Transmitting Time of Day Using XDS Packets
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Daylight Saving Time
Daylight Saving Time Beth Cook Information Research Specialist March 9, 2016 Congressional Research Service 7-5700 www.crs.gov R44411 Daylight Saving Time Summary Daylight Saving Time (DST) is a period of the year between spring and fall when clocks in the United States are set one hour ahead of standard time. DST is currently observed in the United States from 2:00 a.m. on the second Sunday in March until 2:00 a.m. on the first Sunday in November. The following states and territories do not observe DST: Arizona (except the Navajo Nation, which does observe DST), Hawaii, American Samoa, Guam, the Northern Mariana Islands, Puerto Rico, and the Virgin Islands. Congressional Research Service Daylight Saving Time Contents When and Why Was Daylight Saving Time Enacted? .................................................................... 1 Has the Law Been Amended Since Inception? ................................................................................ 2 Which States and Territories Do Bot Observe DST? ...................................................................... 2 What Other Countries Observe DST? ............................................................................................. 2 Which Federal Agency Regulates DST in the United States? ......................................................... 3 How Does an Area Move on or off DST? ....................................................................................... 3 How Can States and Territories Change an Area’s Time Zone? ..................................................... -
Dp15647eng Web Om
Model No: DP15647 If you need additional assistance? Call toll free 1.800.877.5032 We can Help! Owner’s Manual Table of Contents . 5 Frequent Asked Questions (FAQ) . 45 © 2007 Sanyo Manufacturing Corporation TO THE OWNER Welcome to the World of Sanyo Thank you for purchasing this Sanyo High-Definition Digital Television. You made an excellent choice for Performance, Reliability, Features, Value, and Styling. Important Information Before installing and operating this DTV, read this manual thoroughly. This DTV provides many convenient features and functions. Operating the DTV properly enables you to manage those features and maintain it in good condition for many years to come. If your DTV seems to operate improperly, read this manual again, check operations and cable connections and try the solutions in the “Helpful Hints” sections of this manual. If the problem still persists, please call 1-800-877-5032. We can help! 2 CAUTION THIS SYMBOL INDICATES THAT DANGEROUS VOLTAGE CONSTITUT- RISK OF ELECTRIC SHOCK DO NOT OPEN ING A RISK OF ELECTRIC SHOCK IS PRESENT WITHIN THIS UNIT. CAUTION: TO REDUCE THE RISK OF ELECTRIC SHOCK, DO NOT REMOVE COVER (OR THIS SYMBOL INDICATES THAT THERE ARE IMPORTANT OPERATING BACK). NO USER-SERVICEABLE PARTS INSIDE. REFER SERVICING TO QUALIFIED AND MAINTENANCE INSTRUCTIONS IN THE LITERATURE ACCOM- SERVICE PERSONNEL. PANYING THIS UNIT. WARNING: TO REDUCE THE RISK OF FIRE OR ELECTRIC SHOCK, DO NOT EXPOSE THIS APPLIANCE TO RAIN OR MOISTURE. IMPORTANT SAFETY INSTRUCTIONS CAUTION: PLEASE ADHERE TO ALL WARNINGS ON THE PRODUCT AND IN THE OPERATING INSTRUCTIONS. BEFORE OPERATING THE PRODUCT, PLEASE READ ALL OF THE SAFETY AND OPERATING INSTRUCTIONS. -
Daylight Saving Time (DST)
Daylight Saving Time (DST) Updated September 30, 2020 Congressional Research Service https://crsreports.congress.gov R45208 Daylight Saving Time (DST) Summary Daylight Saving Time (DST) is a period of the year between spring and fall when clocks in most parts of the United States are set one hour ahead of standard time. DST begins on the second Sunday in March and ends on the first Sunday in November. The beginning and ending dates are set in statute. Congressional interest in the potential benefits and costs of DST has resulted in changes to DST observance since it was first adopted in the United States in 1918. The United States established standard time zones and DST through the Calder Act, also known as the Standard Time Act of 1918. The issue of consistency in time observance was further clarified by the Uniform Time Act of 1966. These laws as amended allow a state to exempt itself—or parts of the state that lie within a different time zone—from DST observance. These laws as amended also authorize the Department of Transportation (DOT) to regulate standard time zone boundaries and DST. The time period for DST was changed most recently in the Energy Policy Act of 2005 (EPACT 2005; P.L. 109-58). Congress has required several agencies to study the effects of changes in DST observance. In 1974, DOT reported that the potential benefits to energy conservation, traffic safety, and reductions in violent crime were minimal. In 2008, the Department of Energy assessed the effects to national energy consumption of extending DST as changed in EPACT 2005 and found a reduction in total primary energy consumption of 0.02%. -
Bill Analysis
HOUSE OF REPRESENTATIVES FINAL BILL ANALYSIS BILL #: HB 1013 FINAL HOUSE FLOOR ACTION: SUBJECT/SHORT Daylight Saving Time 103 Y’s 11 N’s TITLE SPONSOR(S): Nuñez; Fitzenhagen and others GOVERNOR’S Approved ACTION: COMPANION CS/CS/SB 858 BILLS: SUMMARY ANALYSIS HB 1013 passed the House on February 14, 2018, and subsequently passed the Senate on March 6, 2018. The bill declares the Legislature’s intent to observe Daylight Saving Time year-round throughout the entire state if federal law is amended to permit states to take such action. The bill does not appear to have a fiscal impact. The bill was approved by the Governor on March 23, 2018, ch. 2018-99, L.O.F., and will become effective on July 1, 2018. This document does not reflect the intent or official position of the bill sponsor or House of Representatives. STORAGE NAME: h1013z1.LFV.docx DATE: March 28, 2018 I. SUBSTANTIVE INFORMATION A. EFFECT OF CHANGES: Present Situation The Standard Time Act of 1918 In 1918, the United States enacted the Standard Time Act, which adopted a national standard measure of time, created five standard time zones across the continental U.S., and instituted Daylight Saving Time (DST) nationwide as a war effort during World War I.1 DST advanced standard time by one hour from the last Sunday in March to the last Sunday in October.2 DST was repealed after the war but the standard time provisions remained in place.3 During World War II, a national DST standard was revived and extended year-round from 1942 to 1945.4 Uniform Time Act of 1966 Following World War -
Proceedings of the 2Nd Annual Digital TV Applications Software Environment
NISTIR 6740 Proceedings of the 2nd Annual Digital TV Applications Software Environment (DASE) Symposium 2001: End-to-End Data Services, Interoperability & Applications Edited by: Alan Mink Robert Snelick Information Technology Laboratory June 2001 National Institute of Standards and Technology Technology Administration, U.S. Deportment of Commerce U.S. Department of Commerce Donald L Evans, Secretary National Institute of Standards and Technology Karen H. Brown, Acting Director Table of Contents Foreword ..................................................................................…………………………………………… vi Symposium Committee ................................................................................................................................ vii Opening Remarks Welcome to NIST Alan Mink A TSC Introduction Marker Richer, Executive Director. Advanced Television Systems Committee (ATSC) 1st Day Keynote Gloria Tristani, Commissioner, Federal Communications Commission (FCC) ATP at NIST Marc Stanley, Acting Director, Advanced Technology Program (ATP) 2nd Day Keynote Christopher Atienza. Associate Director of Technology, Public Broadcasting System (PBS) Session 1: DASE Components DASE Overview, Architecture & Common Content Types...............................................................1 Glenn Adams (ATSC T3/SI7 Acting Chair), XFSI, Inc DASE Declarative Applications & Environment .............................................................................31 Glenn Adams (ATSC T3/SI7 Acting Chair), XFSI, Inc DASE API Object Model -
Soils in the Geologic Record
in the Geologic Record 2021 Soils Planner Natural Resources Conservation Service Words From the Deputy Chief Soils are essential for life on Earth. They are the source of nutrients for plants, the medium that stores and releases water to plants, and the material in which plants anchor to the Earth’s surface. Soils filter pollutants and thereby purify water, store atmospheric carbon and thereby reduce greenhouse gasses, and support structures and thereby provide the foundation on which civilization erects buildings and constructs roads. Given the vast On February 2, 2020, the USDA, Natural importance of soil, it’s no wonder that the U.S. Government has Resources Conservation Service (NRCS) an agency, NRCS, devoted to preserving this essential resource. welcomed Dr. Luis “Louie” Tupas as the NRCS Deputy Chief for Soil Science and Resource Less widely recognized than the value of soil in maintaining Assessment. Dr. Tupas brings knowledge and experience of global change and climate impacts life is the importance of the knowledge gained from soils in the on agriculture, forestry, and other landscapes to the geologic record. Fossil soils, or “paleosols,” help us understand NRCS. He has been with USDA since 2004. the history of the Earth. This planner focuses on these soils in the geologic record. It provides examples of how paleosols can retain Dr. Tupas, a career member of the Senior Executive Service since 2014, served as the Deputy Director information about climates and ecosystems of the prehistoric for Bioenergy, Climate, and Environment, the Acting past. By understanding this deep history, we can obtain a better Deputy Director for Food Science and Nutrition, and understanding of modern climate, current biodiversity, and the Director for International Programs at USDA, ongoing soil formation and destruction. -
612 Part 71—Standard Time Zone Boundaries
§ 41.125 49 CFR Subtitle A (10±1±96 Edition) the BOCA National and SBCC Standard the Stafford Act after a Presidentially building codes. The seismic zone map declared major disaster or emergency in the ICBO Uniform Building Code is when assistance actions involve new also based on one of the USGS maps of construction or total replacement of a horizontal ground acceleration. How- building. ever, the ICBO map should be used only with the ICBO code. Also, it is not ap- § 41.125 Judicial review. propriate to use the NEHRP maps with Nothing in this part is intended to the ICBO Uniform Building Code, be- create any right or benefit, substantive cause the design requirements of build- or procedural, enforceable at law by a ing codes are keyed to the numerical party against the DOT, its Operating values of the map they reference. Administrations, its officers, or any (c) Revisions to the model codes list- person. ed in paragraph (b) of this section that are substantially equivalent to or ex- ceed the then current or immediately PART 71ÐSTANDARD TIME ZONE preceding edition of the NEHRP rec- BOUNDARIES ommended provisions, as it is updated, may be approved by a DOT Operating Sec. Administration to meet the require- 71.1 Limits defined; exceptions authorized ments in this part. for certain rail operating purposes only. (d) State, county, local, or other ju- 71.2 Annual advancement of standard time. risdictional building ordinances adopt- 71.3 Atlantic zone. 71.4 Eastern zone. ing and enforcing the model codes, list- 71.5 Boundary line between eastern and ed in paragraph (b) of this section, in central zones. -
MTS400 Series MPEG Test Systems User Manual I Table of Contents
User Manual MTS400 Series MPEG Test Systems Volume 1 of 2 071-1507-05 This document applies to firmware version 1.4 and above. www.tektronix.com Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. Contacting Tektronix Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA For product information, sales, service, and technical support: H In North America, call 1-800-833-9200. H Worldwide, visit www.tektronix.com to find contacts in your area. Warranty 2 Tektronix warrants that this product will be free from defects in materials and workmanship for a period of one (1) year from the date of shipment. If any such product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product. Parts, modules and replacement products used by Tektronix for warranty work may be new or reconditioned to like new performance. All replaced parts, modules and products become the property of Tektronix. In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. -
ANSI/CTA Standard
AANNSSII//CCTTAA SSttaannddaarrdd Line 21 Data Services ANSI/CTA-608-E R-2014 (Formerly ANSI/CEA-608-E R-2014) April 2008 NOTICE Consumer Technology Association (CTA)™ Standards, Bulletins and other technical publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for his particular need. Existence of such Standards, Bulletins and other technical publications shall not in any respect preclude any member or nonmember of the Consumer Technology Association from manufacturing or selling products not conforming to such Standards, Bulletins or other technical publications, nor shall the existence of such Standards, Bulletins and other technical publications preclude their voluntary use by those other than Consumer Technology Association members, whether the standard is to be used either domestically or internationally. Standards, Bulletins and other technical publications are adopted by the Consumer Technology Association in accordance with the American National Standards Institute (ANSI) patent policy. By such action, the Consumer Technology Association does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the Standard, Bulletin or other technical publication. Note: The user's attention is called to the possibility that compliance with this standard may require use of an invention covered by patent rights. By publication of this standard, no position is taken with respect to the validity of this claim or of any patent rights in connection therewith. The patent holder has, however, filed a statement of willingness to grant a license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring to obtain such a license. -
Application Note AN2015-03
Application Note AN2015-03 Solving UTC and Local Time Time-Stamp Challenges Using ACSELERATOR TEAM® SEL-5045 Software Joshua Hughes INTRODUCTION As intelligent electronic devices (IEDs) that allow historical data recording and trending (such as protective relays and revenue meters) are integrated into power systems, it becomes apparent that correlating time between devices at multiple locations can be a complex issue. It is good practice to connect high-accuracy clocks to all IEDs to allow for event analysis. When comparing events, it is usually easy to determine if one event record is applicable or not because of time zone differences or daylight-saving time (DST) discrepancies. However, when comparing continuous trending data, such as load profile data, it becomes much more important to record accurate time zone and DST information. Without this information, the data profile might not provide enough detail to determine what local time the data were recorded in. This application note describes the challenges associated with time zones and DST, and it presents two ACSELERATOR TEAM® SEL-5045 Software configurations for solving time-stamp ambiguity issues. PROBLEM The two major challenges associated with data time stamps are time zones and DST application. Most users prefer that IEDs in the field be programmed with local time to make their jobs easier, but this causes complications with older devices that do not understand time zones or DST. Time Zones Local times were first determined by apparent solar time using devices such as sundials. Because apparent solar time fluctuates based on where the measurement is taken (roughly four minutes for every degree of longitude), time zones were created to maintain a standard time between multiple regions. -
Z86129/130/131 1 Ntsc Line 21 Decoder
1 Z86129/130/131 1 NTSC LINE 21 DECODER FEATURES Speed Pin Count/ Standard On-Screen Display Automatic Data Extraction Devices (MHz) Package Types Temp. Range & Closed Captioning V-Chip Time of Day Z86129 12 18-Pin DIP, SOIC 0° to +70°C Yes Yes Yes Z86130 12 18-Pin DIP, SOIC 0° to +70°C No Yes Yes Z86131 12 18-Pin DIP, SOIC 0° to +70°CNoNoYes ■ Complete Stand-Alone Line 21 Decoder for Closed- ■ Minimal Communications and Control Overhead Captions and Extended Data Services (XDS). Provides Simple Implementation of Violence Block, Closed Caption, and Auto Clock Set Features. ■ Preprogrammed to Provide Full Compliance with EIA- 608 Specifications for Extended Data Services. ■ Programmable, Full Screen On-Screen Display (OSD) for Creating OSD or Captions inside a Picture-in-Picture ■ Automatic Extraction and Serial Output of Special XDS (PiP) Window (Z86129 only). Packets such as Time of Day, Local Time Zone, and Program Rating (V-Chip). ■ I2C Serial Data and Control Communication ■ Cost-Effective Solution for NTSC Violence Blocking ■ User-Programmable Horizontal Display Position for inside Picture-in-Picture (PiP) Windows. easy OSD Centering and Adjustment (Z86129 only). GENERAL DESCRIPTION The Z86129/130/131 is a stand-alone integrated circuit, bility, but are ideally suited for Line 21 data slicer capable of processing Vertical Blanking Interval (VBI) data applications. from both fields of the video frame in data conforming to the transmission format defined in the Television Decoder The Z86129/130/131 can recover and output to a host pro- 2 Circuits Act of 1990 and in accordance with the Electronics cessor via the I C serial bus any XDS data packet defined Industry Association specification 608 (EIA-608). -
Preparing for the Broadcast Analog Television Turn-Off: How to Keep Cable Subscribers’ Tvs from Going Dark
White Paper Preparing for the Broadcast Analog Television Turn-Off: How to Keep Cable Subscribers’ TVs from Going Dark Learn about the NTSC-to-ATSC converter/ receiver and how TANDBERG Television’s RX8320 ATSC Broadcast Receiver solves the Analog Turn-Off issues discussed in this paper Matthew Goldman Vice President of Technology TANDBERG Television, part of the Ericsson Group First presented at SCTE Cable-Tec Expo® 2008 in Philadelphia, Pennsylvania © TANDBERG Television 2008. All rights reserved. Table of Contents 1. The “Great Analog Television Turn-Off” ..............................................................................................3 1.1 Receiving Over-the-Air TV Transmissions ..............................................................................3 1.2 ATSC DTV to NTSC Analog Conversion ...................................................................................5 2. Video Down-Conversion .........................................................................................................................5 2.1 Active Format Description ..........................................................................................................8 2.2 Bar Data .............................................................................................................................................9 2.3 Color Space Correction ................................................................................................................9 3. Audio Processing .......................................................................................................................................9