Marine Ecology Progress Series 537:137

Total Page:16

File Type:pdf, Size:1020Kb

Marine Ecology Progress Series 537:137 Vol. 537: 137–150, 2015 MARINE ECOLOGY PROGRESS SERIES Published October 14 doi: 10.3354/meps11459 Mar Ecol Prog Ser Interactive effects of parasitic infection and ocean acidification on the calcification of a marine gastropod Colin D. MacLeod*, Robert Poulin Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand ABSTRACT: The interactive effects of ocean acidification (OA) and parasitic infection have the potential to alter the performance of many marine organisms. Parasitic infection can affect host organisms’ response to abiotic stressors, and vice versa, while the response of marine organisms to stressors associated with OA can vary within and between taxonomic groups (host or parasite). Accordingly, it seems likely that the combination of infection stress and the novel stressors associ- ated with OA could alter previously stable host–parasite interactions. This study is a detailed investigation into the changes to shell growth, dissolution, and tensile strength in the New Zealand mud snail Zeacumantus subcarinatus caused by trematode infection in combination with exposure to simulated OA conditions. This study also tests the effects of reduced pH on snails infected by 3 different trematode species to investigate potential species-specific effects of infec- tion. After a 90 d exposure to 3 pH treatments (pH 8.1, 7.6, and 7.4), acidified seawater caused sig- nificant reductions in shell growth, length, and tensile strength in all snails. Trematode infected snails displayed increased shell growth and dissolution and reduced shell strength relative to uninfected conspecifics. In all measured variables, there were also significant differences between snails maintained at the same pH but infected by different species of parasite. These results indicate that parasitic infection has the potential to alter host organisms’ response to OA and that the magnitude of this effect varies among parasite species. KEY WORDS: Ocean acidification · Parasite · Calcification · Marine gastropod · Intertidal Resale or republication not permitted without written consent of the publisher INTRODUCTION 2009, Kroeker et al. 2013), although the degree of sen- sitivity exhibited by marine species is highly variable Over the past 10 yr, ocean acidification (OA) re - even between sympatric or phylogenetically related search has developed from short-term, single species species (Lardies et al. 2014, Zhang et al. 2014, experiments that manipulated only seawater pH (e.g. MacLeod & Poulin 2015). Such differential tolerances Bibby et al. 2007) to complex, long-term experiments could disrupt inter- and intra-specific interactions of that investigate the effects of combined abiotic stres- ecologically important marine species (De Laender et sors and biological interactions in simulated OA con- al. 2014). The inter actions between marine parasites ditions (pH and temperature, Melatunan et al. 2011; and their hosts are particularly vulnerable to stressors pH and UV, Melnychuk et al. 2012; pH and salinity, associated with OA. The external transmission stages Dickinson et al. 2013; competition, Hofmann et al. of marine parasites can be negatively affected by 2012; predation, Allan et al. 2013; parasitism, Mac- changing environmental conditions (Pietrock & Leod & Poulin 2015). In the majority of OA experi- Marcogliese 2003), and some species exhibit signifi- ments, the effects of acidified seawater on marine cantly increased mortality of free-living transmission organisms are negative (reviewed in Doney et al. stages when exposed to acidified seawater (MacLeod *Corresponding author: [email protected] © Inter-Research 2015 · www.int-res.com 138 Mar Ecol Prog Ser 537: 137–150, 2015 & Poulin 2015). Internal parasite life-stages, such as Trematode parasites are found in most marine the sporocysts, rediae, and metacercariae of trema- environments and use between 2 and 4 host species todes, rely on host organisms for nutrients and/or to complete their life cycle (Galaktionov & Dobrovol- physical protection, while metacercariae also func- skij 2003). A typical trematode life cycle involves: (1) tion as a transmission vector to the next stage or host a definitive host, most often a seabird or large fish, in their life cycle (Galaktionov & Dobrovolskij 2003). where sexual reproduction occurs; (2) a first interme- The greater the number of host species involved in a diate host, almost universally a gastropod, where parasite’s life-cycle, the higher the probability that asexual reproduction occurs; and (3) a second inter- one will prove susceptible to stressors associated mediate host in which resting cysts (metacercariae) with OA. If either the free-living transmission stages are formed and await ingestion by the definitive host of parasites, or any host species involved in the para- to complete the parasites life cycle. Trematode trans- site’s life-cycle, are negatively af fected by OA, the mission between first and second intermediate hosts abundance of marine parasites could be reduced and is achieved by free-living transmission stages (cer- the important regulatory role that they play in many cariae) which emerge from the snail and either ecosystem processes (Combes 1996, Mouritsen & actively or passively infect the second intermediate Poulin 2002) could be altered. host. In addition to the first intermediate gastropod In addition to the direct effects of OA, the combina- host, many of the second intermediate hosts of trema- tion of parasitic infection and stressors associated tode parasites are calcifiers, e.g. bivalves and crusta - with OA could cumulatively alter the performance of ceans. Consequently, the trematode life cycle may be host species, further affecting the host-parasite rela- affected by the 2 main stressors associated with OA, tionship. OA can increase the metabolic demands i.e. reduced pH (host and parasite) and reduced car- placed on host species, as the in creased concentra- bonate ion concentration (host only). tion of hydrogen ions in seawater causes a corre- Trematode infection of the gastropod host typically sponding increase in the energy required to maintain causes complete sterilisation, either by destroying re- internal acid/base homeostasis (Pörtner et al. 2004). productive tissue or by manipulating host physiology Calcifying host organisms also experience higher (Lafferty & Kuris 2009). Trematode infection can alter metabolic demands while forming calcium carbonate the tolerance of host snails to abiotic stressors (e.g. (CaCO3) structures in acidified seawater (reviewed Cruz-Mendoza et al. 2006), change feeding be- in Parker et al. 2013), as the same chemical processes haviours (Wood et al. 2007), and affect habitat choice that increase hydrogen ion concentration in seawater (Bates et al. 2011). It is assumed that these modifica- also decrease the availability of the carbonate ions tions are adaptive for the parasite, i.e. they increase its that play a central role in the biological synthesis of probability of reaching its next host (Curtis 1987). In CaCO3 (see Calcification box). Parasitic infection can some cases, infection has also resulted in changes to also increase the energetic requirements of host shell growth rate and shell morphology in host snails organisms by damaging or consuming host tissue (Mouritsen & Jensen 1994, Probst & Kube 1999, Hay (Cheng 1963), increasing energetically costly behav- et al. 2005). Three hypotheses have been proposed to iour (Sousa 1991), or by absorbing nutrients directly explain increased shell growth, or gigantism, resulting from the hosts body (Cheng & Snyder 1963). Just as from trematode infection: (1) an adaptive strategy of additional abiotic stressors such as hypoxia have the host to deprive the parasite of energy that would exacerbated the ef fects of OA on marine organisms usually be used for reproduction; (2) a non-adaptive (Rosa & Seibel 2008, Gobler et al. 2014), the interac- consequence of the excess energy available to the tion of parasitic infection and stressors associated snail after sterilisation, i.e. the parasite does not utilise with OA may have synergistic negative effects. all the energy that would otherwise have been used Indeed, exposure to acidified seawater has already for reproduction (reviewed in Minchella 1985); and (3) been linked to altered im mune response in marine an adaptive strategy of the parasite to increase the molluscs (Bibby et al. 2008, Dupont & Thorndyke space available for asexual reproduction (McCarthy 2012). As parasites are a ubiquitous component of all et al. 2004). In all hypotheses, infection plays a role in marine environments, and many of the marine altering the rate of calcification of infected host snails organisms that act as hosts are calcifiers, an under- and may interact with the changes to the calcification standing of how the effects of acidified seawater and process caused by OA. OA has caused increased shell parasitic infection will interact is necessary to fully dissolution (Nienhuis et al. 2010), reduced shell repair understand the future ecosystem effects of OA rates (Coleman et al. 2014), and elevated meta bolic (MacLeod & Poulin 2012, Kroeker et al. 2014). rates (Lardies et al. 2014) in marine gastro pods. Ac- MacLeod & Poulin: Ocean acidification and parasitic infection 139 cordingly, the trematode–snail relationship is an ideal MATERIALS AND METHODS model system to investigate the combined effects of OA and infection stress. Trematode–snail system This study exposed groups of mud snails
Recommended publications
  • Environmental Stressors Induced Strong Small-Scale Phenotypic
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.327767; this version posted March 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Environmental stressors induced strong small-scale phenotypic 2 differentiation in a wide-dispersing marine snail 3 Nicolás Bonel1,2,3*, Jean-Pierre Pointier4 & Pilar Alda1,2 4 5 6 1 Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS—CCT—CONICET Bahía 7 Blanca), Camino de la Carrindanga km 7, Bahía Blanca 8000, Argentina. 8 9 10 2 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. 11 12 13 3 Centre d’Écologie Fonctionnelle et Évolutive, UMR 5175, CNRS—Université de Montpellier, 14 Université Paul-Valéry Montpellier—École Pratique des Hautes Études—IRD, 34293 Montpellier Cedex 15 05, France. 16 17 4 PSL Research University, USR 3278 CNRS–EPHE, CRIOBE Université de Perpignan, Perpignan, 18 France. 19 20 * To whom correspondence should be addressed: [email protected] (N. Bonel) 21 22 23 24 25 Running head: Small-scale phenotypic differentiation in a wide-dispersing snail 26 27 28 29 30 31 Key words: adaptive plasticity, shell characters, genital morphology, intertidal 32 zonation, contrasting selection pressures, planktotrophic snail, high dispersal potential. 33 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.327767; this version posted March 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • Las Prácticas Individuales Y La Práctica De Consenso En La Historia De La Helmintología: Un Estudio a Partir De La Filosofía De La Ciencia De Philip Kitcher
    Las prácticas individuales y la práctica de consenso en la historia de la helmintología: Un estudio a partir de la filosofía de la ciencia de Philip Kitcher Tesis doctoral Lic. Martín Orensanz Director: Dr. Guillermo Denegri Co-directora: Dra. Susana Gisela Lamas Ilustración del siglo XVI, del médico y cirujano Ambroise Paré. El texto que acompaña la imagen dice “La figura de un gusano que fue expelido mediante el vómito”. Ilustración del siglo XVII, del médico Edward Tyson. Se trata de una lombriz solitaria que fue encontrada en el intestino de un perro doméstico. ÍNDICE Introducción Capítulo 1 El conocimiento de los helmintos en la Época Antigua 1. Comentarios generales 2. Hipócrates 3. Aristóteles 4. La práctica de consenso en la Época Antigua Capítulo 2 La Edad Media 1. Comentarios generales 2. Avicena 3. Arnauld de Villaneuve 4. La práctica de consenso en la Edad Media Capítulo 3 El siglo XVI 1. Comentarios generales 2. Paracelso 3. Ambroise Paré 4. La práctica de consenso en el siglo XVI Capítulo 4 El siglo XVII 1. Comentarios generales 2. William Ramesey 3. Francesco Redi 4. Edward Tyson 5. Anthony van Leeuwenhoek 6. La práctica de consenso en el siglo XVII Capítulo 5 El siglo XVIII 1. Comentarios generales 2. Nicholas Andry de Boisregard 3. Antonio Vallisneri 4. Carlos Linneo 5. Marcus Elieser Bloch 6. Johann August Ephraim Goeze 7. La práctica de consenso en el siglo XVIII Capítulo 6 El siglo XIX 1. Comentarios generales 2. Karl Asmund Rudolphi 2 3. Johannes Japetus Steenstrup 4. Gottlieb Heinrich Friedrich Küchenmeister 5. Patrick Manson 6.
    [Show full text]
  • Four Marine Digenean Parasites of Austrolittorina Spp. (Gastropoda: Littorinidae) in New Zealand: Morphological and Molecular Data
    Syst Parasitol (2014) 89:133–152 DOI 10.1007/s11230-014-9515-2 Four marine digenean parasites of Austrolittorina spp. (Gastropoda: Littorinidae) in New Zealand: morphological and molecular data Katie O’Dwyer • Isabel Blasco-Costa • Robert Poulin • Anna Falty´nkova´ Received: 1 July 2014 / Accepted: 4 August 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract Littorinid snails are one particular group obtained. Phylogenetic analyses were carried out at of gastropods identified as important intermediate the superfamily level and along with the morpholog- hosts for a wide range of digenean parasite species, at ical data were used to infer the generic affiliation of least throughout the Northern Hemisphere. However the species. nothing is known of trematode species infecting these snails in the Southern Hemisphere. This study is the first attempt at cataloguing the digenean parasites Introduction infecting littorinids in New Zealand. Examination of over 5,000 individuals of two species of the genus Digenean trematode parasites typically infect a Austrolittorina Rosewater, A. cincta Quoy & Gaim- gastropod as the first intermediate host in their ard and A. antipodum Philippi, from intertidal rocky complex life-cycles. They are common in the marine shores, revealed infections with four digenean species environment, particularly in the intertidal zone representative of a diverse range of families: Philo- (Mouritsen & Poulin, 2002). One abundant group of phthalmidae Looss, 1899, Notocotylidae Lu¨he, 1909, gastropods in the marine intertidal environment is the Renicolidae Dollfus, 1939 and Microphallidae Ward, littorinids (i.e. periwinkles), which are characteristic 1901. This paper provides detailed morphological organisms of the high intertidal or littoral zone and descriptions of the cercariae and intramolluscan have a global distribution (Davies & Williams, 1998).
    [Show full text]
  • Soft-Bottom Benthic Communities Otago Harbour and Blueskin Bay
    ISSN 0083-7903, 80 (Print) ISSN 2538-1016; 80 (Online) ISS 0083-7903 Soft-bottom Benthic Communities m• Otago Harbour and Blueskin Bay, New Zealand by S. F. RAINER New Zealand Oceanographic Institute Memoir 80 1981 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH Soft-bottom Benthic Communities Otago Harbour and Blueskin Bay, New Zealand by S. F. RAINER Portobello Marine Laboratory, Portobello, New Zealand New Zealand Oceanographic Institute Memoir 80 1981 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ ISSN 0083-7903 Received for publication: July 1974 <O Crown Copyright 1981 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page LIST OF FIGURES 4 LIST OFTABLES 4 ABSTRACT 5 INTRODUCTION 6 SAMPLINGAND LABORA TORY METHODS 6 THEBENTinC ENVIRONMENT 7 General description and sample locations 7 Water temperature and salinity 8 Tides and currents 13 Sediments 14 Pollution 14 THEBENTiilC CoMMUNITIES. 14 Harbour mud corr.munity 14 Harbour fine sand community 15 Harbour stable shell-sand community 15 Harbour unstable sand community 16 Shallow off-shore fine sand community 20 DISCUSSION 21 The classification of benthic communities in a shallow-water deposit environment 21 The effect of shell and macroscopic algae on species composition 22 Patternsof diversity 24 Comparison with other shallow-water soft-bottom communities 28 ACKNOWLEDGMENTS 31 REFERENCES 31 APPENDICES 33 1.
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Social organization in trematode parasitic flatworms Permalink https://escholarship.org/uc/item/2xg9s6xt Author Garcia Vedrenne, Ana Elisa Publication Date 2018 Supplemental Material https://escholarship.org/uc/item/2xg9s6xt#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara Social organization in trematode parasitic flatworms A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Ecology, Evolution and Marine Biology by Ana Elisa Garcia Vedrenne Committee in charge: Professor Armand M. Kuris, Chair Professor Kathleen R. Foltz Professor Ryan F. Hechinger Professor Todd H. Oakley March 2018 The dissertation of Ana Elisa Garcia Vedrenne is approved. _____________________________________ Ryan F. Hechinger _____________________________________ Kathleen R. Foltz _____________________________________ Todd H. Oakley _____________________________________ Armand M. Kuris, Committee Chair March 2018 ii Social organization in trematode parasitic flatworms Copyright © 2018 by Ana Elisa Garcia Vedrenne iii Acknowledgements As I wrap up my PhD and reflect on all the people that have been involved in this process, I am happy to see that the list goes on and on. I hope I’ve expressed my gratitude adequately along the way– I find it easier to express these feeling with a big hug than with awkward words. Nonetheless, the time has come to put these acknowledgements in writing. Gracias, gracias, gracias! I would first like to thank everyone on my committee. I’ve been lucky to have a committee that gave me freedom to roam free while always being there to help when I got stuck.
    [Show full text]
  • Marine Ecology Progress Series 290:109
    MARINE ECOLOGY PROGRESS SERIES Vol. 290: 109–117, 2005 Published April 13 Mar Ecol Prog Ser Impact of trematodes on host survival and population density in the intertidal gastropod Zeacumantus subcarinatus B. L. Fredensborg1, K. N. Mouritsen2, R. Poulin1,* 1Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand 2Department of Marine Ecology, Institute of Biological Sciences, Aarhus University, Finlandsgade 14, 8200 Aarhus N, Denmark ABSTRACT: Ecological studies have demonstrated that parasites are capable of influencing various aspects of host life history and can play an important role in the structure of animal populations. We investigated the influence of infection by castrating trematodes on the reproduction, survival and population density of the intertidal snail Zeacumantus subcarinatus, using both laboratory and field studies. The results demonstrate a highly significant reduction in the reproductive output in heavily infected populations compared to populations with low trematode prevalence. A long-term labora- tory study showed reduced survival of infected snails compared to uninfected specimens, for snails held at 18 and 25°C. Furthermore, parasite-induced mortality in the field was inferred from a reduc- tion in prevalence of infection among larger size classes, indicating that infected individuals disap- pear from the population, although the effect of parasites varied between localities. A field survey from 13 localities including 2897 snails demonstrated that prevalence of castrating trematodes had a significant negative effect on both population density and biomass of Z. subcarinatus. This study pro- vides one of the first demonstrations of population-level effects of parasites on their hosts in the field. The results of this study emphasise the importance of castrating parasites as potential agents of pop- ulation regulation in host species with limited dispersal ability.
    [Show full text]
  • Trematode Parasites of Otago Harbour (New Zealand) Soft-Sediment Intertidal Ecosystems: Life Cycles, Ecological Roles and DNA Barcodes
    LeungNew Zealand et al.—Trematodes Journal of Marine of Otago and Harbour Freshwater Research, 2009, Vol. 43: 857–865 857 0028–8330/09/4304–0857 © The Royal Society of New Zealand 2009 Trematode parasites of Otago Harbour (New Zealand) soft-sediment intertidal ecosystems: life cycles, ecological roles and DNA barcodes TOMMY L.F. LEUNG1 INTRODUCTION 1 KIRSTEN M. DONALD Parasites, though often unnoticed by most researchers, DEVON B. KEENEY2 are an integral part of intertidal ecosystems (Sousa ANSON V. KOEHLER1 1991; Mouritsen & Poulin 2002). Trematodes 1 (Digenea), in particular, are common parasites of ROBErt C. PEOPLES most animal taxa occurring in intertidal communities ROBErt POULIN1 (Sousa 1991). Typically, intertidal trematodes use 1Department of Zoology molluscs (sometimes bivalves, but most often snails) University of Otago as first intermediate hosts (see Fig. 1) (Kearn 1998). P.O. Box 56 Within the molluscan host, trematodes replace Dunedin, New Zealand host tissue such as gonads and eventually occupy email: [email protected] a significant portion of the volume within the 2Department of Biological Sciences shell; the outcome of infection for the mollusc is Le Moyne College almost invariably castration (Mouritsen & Poulin Syracuse, NY, United States 2002). After developing as sporocysts or rediae and multiplying asexually within the mollusc host, trematodes leave the mollusc as free-swimming and Abstract Parasites, in particular trematodes short-lived cercariae that seek a second intermediate (Platyhelminthes: Digenea), play major roles in host, in which they encyst as metacercariae (Kearn the population dynamics and community structure 1998; Poulin 2006). Depending on the trematode of invertebrates on soft-sediment mudflats.
    [Show full text]
  • Effects of Salinity on Multiplication and Transmission of an Intertidal Trematode Parasite
    Mar Biol (2011) 158:995–1003 DOI 10.1007/s00227-011-1625-7 ORIGINAL PAPER Effects of salinity on multiplication and transmission of an intertidal trematode parasite Fengyang Lei • Robert Poulin Received: 9 November 2010 / Accepted: 6 January 2011 / Published online: 20 January 2011 Ó Springer-Verlag 2011 Abstract Salinity levels vary spatially in coastal areas, Introduction depending on proximity to freshwater sources, and may also be slowly decreasing as a result of anthropogenic Intertidal areas are subject to rapid and sharp environ- climatic changes. The impact of salinity on host–parasite mental changes due to the daily exposure to air and water interactions is potentially a key regulator of transmission caused by tides. Salinity levels, though roughly constant in processes in intertidal areas, where trematodes are extre- the open ocean, are highly variable in intertidal habitats, in mely common parasites of invertebrates and vertebrates. both space and time. They can range from 2 to 3 psu due to We investigated experimentally the effects of long-term freshwater input from precipitation, rivers and surface exposure to decreased salinity levels on output of infective runoff, up to 60 psu following evaporation from shallow stages (cercariae) and their transmission success in the pools at low tide (Adam 1993; Berger and Kharazova trematode Philophthalmus sp. This parasite uses the snail 1997). On longer time scales, predicted climate change Zeacumantus subcarinatus as intermediate host, in which it may lead to altered precipitation regimes and rising sea asexually produces cercariae. After leaving the snail, levels following the thawing of freshwater ice stores at the cercariae encyst externally on hard substrates to await poles, both of which are likely to affect the salinity levels accidental ingestion by shorebirds, which serve as defini- experienced by intertidal organisms (IPCC 2007).
    [Show full text]
  • Seasonal Dynamics in an Intertidal Mudflat: the Case of a Complex Trematode Life Cycle
    Vol. 455: 79–93, 2012 MARINE ECOLOGY PROGRESS SERIES Published May 30 doi: 10.3354/meps09761 Mar Ecol Prog Ser Seasonal dynamics in an intertidal mudflat: the case of a complex trematode life cycle A. Studer*, R. Poulin Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand ABSTRACT: Seasonal fluctuations of host densities and environmental factors are common in many ecosystems and have consequences for biotic interactions, such as the transmission of par- asites and pathogens. Here, we investigated seasonal patterns in all host stages associated with the complex life cycle of the intertidal trematode Maritrema novaezealandensis on a mudflat where this parasite’s prevalence is known to be high (Lower Portobello Bay, Otago Harbour, New Zealand). The first intermediate snail host Zeacumantus subcarinatus, a key second inter- mediate crustacean host, the amphipod Paracalliope novizealandiae, and definitive bird hosts were included in the study. The density (snails, amphipods), abundance (birds), prevalence, i.e. percentage of infected individuals, and infection intensity (snails, amphipods) of the studied organisms were assessed. Furthermore, temperature was recorded in tide pools, where transmis- sion mainly occurs, over a 1 yr period. Overall, the trematode prevalence in snail hosts was 64.5%, with 88.4% of infected snails harbouring M. novaezealandensis. There was a strong sea- sonal signal in prevalence and infection intensity in second intermediate amphipod hosts, with peaks for both parameters in summer (over 90% infected; infection intensity: 1 to 202 parasites per amphipod). This peak coincided with the highest abundance of definitive bird hosts and of small and still uninfected snails present on the mudflat.
    [Show full text]
  • Four Trematode Cercariae from the New Zealand Intertidal Snail Zeacumantus Subcarinatus (Batillariidae)
    NewMartorelli Zealand et al.—ParasitesJournal of Zoology, of Zeacumantus 2008, Vol. subcarinatus35: 73–84 73 0301–4223/08/3501–0073 © The Royal Society of New Zealand 2008 Four trematode cercariae from the New Zealand intertidal snail Zeacumantus subcarinatus (Batillariidae) SERGIO R. MArtORELLI species parasitising the snail Z. subcarinatus that, Centro de Estudios Parasitólogicos y Vectores together, have a major impact on the ecology and (CEPAVE) evolution of this snail. 2 Nro. 584, 1900 La Plata Buenos Aires, Argentina Keywords Cercariae; Heterophyidae; Microphal- lidae; Philophthalmidae; Renicolidae; parasites; BRIAN L. FREDENSBORG trematodes; Zeacumantus subcarinatus Department of Biology University of Texas Pan-American Edinburg, TX 78539, USA INTRODUCTION TOMMY L. F. LEUNG ROBErt POULIN* Intertidal mollusks are regularly found harbouring Department of Zoology larval stages of parasitic trematodes, or Digenea University of Otago (Poulin & Mouritsen 2003). Our knowledge of these PO Box 56 parasites from New Zealand coastal ecosystems is Dunedin 9054, New Zealand very poor, however. As part of long-term parasito- * logical surveys of mollusks from intertidal areas Author for correspondence: of the South Island, the gastropod Zeacumantus [email protected] subcarinatus (Sowerby, 1855) (Prosobranchia: Batil- lariidae) was examined for cercariae. This gastropod is common and highly abundant in New Zealand Abstract The cercariae and sporocysts (or rediae) soft-sediment intertidal areas as well as sheltered of four trematode species are described from the rocky shores. It has already been reported as first intertidal snail Zeacumantus subcarinatus: a distome intermediate host of five trematode species, two of xiphidiocercaria assigned to the genus Renicola which have been described: the microphallid, Mari- (family Renicolidae); a monostome xiphidiocercaria trema novaezealandensis Martorelli, 2004, and the belonging either to the genus Microphallus or Mega- echinostomatid Acanthoparyphium sp.
    [Show full text]
  • Introduction to Mollusca and the Class Gastropoda
    Author's personal copy Chapter 18 Introduction to Mollusca and the Class Gastropoda Mark Pyron Department of Biology, Ball State University, Muncie, IN, USA Kenneth M. Brown Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA Chapter Outline Introduction to Freshwater Members of the Phylum Snail Diets 399 Mollusca 383 Effects of Snail Feeding 401 Diversity 383 Dispersal 402 General Systematics and Phylogenetic Relationships Population Regulation 402 of Mollusca 384 Food Quality 402 Mollusc Anatomy and Physiology 384 Parasitism 402 Shell Morphology 384 Production Ecology 403 General Soft Anatomy 385 Ecological Determinants of Distribution and Digestive System 386 Assemblage Structure 404 Respiratory and Circulatory Systems 387 Watershed Connections and Chemical Composition 404 Excretory and Neural Systems 387 Biogeographic Factors 404 Environmental Physiology 388 Flow and Hydroperiod 405 Reproductive System and Larval Development 388 Predation 405 Freshwater Members of the Class Gastropoda 388 Competition 405 General Systematics and Phylogenetic Relationships 389 Snail Response to Predators 405 Recent Systematic Studies 391 Flexibility in Shell Architecture 408 Evolutionary Pathways 392 Conservation Ecology 408 Distribution and Diversity 392 Ecology of Pleuroceridae 409 Caenogastropods 393 Ecology of Hydrobiidae 410 Pulmonates 396 Conservation and Propagation 410 Reproduction and Life History 397 Invasive Species 411 Caenogastropoda 398 Collecting, Culturing, and Specimen Preparation 412 Pulmonata 398 Collecting 412 General Ecology and Behavior 399 Culturing 413 Habitat and Food Selection and Effects on Producers 399 Specimen Preparation and Identification 413 Habitat Choice 399 References 413 INTRODUCTION TO FRESHWATER shell. The phylum Mollusca has about 100,000 described MEMBERS OF THE PHYLUM MOLLUSCA species and potentially 100,000 species yet to be described (Strong et al., 2008).
    [Show full text]
  • An Intertidal Zostera Pool Community at Kawerua, Northland and Its Foraminiferal Microfauna
    TANK 25, 1979 AN INTERTIDAL ZOSTERA POOL COMMUNITY AT KAWERUA, NORTHLAND AND ITS FORAMINIFERAL MICROFAUNA by B.W. Hayward New Zealand Geological Survey, P.O. Box .10-368. Lower Hull SUMMARY An unusual occurrence of the sea grass, Zostera capricorni, living in an intertidal pool on the storm-swept west coast of Northland is described. The macrofauna associated with the Zostera is similar to that found associated with it elsewhere in its more normal sheltered subtidal and intertidal sandy mud Hat habitat. The pool has a sandy hot lorn with rocks scattered throughout. The rocks support a rich macrofauna and flora both over their sides and beneath them and this is briefly described. Living foraminiferal microfaunas were found in the sandy sediments that cover the pool bottom, as well as on Corallina turf, but were not found on the laminae of Zostera or on the brown alga Hormosira banksii. The domi• nant foraminifera on Corallina turf are Rosalina bradyi and Ammonia beccarii with a number of less numerous species. The bottom sands are dominated by live Florilus parri (27-42%), Ammonia beccarii (7-28%) and Evolvocassidulina orientalis, Quinqueloculina seminulum, Rosalina bradyi, Cassidulina carinata, Elphidium charlottensis and Discorbinella bertheloti (all 3-10%). At suborder level the fauna consist of about 90% Rotalina, 9% Miliolina and less than 1% Textulariina. Counts of stained (live) foraminifera indicate standing crop abundance values of 10 000-16 500 liv• ing foraminifera per square metre of pool bottom. The faunas contain an unusually high number of planktonics (13-17% of total) for an intertidal situation, but this is thought to be due to the prevalence of onshore winds that drive oceanic water in close to the west coast of New Zealand.
    [Show full text]