Studies Absorption Or Emission Transitions Between Electronic States of Atoms Or Molecules

Total Page:16

File Type:pdf, Size:1020Kb

Studies Absorption Or Emission Transitions Between Electronic States of Atoms Or Molecules Chapter III: Atomic spectroscopy Electronic spectroscopy: studies absorption or emission transitions between electronic states of atoms or molecules. Atoms only electronic degrees of freedom (apart translation and nuclear spin), whereas molecules have, in addition, vibrational and rotational degrees of freedom. III.1 The periodic table For the hydrogen atom, and for the hydrogen-like ions (He+, Li++ ,…) , with a single electron in the field of a nucleus with charge +Ze, the hamiltonian is: (III.1) analogous to Equation (I.30) for the hydrogen atom, where the terms are explained. For a polyelectronic atom the hamiltonian becomes: (III.2) where the summation is over all electrons i. The first two terms are simply sums of terms like those for one electron in Equation (III.1). The third term is new and represents the Coulomb repulsions between all possible pairs of electrons distant of rij . The second term represents the Coulomb attraction between each electron and the nucleus at a distance ri . Because of the electron-electron repulsion term in Equation (III.2) the Hamiltonian cannot be broken down into a sum of contributions from each electron and the Schrödinger equation is no longer be solved exactly. Various approximate methods of solution have been devised of which the self-consistent field (SCF) method is one of the most useful. In it the Hamiltonian has the form: (III.3) He approximated the contributions to the potential energy due to electron repulsions as a sum of contributions from individual electrons. The Schrödinger equation is then soluble. Important effect of electron repulsions: removes the degeneracy of those orbitals. In the H atom, we only had degenerate n=1, 2, 3,… orbitals (Figure I.1). For multielectron atoms, we now have 2s, 2p and 3s, 3p, 3d, etc.., e.g., Figure III.1. Orbital energies Ei vary with principal quantum number n, and with angular momentum quantum number. Energy Ei of a particular orbital increases with Z. For ex., ionization energy of 1s orbital= 13.6 eV for H, 870.4 eV for Ne. Electrons in atoms may be fed into the orbitals in Figure III.1 in order of increasing energy until all are used up, to give what is referred to as the ground configuration of the atom. This feeding in of electrons in order of increasing orbital energy follows the aufbau or building-up principle, but must also obey the Pauli exclusion principle. This states that no two electrons can have the same set of quantum numbers n, l. ml = l, l-1, …, -l, i.e. it can take (2l+1) values; ms = ±½ , so each orbital can accommodate 2(2l+1) electrons: ns has 2, np has 6, nd has 10 electrons, etc. Orbital: refers to a particular set of values of n and l values Shell: refers to orbitals having same value of n. Shells with n = 1, 2, 3, 4, . are labelled K, L, M, N, ... Configurations and States: A configuration describes the way in which the electrons are distributed among various orbitals and it may give rise to more than one state as a consequence of how the angular momenta sum up (see below). E.g., the ground configuration 1s22s22p2 of the C atom gives rise to three electronic states of different energies. The ground configurations of all atoms are tabulated in all the relevant textbooks: - alkali metals, Li, Na, K, Rb and Cs, have an outer ns1 configuration consistent with their being monovalent. - He, alkaline earth metals, Be, Mg, Ca, Sr and Ba, all have an outer ns2 configuration and are divalent. - Noble (inert or rare) gases, Ne, Ar, Kr, Xe and Rn, all have an outer np6 configuration, the filled orbital (or sub-shell, as it is sometimes called) conferring chemical inertness, and the filled K shell in He has a similar effect. - The first transition series: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn, is characterized by the filling up of the 3d orbital. Figure III.1 shows that the 3d and 4s orbitals are very similar in energy, but their separation changes along the series. The result is that, although there is a preference by most of these elements for having two electrons in the 4s orbital, Cu has a . .3d10 4s1 ground configuration because of the innate stability associated with a filled 3d orbital. There is also some stability associated with a half-filled orbital (2p3, 3 d 5, etc.) resulting in the …3d54s1 ground configuration of Cr. Filling up the 4f orbital is a feature of the lanthanides. The 4f and 5d orbitals are of similar energy so that occasionally, as in La, Ce and Gd, one electron goes into 5d rather than 4f. Similarly, in the actinides, Ac to No, the 5f subshell is filled in competition with 6d. III. 2 Vector representation of momenta and vector coupling approximations III.2.1 Angular momenta and magnetic moments The electron orbital angular momentum is a vector, the direction of which is determined by the right-hand screw rule (figure III.2). Each electron in an atom has two possible kinds of angular momenta: orbital and spin, whose magnitude are (see Equation I.44): (III.5) where l=0, 1, 2,…(n-1) and (III.6) With s= ½ For an electron having orbital and spin angular momentum there is a quantum number j due to the tototal angular momentum such that: (III.7) where j Since s=1/2 only, j is not a very useful quantum number for one-electron atoms, unless we are concerned with the fine detail of their spectra, but the analogous quantum number J , in polyelectronic atoms, is very important. A charge –e circulating in an orbit is equivalent to a current flowing in a wire, it therefore causes a magnetic moment. That due to orbital motion l is a vector which is opposed to the corresponding angular momentum vector l (Figure III.2a). The classical picture of an electron spinning on its own axis indicates that there is a magnetic moment s associated with this angular momentum, and it is opposed to s. The magnetic moments l and s can be regarded as tiny bar magnets. For each electron they may be parallel, as in Figure III.2a, or opposed (Figure III.2b). III.2.2. Coupling of angular momenta It follows from the interaction between the magnetic moments due to orbital and spin angular momenta of the same electron. This interaction is the coupling of the angular momenta and the greater the magnetic moments, the stronger the coupling. However, some couplings are so weak that they may be neglected. Coupling between two vectors a and b produces a resultant vector c, as shown in Figure III.3a. If the vectors represent angular momenta, a and b precess around c (Figure III.3b), the rate of precession increasing with the strength of coupling. In practice, c precesses about an arbitrary direction in space and, when an electric or magnetic field (Stark or Zeeman effect) is introduced, the effects of space quantization (§ I.3.2) may be observed. The strength of coupling between the spin and orbital motions of the electrons, referred to a spin–orbit coupling, depends on the atom concerned. The spin of one electron can interact with (a) the spins of the other electrons, (b) its own orbital motion and (c) the orbital motions of the other electrons. This last is called spin- other-orbit interaction and is normally too small to be taken into account. Interactions (a) and (b) are more important and the methods of treating them involve two types of approximation representing two extremes of coupling. One approximation assumes that coupling between spin momenta is sufficiently small to be neglected, as also is the coupling between orbital momenta, whereas coupling between the spin of an electron and its own angular momentum, to give a resultant total angular momentum j, is assumed to be strong and the coupling between the j’s for all the electrons to be less strong but appreciable. This coupling treatment is known as the jj-coupling approximation but its usefulness is limited mainly to a few states of heavy atoms. A second approximation neglects coupling between the spin of an electron and its orbital momentum but assumes that coupling between orbital momenta is strong and that between spin momenta relatively weak but appreciable. This represents the opposite extreme to the jj-coupling approximation. It is known as the Russell–Saunders coupling approximation and serves as a useful basis for describing most states of most atoms and is the only one we shall consider in detail. III.3 Russell–Saunders coupling approximation (a) Non-equivalent electrons: Non-equivalent electrons are electrons that have different values of either n or l, ex. 3p13d1 or 3p14p1. Coupling of angular momenta of non-equivalent electrons is more straightforward than for equivalent electrons. First we consider, the strong coupling between orbital angular momenta, referred to as ll coupling, using a particular example. Consider just two non-equivalent electrons in an atom (e.g. the helium atom in the highly excited configuration 2p13d1). We shall label the 2p and 3d electrons ‘1’ and ‘2’, respectively, so that l 1 =1 and l 1 =2. The l1 and l2 vectors representing these orbital angular momenta are of magnitudes 21/2 and 61/2, respectively (see Equation III.5). These vectors couple, as shown in Figure III.3(a), to give a resultant L of magnitude (III.8) However, the values of the total orbital angular momentum quantum number, L, are limited; or, in other words, the relative orientations of l1 and l2 are limited.
Recommended publications
  • Coordination Chemistry III: Electronic Spectra
    160 Chapter 11 Coordination Chemistry III: Electronic Spectra CHAPTER 11: COORDINATION CHEMISTRY III: ELECTRONIC SPECTRA 11.1 a. p3 There are (6!)/(3!3!) = 20 microstates: MS –3/2 –1/2 1/2 3/2 + – – + – + +2 1 1 0 1 1 0 + – – + – + 1 1 –1 1 1 –1 +1 – – + + – + 1 0 0 1 0 0 + – – + + – 1 0 –1 1 0 –1 – – – – + – + – + + + + ML 0 1 0 –1 1 0 –1 1 0 –1 1 0 –1 1– 0– –1+ 1– 0+ –1+ + – – + – + –1 –1 1 –1 –1 1 –1 – – + + – + –1 0 0 –1 0 0 + – – + – + –2 –1 –1 0 –1 –1 0 Terms: L = 0, S = 3/2: 4S (ground state) L = 2, S = 1/2: 2D 2 L = 1, S = 1/2: P 6! 10! b. p1d1 There are 60 microstates: 1!5! 1!9! M S –1 0 1 – – – + + – + + 3 1 2 1 2 , 1 2 1 2 – – + – – + + + 1 1 1 1 , 1 1 1 1 2 + + 0– 2– 0– 2+, 0+ 2– 0 2 1– 0– 1+ 0–, 0+ 1– 1+ 0+ + + 1 0– 1– 1– 0+, 0– 1+ 0 1 + + –1– 2– –1– 2+, –1+ 2– –1 2 – – + – – + + + 1 –1 1 –1 , 1 –1 1 –1 – – – + + – + + ML 0 0 0 0 0 , 0 0 0 0 + + –1– 1– –1+ 1–, –1– 1+ –1 1 – – + – + – + + –1 0 –1 0 , 0 –1 –1 0 – – – + – + + + –1 0 –1 –1 0 , 0 –1 0 –1 – – – + + – 1+ –2+ 1 –2 1 –2 , 1 –2 –1– –1– –1+ –1–, –1– –1+ –1– –1+ –2 + – – + + + 0– –2– 0 –2 , 0 –2 0 –2 –3 –1– –2– –1– –2+, –1+ –2– –1+ –2+ Terms: L = 3, S = 1 3F (ground state) L = 2, S = 0 1D L = 3, S = 0 1F L = 1, S = 1 3P 3 1 L = 2, S = 1 D L = 1, S = 0 P The two electrons have quantum numbers that are independent of each other, because the electrons are in different orbitals.
    [Show full text]
  • Review Sheet on Determining Term Symbols
    Review Sheet on Determining Term Symbols Term symbols for electronic configurations are useful not only to the spectroscopist but also to the inorganic chemist interested in understanding electronic and magnetic properties of molecules. We will concentrate on the method of Douglas and McDaniel (p. 26ff); however, you may find other treatments equal or superior to the D & M method. Term symbols are a shorthand method used to describe the energy, angular momentum, and spin multiplicity of an atom in any particular state. The general form is a given as Tj where T is a capital letter corresponding to the value of L (the angular momentum quantum number) and may be assigned as S, P, D, F, G, … for |L| = 0, 1, 2, 3, 4, … respectively. The superscript “a” is called the spin multiplicity and can be evaluated as a = 2S +1 where S is the spin quantum number. The subscript “j” is the numerical value of J, a new quantum number defined as: J = l +S, which corresponds to the total orbital and spin angular momentum of the system. The term symbol 3P is read as triplet – Pee state and indicates that there are two unpaired electrons in a state with maximum orbital angular momentum, L=1. The number of microstates (N) of a system corresponds to the total number of distinct arrangements for “e” number of electrons to be placed in “n” number of possible orbital positions. N = # of microstates = n!/(e!(n-e)!) For a set of p orbitals n = 6 since there are 2 positions in each orbital.
    [Show full text]
  • XSAMS: XML Schema for Atomic, Molecular and Solid Data
    XSAMS: XML Schema for Atomic, Molecular and Solid Data Version 0.1.1 Draft Document, January 14, 2011 This version: http://www-amdis.iaea.org/xsams/docu/v0.1.1.pdf Latest version: http://www-amdis.iaea.org/xsams/docu/ Previous versions: http://www-amdis.iaea.org/xsams/docu/v0.1.pdf Editors: M.L. Dubernet, D. Humbert, Yu. Ralchenko Authors: M.L. Dubernet, D. Humbert, Yu. Ralchenko, E. Roueff, D.R. Schultz, H.-K. Chung, B.J. Braams Contributors: N. Moreau, P. Loboda, S. Gagarin, R.E.H. Clark, M. Doronin, T. Marquart Abstract This document presents a proposal for an XML schema aimed at describing Atomic, Molec- ular and Particle Surface Interaction Data in distributed databases around the world. This general XML schema is a collaborative project between International Atomic Energy Agency (Austria), National Institute of Standards and Technology (USA), Universit´ePierre et Marie Curie (France), Oak Ridge National Laboratory (USA) and Paris Observatory (France). Status of this document It is a draft document and it may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use this document as reference materials or to cite them as other than “work in progress”. Acknowledgements The authors wish to acknowledge all colleagues and institutes, atomic and molecular database experts and physicists who have collaborated through different discussions to the building up of the concepts described in this document. Change Log Version 0.1: June 2009 Version 0.1.1: November 2010 Contents 1 Introduction 11 1.1 Motivation..................................... 11 1.2 Limitations..................................... 12 2 XSAMS structure, types and attributes 13 2.1 Atomic, Molecular and Particle Surface Interaction Data XML Schema Structure 13 2.2 Attributes ....................................
    [Show full text]
  • Atomic Spectroscopy Summary
    ATOMIC SPECTROSCOPY SUMMARY TERM SYMBOLS Because the total angular momentum and energy commute, we can use the angular momentum (L) to label the energy states. Note that electron configurations are ambiguous in that we don’t specify which orbital or which spin each electron has. This means that there are a number of different sets of 푚ℓ and 푚푠 that are consistent with a given configuration. Why are there different energies? Because of electron/electron repulsion and spin-orbit coupling, the ways we can fill the orbitals DO NOT NESCESSARILLY have the same energy. (Remember that we talked about how Hund’s rules come from this. How spin up elelctrons interact less with other spin up electrons in the same subshell.) Components of a Term Symbol: 2푆+1 퐿퐽 RULES FOR TERM SYMBOLS Term Symbols are assigned based on two main rules: 1. Unsöld’s Rule: All filled shells/subshells are ignored when calculating L and S. Basically, all of the electrons will have their contributions to spin and orbital angular momentum canceled by other electrons in the same subshell. 2. “holes”: The state of the “hole” (an empty spot in an orbital where an electron could be but isn’t) is the same as the state of an electron. This means that when we look at a p5 we can pretend it is a p1. This is incredibly useful as it means that instead of 5 electrons to tinker with, you can just act like it is 1. CALCULATING L: L is the Total Angular Momentum L= (sum of ℓ values) ….(smallest positive difference of ℓ values) o 2 s electrons (different shells) L=0+0,…,0-0 L=0 o 1 d electron and 1 p electron L=2+1,…,2-1 L=3, 2, 1 S is the Total Spin S is the total spin quantum number of the electrons in an atom.
    [Show full text]
  • Review of Term Symbols Computation from Multi-Electron Systems for Chemistry Students Jamiu A
    S O s Contemporary Chemistry p e s n Acce REVIEW ARTICLE Review of Term Symbols Computation from Multi-Electron Systems for Chemistry Students Jamiu A. Odutola* Department of Physics, Chemistry and Mathematics, Alabama Agricultural and Mechanical University, Normal AL 35762, USA Abstract We have computed the term symbols resulting from the coupling of angular momenta of both spin and orbital from the ground state electron configuration. Configurations of equivalent electrons present challenges and were handled by the group theoretical methods. Terms are the combined values of L and S while the combined values of L, S and J defines the level. Key Words: Terms, Term Symbols, Spectroscopic term symbols, State, Level, Sub-level, Equivalent electrons, Non-equivalent electrons, Orbital angular momentum, Spin angular momentum, Spin-Orbital angular momentum, Russell-Saunders Coupling, LS coupling, j-j coupling and multiplicity. Introduction four quantum numbers (n, l, ml, ms). The first three quantum numbers in the set describes the spatial distribution and the Spectroscopic term symbols are very important in classifying last describes the spin state of the electron. n is the principal the electronic states of atoms and molecules particularly in quantum number and it describes the size or the energy level physical and inorganic chemistry [1-4]. There is a vast amount of the shell (or atom). l is the azimuthal or angular momentum of information on the topic of term symbols and techniques quantum number and it describes the shape of the orbital for obtaining these terms in the literature. Many authors gave or the subshell. m is the magnetic quantum number and it credit to such textbooks as Cotton and Wilkinson [5] as well as l describes the spatial orientation or direction of the orbital.
    [Show full text]
  • Synthesis, Structure and Bonding of Actinide Disulphide Dications in the Gas Phase
    Synthesis, structure and bonding of actinide disulphide dications in the gas phase Ana F. Lucena,1 Nuno A. G. Bandeira,2,3,4,* Cláudia C. L. Pereira,1,§ John K. Gibson,5 Joaquim Marçalo1,* 1 Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695- 066 Bobadela LRS, Portugal 2 Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Technology (BIST), 16 – Av. Països Catalans, 43007 Tarragona, Spain 3 Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal 4 Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal 5 Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA § Present address: REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal * Corresponding authors: Nuno A. G. Bandeira, email: [email protected]; Joaquim Marçalo, email: [email protected] Abstract 2+ Actinide disulphide dications, AnS2 , were produced in the gas phase for An = Th and Np by reaction of An2+ cations with the sulfur-atom donor COS, in a sequential abstraction process of two sulfur atoms, as examined by FTICR mass spectrometry. For An = Pu and Am, An2+ ions were unreactive with COS and did not yield any sulphide species. High level multiconfigurational (CASPT2) calculations were performed to assess the structures and 2+ bonding of the new AnS2 species obtained for An = Th, Np, as well as for An = Pu to examine trends along the An series, and for An = U to compare with a previous experimental study and 2+ DFT computational scrutiny of US2 .
    [Show full text]
  • Alkali Metal Spectra
    ____________________________________________________________________________________________________ Subject Chemistry Paper No and Title 8 and Physical Spectroscopy Module No and Title 8: Alkali metal spectra Module Tag CHE_P8_M8 CHEMISTRY PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 8 (ALKALI METAL SPECTRA) ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Multi-electron Atoms 4. Electron Orbitals 5. Alkali Metal Spectra 6. Summary CHEMISTRY PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 8 (ALKALI METAL SPECTRA) ____________________________________________________________________________________________________ 1. Learning Outcomes In this module, you will study about the failures of the Bohr theory, which led to the formulation of the quantum theory. You will understand how the new theory could explain the fine structure in the spectra of hydrogen and hydrogen-like ions, and how this theory can be extended to atoms which have a single electron in their outermost shell, i.e. the alkali metal atoms. You should also be able to write the term symbols for simple one-electron systems. 2. Introduction Bohr’s model could only explain the line spectra of hydrogen and hydrogen-like ions. However, it did not even attempt to explain the spectra of multi-electron atoms. Even in the case of hydrogen, higher resolution shows that each line is split into a doublet, which the Bohr theory was clearly unable to explain. Clearly, the Bohr theory was inadequate and a better, universally applicable, theory was required. 3. Multi-electron Atoms The problem with multi-electron atoms is that, not only are there several electrons getting attracted to the same nucleus, they are repelling each other as well. This repulsion is much harder to deal with.
    [Show full text]
  • A. General (10 Points) 2 Points Each ___B. Configurations & Term
    Your name __________________ Grade this page___ Chem 104A - Midterm I Answer Key closed text, closed notes, no calculators There are 70 total points. General advice - if you are stumped by one problem, move on to finish other problems and come back later if time permits. You may use the whole class period. A. General (10 points) 2 Points Each ____ True or false (Enter T or F on line) next to statement: __F__ 1. A 4pz orbital has two radial nodes and 2 angular nodes. It has one angular node – the xy plane. __F__ 2. If the principal quantum number is 3, the orbital shape quantum number (l) can be 0, 1, 2, 3, or 4. The orbital quantum number can only go as high as n-1=l=2; a 3d orbital. __F__ 3. The ratio of the ionization energy for He+ to H is 2:1. The ionization energy goes as Z2, thus the ratio is 4:1. __F__ 4. The ground state of an atom comes from the term with the lowest multiplicity. highest multiplicity __F__ 5. A proper group always has an identity element and a zero element. no need for a zero element B. Configurations & Term Symbols (10 points) 2 Points Each ____ 1. Write out the lowest energy electronic configuration for elemental V. You can use [Ar] for the closed inner shells. [Ar]4s23d 3 2. Write out the symbol for the lowest energy term (circle the multiplicity): A term is a collection of levels with the same L and S. max MS = 3/2 -> S=3/2; max ML=2+1+0 = 3 -> L=3 -> ‘F’ symbol 2S+1L -> 4F 3.
    [Show full text]
  • Part 1 Copyrighted Material
    PART 1 Structures and microstructures COPYRIGHTED MATERIAL 1 The electron structure of atoms number of electrons, each of which carries one unit What is a wavefunction and what information of negative charge. For our purposes, all nuclei can does it provide? be imagined to consist of tightly bound subatomic particles called neutrons and protons, which are together called nucleons. Neutrons carry no charge Why does the periodic table summarise both and protons carry a charge of one unit of positive the chemical and the physical properties of the charge. Each element is differentiated from all elements? others by the number of protons in the nucleus, called the proton number or atomic number, Z.Ina What is a term scheme? neutral atom, the number of protons in the nucleus is exactly balanced by the Z electrons in the outer electron cloud. The number of neutrons in an atomic nucleus can vary slightly. The total number nucleons (protons plus neutrons) defines the mass number, A, of an atom. Variants of atoms that have 1.1 Atoms the same atomic number but different mass numbers are called isotopes of the element. For example, the All matter is composed of aggregates of atoms. element hydrogen has three isotopes, with mass With the exception of radiochemistry and radio- numbers 1, called hydrogen; 2 (one proton and activity (Chapter 16) atoms are neither created nor one neutron), called deuterium; and 3 (one proton destroyed during physical or chemical changes. It and two neutrons), called tritium. An important has been determined that 90 chemically different isotope of carbon is radioactive carbon-14, that atoms, the chemical elements, are naturally present has 14 nucleons in its nucleus, 6 protons and 8 on the Earth, and others have been prepared by neutrons.
    [Show full text]
  • Ground State Nuclear Magnetic Resonance Chemical Shifts Predict Charge-Separated Excited State Lifetimes † † † † † Jing Yang, Dominic K
    Article Cite This: Inorg. Chem. 2018, 57, 13470−13476 pubs.acs.org/IC Ground State Nuclear Magnetic Resonance Chemical Shifts Predict Charge-Separated Excited State Lifetimes † † † † † Jing Yang, Dominic K. Kersi, Casseday P. Richers, Logan J. Giles, Ranjana Dangi, † ‡ § § Benjamin W. Stein, Changjian Feng, Christopher R. Tichnell, David A. Shultz,*, † and Martin L. Kirk*, † ‡ Department of Chemistry and Chemical Biology and College of Pharmacy, The University of New Mexico, Albuquerque, New Mexico 87131-0001, United States § Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States *S Supporting Information ABSTRACT: Dichalcogenolene platinum(II) diimine com- ′ plexes, (LE,E )Pt(bpy), are characterized by charge-separated ′ → dichalcogenolene donor (LE,E ) diimine acceptor (bpy) ligand-to-ligand charge transfer (LL′CT) excited states that lead to their interesting photophysics and potential use in solar energy conversion applications. Despite the intense interest in these complexes, the chalcogen dependence on the lifetime of the triplet LL′CT excited state remains ′ unexplained. Three new (LE,E )Pt(bpy) complexes with mixed chalcogen donors exhibit decay rates that are dominated by a spin−orbit mediated nonradiative pathway, the magnitude of which is proportional to the anisotropic covalency provided by the mixed-chalcogen donor ligand environment. This anisotropic covalency is dramatically revealed in the 13C NMR chemical shifts of the donor carbons that bear the chalcogens and is further probed by S K-edge XAS. Remarkably, the NMR chemical shift differences also correlate with the spin−orbit matrix element that connects the triplet excited state with the ground state. Consequently, triplet LL′CT excited state lifetimes are proportional to both functions, demonstrating that specific ground state NMR chemical shifts can be used to evaluate spin−orbit coupling contributions to excited state lifetimes.
    [Show full text]
  • Orbital Angular Momentum, R = 0, 1, 2,
    Atomic Spectroscopy of Polyelectronic Atoms Atoms, Energy Levels and Spectroscopy Energy Levels in Atoms (13.2, 13.3, 13.4, 13.5) Coupling of Angular Momenta (13.7, 13.8) Term Symbols and Selection Rules (13.9) Russell-Saunders Coupling (13.9) Examples Hydrogen and Alkali Metal Atoms Helium Selection rules and other polyelectronic atoms Supplementary Notes Coupling of Angular Momenta Hyperfine Splitting Zeeman Interaction Stark Effect Atomic Spectroscopy Electronic spectroscopy is the study of absorption and emission transitions between electronic states in an atom or a molecule. Atomic spectroscopy is concerned with the electronic transitions in atoms, and is quite simple compared to electronic molecular spectroscopy. This is because atoms only have translational and electronic degrees of freedom, and sometime influenced by nuclear spin (molecules also have vibrations and rotations). Recall (Lecture 5) that for hydrogen and hydrogen-like ions (i.e., He+, Li2+, Be3+, etc.) with a single electron and a nucleus with charge +Ze, the hamiltonian is: £ 2 Ze 2 ,'& L2 & 2µ 4B,0r µ = (memp)/(me + mp) reduced mass e = 1.6021 × 10-19 C charge on an electron r = distance between +e and -e -12 2 2 -1 -3 ,0 = 8.854 × 10 C s kg m permitivity of free space For a polyelectronic atom, the hamiltonian becomes: 2 2 2 £ 2 Ze e ,'& j Li & j % j 2me i i 4B,0ri i<j 4B,0rij summed over i electrons. The new term describes coulombic repulsions between pairs of electrons which are distance rij apart (second term is coulombic attraction between nucleus and electrons) SCF Method The electron-electron repulsion term creates a many-body problem, in which the hamiltonian cannot be broken down into a sum of contributions from each electron - the result is that the Schroedinger equation cannot be solved exactly.
    [Show full text]
  • Bsc Chemistry
    Subject Chemistry Paper No and Title Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module No and Title 11, Electronic spectra of coordination complexes III Module Tag CHE_P7_M11 CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 11: Electronic spectra of coordination complexes III TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Spinning of an electron 4. Orbital motion of an electron 4.1 Defining an orbital 4.2 Orbital 5. Spin-Orbit coupling 4.1 What is spin-orbit coupling? 4.2 Free ion terms 6. Summary CHEMISTRY Paper 7: Inorganic Chemistry-II (Metal-Ligand Bonding, Electronic Spectra and Magnetic Properties of Transition Metal Complexes) Module 11: Electronic spectra of coordination complexes III 1. Learning Outcomes After studying this module, you shall be able to Know the difference between spinning and orbital motion of an electron Learn various factors influencing the spin orbit coupling Analyze various free ion terms for different configurations Understand the orbital in an atom along with orbital motion 2. Introduction For multi-electronic atoms and ions, the spin and orbital motion of various electrons are coupled together by spin-orbit coupling or L-S coupling or Russell-Saunders coupling. In this practice the total angular momentum represented by L and total spin angular momentum given by S, combine together to generate a new quantum number given by J. 3. Spinning of an electron A spherical body rotating about a fixed axis that passes through a point at the center of the sphere represents a model that how electron behaves in an atom.
    [Show full text]