Standing Waves1

Total Page:16

File Type:pdf, Size:1020Kb

Standing Waves1 Standing waves1 Part I O(j) is not fully equivariant if j is odd Representations of SO3 Eigenfunctions of the Laplacian Attempts to explain the periodic table Attempts to explain atomic spectra Part II Three corrections to the fine structure A discussion of perturbation theory Half-integer values of l { first explanation Generalities about the Hamiltonian formulation Schroedinger's function W Half-integer values of l { other explanations The atom Schroedinger's choice of solutions Residues The canonical divisor and j quantum number Intuitive description of polarization Relation between smooth and holomorphic Laplacian operators A coincidence about the periodic table Linear systems of wave forms Hodge theory The Levi-Civita action is not Lagrangian for its Riemann metric Foundations Unification of the various coupling schemes Discussion of the problem of non-convergent integrals The ethics of science First concepts of the Lamb shift A question about Pauli exclusion The notion of probability Concluding remark False fine structure Electron spin and Pauli exclusion It was not the right conclusion John Atwell Moody Coventry, 2014 1The javascript mentioned in this article is at http://spectrograph.uk 1 Part I This note is a discussion of the first part of Schroedinger's 1926 review paper (in English) [2] which arose in begin- ning to explain spectral lines of hydrogen as frequency differences, and to approach some relativistic ideas of Bruce Westbury. Schroedinger posited for a an electron of mass µ and charge e at the point (x; y; z) with the nucleus at the origin, a potential function V = −e2=r with r the dis- tance from the origin. He wishes to have a function W (x; y; z; t) with gradient (px; py; pz; −E); and chose W (x; y; z; t) = −Et + S(x; y; z); imagining a standing electromagnetic wave with ampli- tude A(x; y; z) given 2π Ψ = A(x; y; z)sin( W (x; y; z; t)) h with A; S are real functions, h Planck's constant. He stated that the `standard wave equation' it should sat- isfy has 1 @ ∆Ψ = ( )2Ψ u2 @t with u the speed of motion of the level sets given by Et = S(x; y; z): Here u is the ratio between the time partial derivative and the magnitude of the spacial gradient E=jgrad(W )j which calculates to E=p2µ(E − V ) if µ is the electron mass. 2 If we define constants −8π2µe2 β = h2 −8π2µE α = h2 the condition they must satisfy, therefore, is that α+β=r is an eigenfunction of the Laplacian. The connected rotation group of three space operates naturally on the Riemann sphere, which can be viewed as the cosets of a Borel subgroup, and all the repre- sentations we will look at extend to the full connected automorphism group, the group holomorphic automor- phisms of the Riemann sphere, after complexification if necessary. The vector bundles O(j) for j an even number are com- pletely natural, they are equivariant for the full auto- morphism group of the Riemann sphere, because they are tensor powers of the canonical line bundle. More- over, again for even values j = 2l; the global sections are the complexification of the 2l + 1-dimensional space of real harmonic polynomials which are homogeneous of degree l: 3 Note that this implies that the complex polynomials of degree 2l in two variables are the complexification of a space of real polynomials of degree l in three variables. To see that the dimensions are right, you can use the fact that any homogeneous polynomial of degree l in three variables is uniquely a a sum of powers of r2 times homogeneous harmonic polynomials of lower degree [1]. Thus the sequence of dimensions of the homogeneous harmonic polynomials of degree l is 3 4 5 3 6 4 1; ; −1; − ; −( −1)−1; ::: 2 2 2 2 2 2 which is indeed the sequence of odd numbers. It follows that all are irreducible. 4 O(j) is not fully equivariant if j is odd. There is no similar interpretation of the global sections of O(j) when j is odd, and indeed the automorphism group of the projective line, nor even the special orthog- onal group which preserves the Riemannian metric, do not act in a natural way on the total space of the line bundle with section sheaf O(j) for j odd. The automorphism group of any line bundle maps to the automorphism group of the base manifold with ker- nel automorphisms of the line bundle which fix the zero section, just nonzero scalars under multiplication in the case of a projective variety, resulting in a central exten- sion group acting on the line bundle, not the original group; the resulting central extension is nontrivial when j is odd. Each automorphism g does lift to a pair of linear auto- morphisms of determinant one of C2; negatives of each other, and choosing to label one of them s(g) one has s(g)s(h) = z(g; h)s(gh) for the appropriate central co- cycle z taking values in f1; −1g: This gives an action on global sections of O(1) which induces an action on the vector bundle itself and therefore all tensor pow- ers. Such a cocycle adjusts what is called the `gauge' in Weyl's book. Or, another way of viewing the global sec- tions of O(j) for odd j as representations having to do with the Riemann sphere is to interpret them as repre- sentations of the Lie algebra rather than the Lie group, that is, representations of the global sections of the an- ticanonical line bundle. 5 The complex vector spaces Γ(P1; O(j)) for j odd, how- ever, are even dimensional, and if we interpret them as representations of the three dimensional Lie algebra of vector fields of P1 they restrict to real irreducible rep- resentations of twice the dimension 2(j + 1) (a multiple of 4) whose endomorphism algebra is just the field C: That is, the complex number field could arise as the endomorphism ring of the global sections of O(1) as a representation of the vector field Lie algebra of the Rie- mann sphere, and this is so even if initially we do not use complex numbers, and consider vector fields preserving the Riemannian metric. We will see later a more natural way that complex numbers will arise in this context. 6 Representations of so3 Although this is trivial, it makes sense to go through some of the representation spaces just to settle the no- tational conventions. As one lists the orbitals according 1 3 to values of l = 0; 2; 1; 2 ::: the names s; p; d; f; ::: are given to the integral values of l: The wave functions for l = 0; those type s; are the constants. 1 For l = 2 they need a cocycle z(g; h) or can be inter- preted as representations of the Lie algebra; and belong to a four dimensional vector space with a complex struc- ture. For l = 1; those of type p correspond to just real linear forms on three space (of dimension three), and the com- plexification is the space of holomorphic vector fields on the Riemann sphere (dual to the canonical line bundle). For l = 3=2; they need a cocycle and belong to an eight- dimensional real vector space, with a complex structure. For l = 2 the so-called type d, are the five-dimensional space of real harmonic functions which are among the homogeneous polynomials of degree two in three vari- ables. This is the orthogonal complement of the line spanned by r2 where r is the distance from the origin, under an invariant quadratic form, and its complexifica- tion is the global sections of O(3); 7 For l = 5=2 is a representation of dimension 12 with a complex structure. For l = 3 those of type f there is the seven dimensional space of harmonic polynomials which are homogeneous of degree three in three variables, orthogonal to r2 times haromonic homogeneous of degree one. For l = 7=2 is just a sixteen dimensional representation with a complex structure. For l = 4 those of type g, the nine dimensional space of harmonics polynomials which which are homogeneous of degree four and which are orthognal both to r4 and to r2 times the harmonics homogeneous of degree two, and so-on. 8 Eigenfunctions of the Laplacian The action of the Laplacian on products sf(r) with s a homogeneous polynomial of degree l which is a harmonic and f analytic in r is easily calculated. The action of ∆ on the powers of r in k variables is ∆(ri) = i(i − 2 + k)ri−2; and so for s harmonic homogeneous of degree l ∆(ris) = ( i(i − 1) + (k − 1 + 2l) i )ri−2s Then if f is an analytic function of r and s a harmonic analytic function the Laplacian operator acts on the product fs by d k − 1 + 2l(s) d = ( )2 + ( ): dr r dr where the term l(s) can be understood as the Euler derivation acting on the factor s while commuting with functions of r (the actual Casimir operator in that sense is l(l + 1)). Now ∆ has an eigenfunction of the form α + β=r just when r∆ has eigenfunction αr + β: 9 The action of r∆ on functions sf where where s is har- monic homogeneous of degree l is d d r( )2 + (k − 1 + 2l)( ): dr dr Take k = 3; the number of variables. For any number λ, r∆ acts on rmeλrs by λ2r + 2λn + lower order for n = m + l + 1: If we take α = λ2 the difference r∆ − αr − β preserves the filtration by the span of eλrs; reλrs; :::; rmeλrs; acting the associated graded vec- tor space by 2λ(m + l + 1) − β in degree m: For any m we may take β = 2λ(m + l + 1) and the span maps onto the span of just eλrs; :::rm−1eλrs with one dimensional kernel spanned by n−l−1 1 i 1 β r X n + l (nβ r) e 2n s: n − l − 1 − i i! i=0 β2 The relation α = 4n2 above gives energies −2π2µe4 E = h2n2 Note that β is negative.
Recommended publications
  • Coordination Chemistry III: Electronic Spectra
    160 Chapter 11 Coordination Chemistry III: Electronic Spectra CHAPTER 11: COORDINATION CHEMISTRY III: ELECTRONIC SPECTRA 11.1 a. p3 There are (6!)/(3!3!) = 20 microstates: MS –3/2 –1/2 1/2 3/2 + – – + – + +2 1 1 0 1 1 0 + – – + – + 1 1 –1 1 1 –1 +1 – – + + – + 1 0 0 1 0 0 + – – + + – 1 0 –1 1 0 –1 – – – – + – + – + + + + ML 0 1 0 –1 1 0 –1 1 0 –1 1 0 –1 1– 0– –1+ 1– 0+ –1+ + – – + – + –1 –1 1 –1 –1 1 –1 – – + + – + –1 0 0 –1 0 0 + – – + – + –2 –1 –1 0 –1 –1 0 Terms: L = 0, S = 3/2: 4S (ground state) L = 2, S = 1/2: 2D 2 L = 1, S = 1/2: P 6! 10! b. p1d1 There are 60 microstates: 1!5! 1!9! M S –1 0 1 – – – + + – + + 3 1 2 1 2 , 1 2 1 2 – – + – – + + + 1 1 1 1 , 1 1 1 1 2 + + 0– 2– 0– 2+, 0+ 2– 0 2 1– 0– 1+ 0–, 0+ 1– 1+ 0+ + + 1 0– 1– 1– 0+, 0– 1+ 0 1 + + –1– 2– –1– 2+, –1+ 2– –1 2 – – + – – + + + 1 –1 1 –1 , 1 –1 1 –1 – – – + + – + + ML 0 0 0 0 0 , 0 0 0 0 + + –1– 1– –1+ 1–, –1– 1+ –1 1 – – + – + – + + –1 0 –1 0 , 0 –1 –1 0 – – – + – + + + –1 0 –1 –1 0 , 0 –1 0 –1 – – – + + – 1+ –2+ 1 –2 1 –2 , 1 –2 –1– –1– –1+ –1–, –1– –1+ –1– –1+ –2 + – – + + + 0– –2– 0 –2 , 0 –2 0 –2 –3 –1– –2– –1– –2+, –1+ –2– –1+ –2+ Terms: L = 3, S = 1 3F (ground state) L = 2, S = 0 1D L = 3, S = 0 1F L = 1, S = 1 3P 3 1 L = 2, S = 1 D L = 1, S = 0 P The two electrons have quantum numbers that are independent of each other, because the electrons are in different orbitals.
    [Show full text]
  • Review Sheet on Determining Term Symbols
    Review Sheet on Determining Term Symbols Term symbols for electronic configurations are useful not only to the spectroscopist but also to the inorganic chemist interested in understanding electronic and magnetic properties of molecules. We will concentrate on the method of Douglas and McDaniel (p. 26ff); however, you may find other treatments equal or superior to the D & M method. Term symbols are a shorthand method used to describe the energy, angular momentum, and spin multiplicity of an atom in any particular state. The general form is a given as Tj where T is a capital letter corresponding to the value of L (the angular momentum quantum number) and may be assigned as S, P, D, F, G, … for |L| = 0, 1, 2, 3, 4, … respectively. The superscript “a” is called the spin multiplicity and can be evaluated as a = 2S +1 where S is the spin quantum number. The subscript “j” is the numerical value of J, a new quantum number defined as: J = l +S, which corresponds to the total orbital and spin angular momentum of the system. The term symbol 3P is read as triplet – Pee state and indicates that there are two unpaired electrons in a state with maximum orbital angular momentum, L=1. The number of microstates (N) of a system corresponds to the total number of distinct arrangements for “e” number of electrons to be placed in “n” number of possible orbital positions. N = # of microstates = n!/(e!(n-e)!) For a set of p orbitals n = 6 since there are 2 positions in each orbital.
    [Show full text]
  • XSAMS: XML Schema for Atomic, Molecular and Solid Data
    XSAMS: XML Schema for Atomic, Molecular and Solid Data Version 0.1.1 Draft Document, January 14, 2011 This version: http://www-amdis.iaea.org/xsams/docu/v0.1.1.pdf Latest version: http://www-amdis.iaea.org/xsams/docu/ Previous versions: http://www-amdis.iaea.org/xsams/docu/v0.1.pdf Editors: M.L. Dubernet, D. Humbert, Yu. Ralchenko Authors: M.L. Dubernet, D. Humbert, Yu. Ralchenko, E. Roueff, D.R. Schultz, H.-K. Chung, B.J. Braams Contributors: N. Moreau, P. Loboda, S. Gagarin, R.E.H. Clark, M. Doronin, T. Marquart Abstract This document presents a proposal for an XML schema aimed at describing Atomic, Molec- ular and Particle Surface Interaction Data in distributed databases around the world. This general XML schema is a collaborative project between International Atomic Energy Agency (Austria), National Institute of Standards and Technology (USA), Universit´ePierre et Marie Curie (France), Oak Ridge National Laboratory (USA) and Paris Observatory (France). Status of this document It is a draft document and it may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use this document as reference materials or to cite them as other than “work in progress”. Acknowledgements The authors wish to acknowledge all colleagues and institutes, atomic and molecular database experts and physicists who have collaborated through different discussions to the building up of the concepts described in this document. Change Log Version 0.1: June 2009 Version 0.1.1: November 2010 Contents 1 Introduction 11 1.1 Motivation..................................... 11 1.2 Limitations..................................... 12 2 XSAMS structure, types and attributes 13 2.1 Atomic, Molecular and Particle Surface Interaction Data XML Schema Structure 13 2.2 Attributes ....................................
    [Show full text]
  • Atomic Spectroscopy Summary
    ATOMIC SPECTROSCOPY SUMMARY TERM SYMBOLS Because the total angular momentum and energy commute, we can use the angular momentum (L) to label the energy states. Note that electron configurations are ambiguous in that we don’t specify which orbital or which spin each electron has. This means that there are a number of different sets of 푚ℓ and 푚푠 that are consistent with a given configuration. Why are there different energies? Because of electron/electron repulsion and spin-orbit coupling, the ways we can fill the orbitals DO NOT NESCESSARILLY have the same energy. (Remember that we talked about how Hund’s rules come from this. How spin up elelctrons interact less with other spin up electrons in the same subshell.) Components of a Term Symbol: 2푆+1 퐿퐽 RULES FOR TERM SYMBOLS Term Symbols are assigned based on two main rules: 1. Unsöld’s Rule: All filled shells/subshells are ignored when calculating L and S. Basically, all of the electrons will have their contributions to spin and orbital angular momentum canceled by other electrons in the same subshell. 2. “holes”: The state of the “hole” (an empty spot in an orbital where an electron could be but isn’t) is the same as the state of an electron. This means that when we look at a p5 we can pretend it is a p1. This is incredibly useful as it means that instead of 5 electrons to tinker with, you can just act like it is 1. CALCULATING L: L is the Total Angular Momentum L= (sum of ℓ values) ….(smallest positive difference of ℓ values) o 2 s electrons (different shells) L=0+0,…,0-0 L=0 o 1 d electron and 1 p electron L=2+1,…,2-1 L=3, 2, 1 S is the Total Spin S is the total spin quantum number of the electrons in an atom.
    [Show full text]
  • Review of Term Symbols Computation from Multi-Electron Systems for Chemistry Students Jamiu A
    S O s Contemporary Chemistry p e s n Acce REVIEW ARTICLE Review of Term Symbols Computation from Multi-Electron Systems for Chemistry Students Jamiu A. Odutola* Department of Physics, Chemistry and Mathematics, Alabama Agricultural and Mechanical University, Normal AL 35762, USA Abstract We have computed the term symbols resulting from the coupling of angular momenta of both spin and orbital from the ground state electron configuration. Configurations of equivalent electrons present challenges and were handled by the group theoretical methods. Terms are the combined values of L and S while the combined values of L, S and J defines the level. Key Words: Terms, Term Symbols, Spectroscopic term symbols, State, Level, Sub-level, Equivalent electrons, Non-equivalent electrons, Orbital angular momentum, Spin angular momentum, Spin-Orbital angular momentum, Russell-Saunders Coupling, LS coupling, j-j coupling and multiplicity. Introduction four quantum numbers (n, l, ml, ms). The first three quantum numbers in the set describes the spatial distribution and the Spectroscopic term symbols are very important in classifying last describes the spin state of the electron. n is the principal the electronic states of atoms and molecules particularly in quantum number and it describes the size or the energy level physical and inorganic chemistry [1-4]. There is a vast amount of the shell (or atom). l is the azimuthal or angular momentum of information on the topic of term symbols and techniques quantum number and it describes the shape of the orbital for obtaining these terms in the literature. Many authors gave or the subshell. m is the magnetic quantum number and it credit to such textbooks as Cotton and Wilkinson [5] as well as l describes the spatial orientation or direction of the orbital.
    [Show full text]
  • Synthesis, Structure and Bonding of Actinide Disulphide Dications in the Gas Phase
    Synthesis, structure and bonding of actinide disulphide dications in the gas phase Ana F. Lucena,1 Nuno A. G. Bandeira,2,3,4,* Cláudia C. L. Pereira,1,§ John K. Gibson,5 Joaquim Marçalo1,* 1 Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695- 066 Bobadela LRS, Portugal 2 Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Technology (BIST), 16 – Av. Països Catalans, 43007 Tarragona, Spain 3 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal 4 Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal 5 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA § Present address: REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal * Corresponding authors: Nuno A. G. Bandeira, email: [email protected]; Joaquim Marçalo, email: [email protected] Abstract 2+ Actinide disulphide dications, AnS2 , were produced in the gas phase for An = Th and Np by reaction of An2+ cations with the sulfur-atom donor COS, in a sequential abstraction process of two sulfur atoms, as examined by FTICR mass spectrometry. For An = Pu and Am, An2+ ions were unreactive with COS and did not yield any sulphide species. High level multiconfigurational (CASPT2) calculations were performed to assess the structures and 2+ bonding of the new AnS2 species obtained for An = Th, Np, as well as for An = Pu to examine trends along the An series, and for An = U to compare with a previous experimental study and 2+ DFT computational scrutiny of US2 .
    [Show full text]
  • Alkali Metal Spectra
    ____________________________________________________________________________________________________ Subject Chemistry Paper No and Title 8 and Physical Spectroscopy Module No and Title 8: Alkali metal spectra Module Tag CHE_P8_M8 CHEMISTRY PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 8 (ALKALI METAL SPECTRA) ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Multi-electron Atoms 4. Electron Orbitals 5. Alkali Metal Spectra 6. Summary CHEMISTRY PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 8 (ALKALI METAL SPECTRA) ____________________________________________________________________________________________________ 1. Learning Outcomes In this module, you will study about the failures of the Bohr theory, which led to the formulation of the quantum theory. You will understand how the new theory could explain the fine structure in the spectra of hydrogen and hydrogen-like ions, and how this theory can be extended to atoms which have a single electron in their outermost shell, i.e. the alkali metal atoms. You should also be able to write the term symbols for simple one-electron systems. 2. Introduction Bohr’s model could only explain the line spectra of hydrogen and hydrogen-like ions. However, it did not even attempt to explain the spectra of multi-electron atoms. Even in the case of hydrogen, higher resolution shows that each line is split into a doublet, which the Bohr theory was clearly unable to explain. Clearly, the Bohr theory was inadequate and a better, universally applicable, theory was required. 3. Multi-electron Atoms The problem with multi-electron atoms is that, not only are there several electrons getting attracted to the same nucleus, they are repelling each other as well. This repulsion is much harder to deal with.
    [Show full text]
  • A. General (10 Points) 2 Points Each ___B. Configurations & Term
    Your name __________________ Grade this page___ Chem 104A - Midterm I Answer Key closed text, closed notes, no calculators There are 70 total points. General advice - if you are stumped by one problem, move on to finish other problems and come back later if time permits. You may use the whole class period. A. General (10 points) 2 Points Each ____ True or false (Enter T or F on line) next to statement: __F__ 1. A 4pz orbital has two radial nodes and 2 angular nodes. It has one angular node – the xy plane. __F__ 2. If the principal quantum number is 3, the orbital shape quantum number (l) can be 0, 1, 2, 3, or 4. The orbital quantum number can only go as high as n-1=l=2; a 3d orbital. __F__ 3. The ratio of the ionization energy for He+ to H is 2:1. The ionization energy goes as Z2, thus the ratio is 4:1. __F__ 4. The ground state of an atom comes from the term with the lowest multiplicity. highest multiplicity __F__ 5. A proper group always has an identity element and a zero element. no need for a zero element B. Configurations & Term Symbols (10 points) 2 Points Each ____ 1. Write out the lowest energy electronic configuration for elemental V. You can use [Ar] for the closed inner shells. [Ar]4s23d 3 2. Write out the symbol for the lowest energy term (circle the multiplicity): A term is a collection of levels with the same L and S. max MS = 3/2 -> S=3/2; max ML=2+1+0 = 3 -> L=3 -> ‘F’ symbol 2S+1L -> 4F 3.
    [Show full text]
  • Part 1 Copyrighted Material
    PART 1 Structures and microstructures COPYRIGHTED MATERIAL 1 The electron structure of atoms number of electrons, each of which carries one unit What is a wavefunction and what information of negative charge. For our purposes, all nuclei can does it provide? be imagined to consist of tightly bound subatomic particles called neutrons and protons, which are together called nucleons. Neutrons carry no charge Why does the periodic table summarise both and protons carry a charge of one unit of positive the chemical and the physical properties of the charge. Each element is differentiated from all elements? others by the number of protons in the nucleus, called the proton number or atomic number, Z.Ina What is a term scheme? neutral atom, the number of protons in the nucleus is exactly balanced by the Z electrons in the outer electron cloud. The number of neutrons in an atomic nucleus can vary slightly. The total number nucleons (protons plus neutrons) defines the mass number, A, of an atom. Variants of atoms that have 1.1 Atoms the same atomic number but different mass numbers are called isotopes of the element. For example, the All matter is composed of aggregates of atoms. element hydrogen has three isotopes, with mass With the exception of radiochemistry and radio- numbers 1, called hydrogen; 2 (one proton and activity (Chapter 16) atoms are neither created nor one neutron), called deuterium; and 3 (one proton destroyed during physical or chemical changes. It and two neutrons), called tritium. An important has been determined that 90 chemically different isotope of carbon is radioactive carbon-14, that atoms, the chemical elements, are naturally present has 14 nucleons in its nucleus, 6 protons and 8 on the Earth, and others have been prepared by neutrons.
    [Show full text]
  • Ground State Nuclear Magnetic Resonance Chemical Shifts Predict Charge-Separated Excited State Lifetimes † † † † † Jing Yang, Dominic K
    Article Cite This: Inorg. Chem. 2018, 57, 13470−13476 pubs.acs.org/IC Ground State Nuclear Magnetic Resonance Chemical Shifts Predict Charge-Separated Excited State Lifetimes † † † † † Jing Yang, Dominic K. Kersi, Casseday P. Richers, Logan J. Giles, Ranjana Dangi, † ‡ § § Benjamin W. Stein, Changjian Feng, Christopher R. Tichnell, David A. Shultz,*, † and Martin L. Kirk*, † ‡ Department of Chemistry and Chemical Biology and College of Pharmacy, The University of New Mexico, Albuquerque, New Mexico 87131-0001, United States § Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States *S Supporting Information ABSTRACT: Dichalcogenolene platinum(II) diimine com- ′ plexes, (LE,E )Pt(bpy), are characterized by charge-separated ′ → dichalcogenolene donor (LE,E ) diimine acceptor (bpy) ligand-to-ligand charge transfer (LL′CT) excited states that lead to their interesting photophysics and potential use in solar energy conversion applications. Despite the intense interest in these complexes, the chalcogen dependence on the lifetime of the triplet LL′CT excited state remains ′ unexplained. Three new (LE,E )Pt(bpy) complexes with mixed chalcogen donors exhibit decay rates that are dominated by a spin−orbit mediated nonradiative pathway, the magnitude of which is proportional to the anisotropic covalency provided by the mixed-chalcogen donor ligand environment. This anisotropic covalency is dramatically revealed in the 13C NMR chemical shifts of the donor carbons that bear the chalcogens and is further probed by S K-edge XAS. Remarkably, the NMR chemical shift differences also correlate with the spin−orbit matrix element that connects the triplet excited state with the ground state. Consequently, triplet LL′CT excited state lifetimes are proportional to both functions, demonstrating that specific ground state NMR chemical shifts can be used to evaluate spin−orbit coupling contributions to excited state lifetimes.
    [Show full text]
  • Bsc Chemistry
    Subject Chemistry Paper No and Title Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module No and Title 11, Electronic spectra of coordination complexes III Module Tag CHE_P7_M11 CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 11: Electronic spectra of coordination complexes III TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Spinning of an electron 4. Orbital motion of an electron 4.1 Defining an orbital 4.2 Orbital 5. Spin-Orbit coupling 4.1 What is spin-orbit coupling? 4.2 Free ion terms 6. Summary CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 11: Electronic spectra of coordination complexes III 1. Learning Outcomes After studying this module, you shall be able to Know the difference between spinning and orbital motion of an electron Learn various factors influencing the spin orbit coupling Analyze various free ion terms for different configurations Understand the orbital in an atom along with orbital motion 2. Introduction For multi-electronic atoms and ions, the spin and orbital motion of various electrons are coupled together by spin-orbit coupling or L-S coupling or Russell-Saunders coupling. In this practice the total angular momentum represented by L and total spin angular momentum given by S, combine together to generate a new quantum number given by J. 3. Spinning of an electron A spherical body rotating about a fixed axis that passes through a point at the center of the sphere represents a model that how electron behaves in an atom.
    [Show full text]
  • A COMPARATIVE STUDY of the ATOMIC TERM SYMBOLS of F3 and F11 CONFIGURATION P
    ACPI Acta Chim. Pharm. Indica: 2(1), 2012, 32-45 ISSN 2277-288X A COMPARATIVE STUDY OF THE ATOMIC TERM SYMBOLS OF f3 AND f11 CONFIGURATION P. L. MEENA*, P. K. JAIN, N. KUMAR and K. S. MEENA Department of Chemistry, M. L. V. Govt. College, BHILWARA (Raj.) INDIA (Received : 13.10.2011; Revised : 30.10.2011; Accepted : 31.10.2011) ABSTRACT The term is a particular energy state and term symbol is a label to energy state. The importance of these term symbols has been emphasized in connection with the spectral and magnetic properties of complexes and metal free ions and also provide information about the energy of atomic electrons in orbital’s and total spin, total orbital and grand total momenta of whole atom and electronic configuration. Russell-Saunders (L-S) coupling and j-j coupling schemes are important schemes for determination of terms and term symbols of the atoms and ions of inner transition elements in which electrons are filled in a f sub-shell with azimuthal quantum number 3. The determination of terms and term symbols for fn configuration is very difficult work since there are seven orbital’s in f-sub shell which give large number of microstates. In this proposed work computation is done for calculating all possible terms and term symbols regarding for f3 and f11 configurations without any long tabulation with mental exercise and a comparative study was carried out between the f3 and f11 terms and term symbols. The possible microstates and spectroscopic terms calculated for f3 and f11 configuration (ions M+3) are 364 and 17.
    [Show full text]