<I>Abrachium</I>, a New Genus in the <I>Clathraceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12). -
Evolution of Complex Fruiting-Body Morphologies in Homobasidiomycetes
Received 18April 2002 Accepted 26 June 2002 Publishedonline 12September 2002 Evolutionof complexfruiting-bo dymorpholog ies inhomobasidi omycetes David S.Hibbett * and Manfred Binder BiologyDepartment, Clark University, 950Main Street,Worcester, MA 01610,USA The fruiting bodiesof homobasidiomycetes include some of the most complex formsthat have evolved in thefungi, such as gilled mushrooms,bracket fungi andpuffballs (‘pileate-erect’) forms.Homobasidio- mycetesalso includerelatively simple crust-like‘ resupinate’forms, however, which accountfor ca. 13– 15% ofthedescribed species in thegroup. Resupinatehomobasidiomycetes have beeninterpreted either asa paraphyletic grade ofplesiomorphic formsor apolyphyletic assemblage ofreducedforms. The former view suggeststhat morphological evolutionin homobasidiomyceteshas beenmarked byindependentelab- oration in many clades,whereas the latter view suggeststhat parallel simplication has beena common modeof evolution.To infer patternsof morphological evolution in homobasidiomycetes,we constructed phylogenetic treesfrom adatasetof 481 speciesand performed ancestral statereconstruction (ASR) using parsimony andmaximum likelihood (ML)methods. ASR with both parsimony andML implies that the ancestorof the homobasidiomycetes was resupinate, and that therehave beenmultiple gains andlosses ofcomplex formsin thehomobasidiomycetes. We also usedML toaddresswhether there is anasymmetry in therate oftransformations betweensimple andcomplex forms.Models of morphological evolution inferredwith MLindicate that therate -
Forest Fungi in Ireland
FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix -
Biodiversity and Threats in Non-Protected Areas: a Multidisciplinary and Multi-Taxa Approach Focused on the Atlantic Forest
Heliyon 5 (2019) e02292 Contents lists available at ScienceDirect Heliyon journal homepage: www.heliyon.com Biodiversity and threats in non-protected areas: A multidisciplinary and multi-taxa approach focused on the Atlantic Forest Esteban Avigliano a,b,*, Juan Jose Rosso c, Dario Lijtmaer d, Paola Ondarza e, Luis Piacentini d, Matías Izquierdo f, Adriana Cirigliano g, Gonzalo Romano h, Ezequiel Nunez~ Bustos d, Andres Porta d, Ezequiel Mabragana~ c, Emanuel Grassi i, Jorge Palermo h,j, Belen Bukowski d, Pablo Tubaro d, Nahuel Schenone a a Centro de Investigaciones Antonia Ramos (CIAR), Fundacion Bosques Nativos Argentinos, Camino Balneario s/n, Villa Bonita, Misiones, Argentina b Instituto de Investigaciones en Produccion Animal (INPA-CONICET-UBA), Universidad de Buenos Aires, Av. Chorroarín 280, (C1427CWO), Buenos Aires, Argentina c Grupo de Biotaxonomía Morfologica y Molecular de Peces (BIMOPE), Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina d Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET), Av. Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina e Laboratorio de Ecotoxicología y Contaminacion Ambiental, Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina f Laboratorio de Biología Reproductiva y Evolucion, Instituto de Diversidad -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
Pilzgattungen Europas - Liste 4: Notizbuchartige Auswahlliste Zur Bestimmungsliteratur Für Gasteromyceten
Pilzgattungen Europas - Liste 4: Notizbuchartige Auswahlliste zur Bestimmungsliteratur für Gasteromyceten Bernhard Oertel INRES Universität Bonn Auf dem Hügel 6 D-53121 Bonn E-mail: [email protected] 24.06.2011 Gattungen Acutocapillitium Ponce de Leon 1976: Typus: A. torrendii (Lloyd) Ponce de Leon (= Bovistoides torrendii Lloyd) Abb.: 2) Lit.: Bollmann, Gminder u. Reil-CD (2007) Calonge, F.D. et al. (2000), Acutocapillitium filiforme ..., BGMB 43(3), 51-57 Lloyd (1919), Bovistoides, Mycol. Notes 6, 883 Ponce de Leon, P. (1976), Acutocapillitium ..., Fieldiana Bot. 38(4), 23-29 Alpova Dodge 1931 (vgl. Melanogaster): Lebensweise: Mycorrhiza Typus: A. cinnamomeus Dodge Bestimm. d. Gatt.: Dring in Ainsworth et al. (1973), The Fungi 4B, 471; Fischer (1933); Groß et al. (1980) (auch Arten-Schlüssel); Jülich (1984), 61 u. 539 (auch Arten-Schlüssel); Kreisel (1988), 39; Montecchi u. Sarasini (2000), 323-324, 380, 399 u. 401 (u. Arten- Schlüssel) Abb.: Cannon u. Kirk (2007), 205; Jamoni (2008), Funghi alpini, 140; s. ferner in 2) Lit.: Bollmann, Gminder u. Reil-CD (2007) Dodge, C.W. (1931), Alpova, a new genus ..., Ann. Missouri Bot. Gard. 18, 457-464 Groß et al. (1980) Groß, G. (1980), ZM 46, 21-26 (Schlüssel); Groß, G. (1993), Schlüssel zu hypogäischen Gattungen u. Arten, in: Montecchi u. Lazzari (1993), 411 u. 417 Kreisel (2001), 226 u. 293 Montecchi u. Sarasini (2000) Moreau, P.A. et al. (2011), Taxonomy of Alnus-associated hypogeous species ..., Cryptogamie Mycologie 32, 33-62 Moyersoen u. Demoulin (1996), 16 Trappe (1975), A revision of the genus Alpova ..., in: Bigelow u. Thiers, Studies on Higher Fungi [Festschrift A.H. -
01 Innerfrontcover40 2.Indd 1 8/27/2010 2:27:58 PM BOTHALIA
ISSN 0006 8241 = Bothalia Bothalia A JOURNAL OF BOTANICAL RESEARCH Vol. 40,2 Oct. 2010 TECHNICAL PUBLICATIONS OF THE SOUTH AFRICAN NATIONAL BIODIVERSITY INSTITUTE PRETORIA Obtainable from the South African National Biodiversity Institute (SANBI), Private Bag X101, Pretoria 0001, Republic of South Africa. A catalogue of all available publications will be issued on request. BOTHALIA Bothalia is named in honour of General Louis Botha, first Premier and Minister of Agriculture of the Union of South Africa. This house journal of the South African National Biodiversity Institute, Pretoria, is devoted to the furtherance of botanical science. The main fields covered are taxonomy, ecology, anatomy and cytology. Two parts of the journal and an index to contents, authors and subjects are published annually. Three booklets of the contents (a) to Vols 1–20, (b) to Vols 21–25, (c) to Vols 26–30, and (d) to Vols 31–37 (2001– 2007) are available. STRELITZIA A series of occasional publications on southern African flora and vegetation, replacing Memoirs of the Botanical Survey of South Africa and Annals of Kirstenbosch Botanic Gardens. MEMOIRS OF THE BOTANICAL SURVEY OF SOUTH AFRICA The memoirs are individual treatises usually of an ecological nature, but sometimes dealing with taxonomy or economic botany. Published: Nos 1–63 (many out of print). Discontinued after No. 63. ANNALS OF KIRSTENBOSCH BOTANIC GARDENS A series devoted to the publication of monographs and major works on southern African flora.Published: Vols 14–19 (earlier volumes published as supplementary volumes to the Journal of South African Botany). Discontinued after Vol. 19. FLOWERING PLANTS OF AFRICA (FPA) This serial presents colour plates of African plants with accompanying text. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
Stinkhorns of the Ns of the Hawaiian Isl Aiian Isl Aiian Islands
StinkhorStinkhornsns ofof thethe HawHawaiianaiian IslIslandsands Don E. Hemmes1* and Dennis E. Desjardin2 Abstract: Additional members of the Phallales are recorded from the Hawaiian Islands. Aseroë arachnoidea, Phallus atrovolvatus, and a Protubera sp. have been collected since the publication of the field guide Mushrooms of Hawaii in 2002. A complete list of species and their distribution on the various islands is included. Figure 1. Aseroë rubra is commonly encountered in Eucalyptus plantations Key Words: Phallales, Aseroë, Phallus, Mutinus, Dictyophora, in Hawai’i but these fruiting bodies are growing in wood chip mulch surrounding landscape plants in a park. Pseudocolus, Protubera, Hawaii. Roger Goos made the earliest comprehensive record of mem- bers of the Phallales in the Hawaiian Islands (Goos, 1970) and listed Anthurus javanicus (Penzig.) G. Cunn., Aseroë rubra Labill.: Fr., Dictyophora indusiata (Vent.: Pers.) Desv., Linderiella columnata (Bosc) G. Cunn., and Phallus rubicundus (Bosc) Fr. Later, Goos, along with Dring and Meeker, described the unique Clathrus spe- cies, C. oahuensis Dring (Dring et al., 1971) from the Koko Head Desert Botanical Gardens on Oahu. The records of Dictyophora indusiata and Linderiella columnata in Goos’s paper actually came from observations by N. A. Cobb in the early 1900’s (Cobb, 1906; Cobb, 1909) who reported these two species in sugar cane fields on Hawai’i Island (also known as the Big Island) and Kaua’i, re- spectively, and thought they might be parasitic on sugar cane. To our knowledge, neither Linderiella columnata (now known as Figure 2. Aseroë arachnoidea forming fairy rings on a lawn in Hilo. Clathrus columnatus Bosc) nor Clathrus oahuensis has been seen in the islands since these early observations. -
A New Species and New Records of Gasteroid Fungi (Basidiomycota) from Central Amazonia, Brazil
Phytotaxa 183 (4): 239–253 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.183.4.3 A new species and new records of gasteroid fungi (Basidiomycota) from Central Amazonia, Brazil TIARA S. CABRAL1, BIANCA D. B. DA SILVA2, NOEMIA K. ISHIKAWA3, DONIS S. ALFREDO4, RICARDO BRAGA-NETO5, CHARLES R. CLEMENT6 & IURI G. BASEIA7 1Programa de Pós-graduação em Genética, Conservação e Biologia Evolutiva; Instituto Nacional de Pesquisas da Amazônia–INPA; Av. André Araújo, 2936–Petrópolis; Manaus, Amazonas, 69067-375 Brazil. Email: [email protected] 2Programa de Pós-graduação em Sistemática e Evolução; Universidade Federal do Rio Grande do Norte; Natal, Rio Grande do Norte, 59072-970 Brazil. Email: [email protected] 3Coordenação de Biodiversidade; INPA; Manaus, Amazonas, 69067-375 Brazil. Email: [email protected] 4Programa de Pós-graduação em Sistemática e Evolução; Universidade Federal do Rio Grande do Norte; Natal, Rio Grande do Norte, 59072-970 Brazil. Email: [email protected] 5Centro de Referência em Informação Ambiental (CRIA); Av. Romeu Tórtima, 388; Campinas, São Paulo 13084-791, Brazil. Email: [email protected] 6Coordenação de Tecnologia e Inovação; INPA; Manaus, Amazonas, 69067-375 Brazil. Email: [email protected] 7Departamento de Botânica e Zoologia; Universidade Federal do Rio Grande do Norte; Natal, Rio Grande do Norte 59072-970, Brazil. Email: [email protected] Abstract A new species, Geastrum inpaense, is described morphologically and molecularly. Geastrum lloydianum, G. schweinitzii, Phallus merulinus and Staheliomyces cinctus are reported here as new records for Central Amazonia. -
AR TICLE Phylogenetic Placement of Itajahya
IMA FUNGUS · 6(2): 257–262 (2015) doi:10.5598/imafungus.2015.06.02.01 Phylogenetic placement of Itajahya: An unusual Jacaranda fungal associate ARTICLE Seonju Marincowitz2, Martin P.A. Coetzee1,2, P. Markus Wilken1,2, Brenda D. Wingeld1,2, and Michael J. Wingeld2 1Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P.O. Box X20, Pretoria, 0028, South Africa 2Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, P.O. Box X20, Pretoria, 0028, South Africa; corresponding author e-mail: [email protected] Abstract: Itajahya is a member of Phallales (Agaricomycetes), which, based on the presence of a calyptra Key words: and DNA sequence data for I. rosea, has recently been raised to generic status from a subgenus of Homobasidiomycetes Phallus. The type species of the genus, I. galericulata, is commonly known as the Jacaranda stinkhorn molecular phylogeny in Pretoria, South Africa, which is the only area where the fungus is known outside the Americas. The Phallomycetidae common name is derived from its association with the South American originating Jacaranda mimosifolia phalloid fungi trees in the city. The aim of this study was to consider the unusual occurrence of the fungus in South South Africa Africa, to place it on the available Phallales phylogeny and to test whether it merits generic status. Fresh stinkhorns basidiomes were collected during the summer of 2015 and sequenced. Phylogenetic analyses were based on sequence data for the nuc-LSU-rDNA (LSU) and ATPase subunit 6 (ATP6) regions. The results showed that I. rosea and I. galericulata are phylogenetically related.