron stars, black holes, the Caleb Scharf, Michael Stark, and Azita Valinia. interstellar medium, normal and active galaxies, galaxy clus- Visiting scientists from other institutions: Drs. Vadim ters, cosmic-ray particles, and the extragalactic background Arefiev ~IKI!, Hilary Cane ~U. Tasmania!, Peter Gonthier radiation. Scientists and engineers in the Laboratory also ~Hope College!, Thomas Hams ~U. Seigen!, Donald Kniffen serve the scientific community, including project support ~Hampden-Sydney College!, Benzion Kozlovsky ~U. Tel such as acting as project scientists and providing technical Aviv!, Richard Kroeger ~NRL!, Hideyo Kunieda ~Nagoya assistance to various space missions. Also at any one time, U.!, Eugene Loh ~U. Utah!, Masaki Mori ~Miyagi U.!, Rob- there are typically between twelve and eighteen graduate stu- ert Nemiroff ~Mich. Tech. U.!, Hagai Netzer ~U. Tel Aviv!, dents involved in Ph.D. research work in this Laboratory. Yasushi Ogasaka ~JSPS!, Lev Titarchuk ~George Mason U.!, Currently these are graduate students from Catholic U., Stan- Alan Tylka ~NRL!, Robert Warwick ~U.
    [Show full text]
  • 'Hot Jupiter' Detected by the Qatar Exoplanet Survey 18 December 2017, by Tomasz Nowakowski
    New grazing transiting 'hot Jupiter' detected by the Qatar Exoplanet Survey 18 December 2017, by Tomasz Nowakowski Now, a team of astronomers, led by Khalid Alsubai of the Qatar Environment and Energy Research Institute (QEERI) in Doha, Qatar, reports the finding of a new addition to the short list of planets in a grazing transit configuration. They discovered Qatar-6b as part of the QES survey, which utilizes the New Mexico Skies Observatory located at Mayhill, New Mexico. "In this paper, we present the discovery of Qatar-6b, a newly found hot Jupiter on a grazing transit," the researchers wrote in the paper. According to the study, Qatar-6b has a radius about 6 percent larger than Jupiter and a mass of approximately 0.67 Jupiter masses, which indicates a density of 0.68 g/cm3. The exoplanet orbits its The discovery light curve for Qatar-6b phase folded with parent star every 3.5 days at a distance of about the BLS estimated period, as it appears in the QES 0.04 AU from the host. Due to the proximity of this archive. Credit: Alsubai et al., 2017. planet to the star, astronomers estimate that it has an equilibrium temperature of 1,006 K. The parameters suggest that Qatar-6b belongs to (Phys.org)—An international group of astronomers group of planets known as "hot Jupiters." These has found a new grazing transiting "hot Jupiter" exoworlds are similar in characteristics to the solar alien world as part of the Qatar Exoplanet Survey system's biggest planet, with orbital periods of less (QES).
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Download This Article in PDF Format
    A&A 562, A92 (2014) Astronomy DOI: 10.1051/0004-6361/201321493 & c ESO 2014 Astrophysics Li depletion in solar analogues with exoplanets Extending the sample, E. Delgado Mena1,G.Israelian2,3, J. I. González Hernández2,3,S.G.Sousa1,2,4, A. Mortier1,4,N.C.Santos1,4, V. Zh. Adibekyan1, J. Fernandes5, R. Rebolo2,3,6,S.Udry7, and M. Mayor7 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica de Canarias, C/ Via Lactea s/n, 38200 La Laguna, Tenerife, Spain 3 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 4 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 5 CGUC, Department of Mathematics and Astronomical Observatory, University of Coimbra, 3049 Coimbra, Portugal 6 Consejo Superior de Investigaciones Científicas, CSIC, Spain 7 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland Received 18 March 2013 / Accepted 25 November 2013 ABSTRACT Aims. We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods. In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600–5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results. We confirm significant differences in the Li distribution of solar twins (Teff = T ± 80 K, log g = log g ± 0.2and[Fe/H] = [Fe/H] ±0.2): the full sample of planet host stars (22) shows Li average values lower than “single” stars with no detected planets (60).
    [Show full text]
  • AST413 Gezegen Sistemleri Ve Oluşumu Ders 4 : Geçiş Yöntemi – I Yöntemin Temelleri Geçiş Yöntemi HD 209458 B
    AST413 Gezegen Sistemleri ve Oluşumu Ders 4 : Geçiş Yöntemi – I Yöntemin Temelleri Geçiş Yöntemi HD 209458 b Charbonneau vd. 2000 2000 yılında David Charbonneau dikine hız yöntemiyle keşfedilmiş HD 209458 b’nin bir geçişini gözledi. Bu ilk gezegen geçiş gözlemidir. Charbonneau, cismin yörünge parametrelerini dikine hızdan bildiği için teleskobunu yapıyorsa geçişini gözlemek üzere ne zaman cisme doğrultması gerektiğini biliyordu. Ancak, gezegenin gözlemicyle arasından geçiş yapmak gibi bir zorunluluğu da yoktur. Venüs Geçişi Venüs örneğinde gördüğümüz gibi gezegen yıldızın önünden geçerken, yıldızın ışığı gezegenin (varsa) atmosferinin içinden geçerek bize ulaşır. Bu da -ideal durumda- gezegenin atmosferini çalışmamıza olanak sağlayabilir. Sıcak Jüpiterler Gerçekten Var! 51 Peg b keşfinden sonra sıcak Jüpiterlerin (yıldızına 1/20 AB'den daha yakın dev gaz gezegenler) yıldızlarına bu kadar yakın oluşup oluşamayacakları, sistemin başka bir yerinden göç etmiş olabilme olasılıkları hatta var olup olmadıkları uzun süre tartışıldı. Ancak bu cisimlerin yarıçaplarının (R p) büyük olması ve yıldızlarına yakınlıkları (a), daha büyük geçiş ışık değişim genliği ve daha kısa geçiş dönemi nedeniyle onların geçiş yöntemiyle keşfedillme olasılıklarını da arttırdığından, bu yöntemle diğer gezegenlere göre daha kolay keşfedilmelerini de sağladı. Dikine hız tekniğiyle keşfedilen HD 209458b, geçiş de gösteriyordu ve dikine hız ölçümleriyle, geçiş gözlemleri birlikte değerlendirildiğinde bu sıcak Jüpiter türü gezegenin gerçekten var olduğu kanıtlanmış oldu! Charbonneau vd. 2000 Mazeh vd. 2000 Geçiş Olasılığı Öncelikle gezegenin yörüngesinin çembersel (e = 0) olduğunu varsayalım. Bu durumda gezegenin gözlemcinin bakış yönü doğrultusunda yıldızla arasından (sıyırarak da olsa) geçmesi için yörüngenin yarı-büyük eksen uzunluğu a’nın cos i çarpanı kadar kısaltılmış kesitinin (a cos i) yıldızın yarıçapı ile gezegen yarıçapı toplamından (R* + Rg) küçük olması gerekir (a cos i ≤ R* + Rg).
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • October 2006
    OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area.
    [Show full text]
  • Arxiv:2009.03398V2 [Astro-Ph.EP] 12 Sep 2020
    vDraft version September 15, 2020 Typeset using LATEX twocolumn style in AASTeX63 Physical Parameters of the Multi-Planet Systems HD 106315 and GJ 9827∗y Molly R. Kosiarek,1, z David A. Berardo,2 Ian J. M. Crossfield,3 Cesar Laguna,4 Joseph M. Akana Murphy,1, z Steve B. Howell,5 Gregory W. Henry,6 Howard Isaacson,7, 8 Lauren M. Weiss,9 Erik A. Petigura,10 Benjamin Fulton,11 Aida Behmard,12 Lea A. Hirsch,13 Johanna Teske,14 Jennifer A. Burt,15 Sean M. Mills,16 Ashley Chontos,17, z Teo Mocnik,18 Andrew W. Howard,16 Michael Werner,15 John H. Livingston,19 Jessica Krick,20 Charles Beichman,21 Varoujan Gorjian,15 Laura Kreidberg,22, 23 Caroline Morley,24 Jessie L. Christiansen,20 Farisa Y. Morales,15 Nicholas J. Scott,5 Jeffrey D. Crane,25 Lee J. Rosenthal,16 Samuel K. Grunblatt,26, 27 Ryan A. Rubenzahl,16, z Paul A. Dalba,28, x Steven Giacalone,29 Chiara Dane Villanueva,4 Qingtian Liu,4 Fei Dai,12 Michelle L. Hill,28 Malena Rice,30 Stephen R. Kane,28 Andrew W. Mayo,29, 31 | 1Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA 2Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3Department of Physics & Astronomy, University of Kansas, 1082 Malott,1251 Wescoe Hall Dr., Lawrence, KS 66045, USA 4Department of Physics, University of California, Santa Cruz, CA 95064, USA 5NASA Ames Research Center, Moffett Field, CA 94035, USA 6Center of Excellence in Information Systems, Tennessee State University, Nashville, TN
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]