Optical Radiation Transmission Levels Through Transparent Welding Curtains

Total Page:16

File Type:pdf, Size:1020Kb

Optical Radiation Transmission Levels Through Transparent Welding Curtains Optical Radiation Transmission Levels Through Transparent Welding Curtains Tests with blue, green, gray and yellow welding curtains from commercial sources indicate yellow curtains transmit a larger component of hazardous wavelengths than the others, although the magnitude of optical energy transmitted by yellow curtains is small BY C. EUGENE MOSS ABSTRACT. Results are described for communication among workers and poraled, and Wilson Sales Company. tests conducted on 25 transparent with management. Industrial use of As far as it can be determined these welding curtain samples of four colors the transparent curtains, however, has were the only known manufacturers of from five manufacturers to document resulted in questions concerning the transparent welding curtains at the spectral transmission values of curtains protection they afford workers and time of testing. used in welding environments. The observers outside the immediate Some samples had been previously conclusion based on the results of welding area. However, the published acquired which enabled transmission these tests suggests that most transpar­ literature, excluding manufacturers' tests to be conducted on aged ent curtains will afford adequate specifications, for such curtains is curtains. In addition, a used bicolored protection from optical radiation in limited." For this reason the National welding curtain was obtained from an the ultraviolet region, but that all of Institute for Occupational Safety and industrial welding facility. Samples them will transmit high percentages of Health undertook tests to determine from this particular curtain permitted infrared radiation. optical radiation protection provided spectral transmission comparisons to by transparent welding curtains: this be made on a before and after clean­ Introduction paper describes the results of the tests ing condition. performed. Table I categorizes the samples Numerous skin and eye injuries have tested according to manufacturer, col­ occurred in the welding environment Apparatus and Methods or, thickness, and age. from exposure to ultraviolet, visible, and infrared radiation (hereinafter de­ Acquisition of Welding Curtain Samples Transmission Measurement System noted optical radiation).17 A control measure that has been used to reduce Samples of transparent welding cur­ All spectral transmission measure­ the incidence of injuries to bystanders tains were requested from all those ments were performed with a Perkin- consists of using welding curtains manufacturers who were identified Elmer Model 323 recording spectro- made of metal or flame-resistant fabric through a search of the welding trade photometer. This system has a low that are generally opaque to most opti­ literature. Twenty-one curtain samples sensitivity level which makes it a valu­ cal radiations. of various colors and sizes were able tool to document low transmis­ received. A relatively recent innovation in sion values. The spectrophotometer is Manufacturers that provided sam­ curtain material has been the use of a double-beam single-pass recording ples were Davlynne Incorporated, FIRL transparent colored curtains made monochromator that uses deuterium Industries Incorporated, Frommelt In­ from polyvinyl chloride plastic film and tungsten lamps as the optical radi­ dustries, Singer Safety Products Incor- and at least three other components. ation sources. The detector used in the These components are a color dye, system consists of a photomultiplier tube for the ultraviolet and visible flame retardant chemical, and an Paper to be presented at a symposium regions, and a lead-sulfide cell for the ultraviolet absorber. The intensity and sponsored by the AWS Safety and Health spectral distribution of transmitted Committee during the AWS 60th Annual infrared region. The spectral range of optical radiation through a given Meeting in Detroit, Michigan, April 2-6, the spectrophotometer was 210 to curtain depends, in some manner, on 1979. 2600 nanometers (nm), i.e., 8.3 x 10" such factors as optical density, thick­ to 102.4 x 10 " in.* C EUGENE MOSS is a Health Physicist, U.S. ness, and color. Public Health Service, National Institute for One of the main advantages of using Occupational Safety and Health, Cincin­ *7 nanometer (nm) = I Xo 70 " m = 39.4 X such curtains is the increased visual nati, Ohio. 10 " in. = 70 angstroms (A). WELDING RESEARCH SUPPLEMENT I 69-s does not vary too much, since the Table 1-Data on Tested Curtain Samples intensity of transmitted radiation is 1 dependent on thickness. To check Thickness""" how well the manufacturer controlled Sample Color cm ,ge in years the thickness of the curtains, transmis­ A Yellow 0.0351 > 1 sion measurements were compared B Green 0.0356 > 1 among samples cut from separate C Gray 0.0328 > 1 sheets of the same curtain type. As part D Yellow 0.0361 > 1 of this test a measurement was made E Green 0.0328 > 1 to obtain the thickness of each sample F Yellow 0.0335 > 1 with a micrometer. The average thick­ G Yellow 0.0368 < 1 H Green 0.0312 < 1 ness is shown in Table 1. Gray 0.0297 < 1 Blue 0.0312 <1 Transformation Technique K Green 0.0305 < 1 L Yellow 0.0307 <1 A program was developed for a M Gray 0.0328 <1 Hewlett-Packard Model 9830A com­ N Green 0.0307 < 1 puter to transform transmission values O Yellow 0.0358 <1 from the three separate optical radia­ P Green 0.0300 < 1 tion regions into one continuous curve Q Yellow 0.0353 <1 on semi-logarithmic graph paper. This R Yellow 0.0310 > 1 format permitted better comparisons S Blue 0.0297 > 1 among the various samples. T Yellow 0.0328 < 1 W Gray 0.0371 > 1 X Green 0.0351 <1 Results Yellow 0.0310 >1 z A typical sample spectral transmis­ '•'Thickness given is average of three measurements sion plot as obtained from the spectro­ '"2.54 cm = 1 in. photometer is shown in Fig. 1. Note After the recommended warm-up letter, placed into an envelope until that the three optical regions were period, the spectrophotometer was the order of measurement was deter­ divided as follows: ultraviolet 210-360 calibrated at the lowest wavelength mined by a random number process, nm, visible 340-700 nm, and infrared value in each of three optical radiation and measured. Each of the samples 600-2600 nm. regions at both the zero and 100% was positioned at the entrance slit of The original data, while informative, transmission level. The instrument was the detector chamber. Care was taken have several disadvantages in their set for 100% transmission and exam­ during the tests to position all samples existing format. First, curves shown in ined for departure from 100% across over the cell window in the exact same this manner are difficult to read with the entire spectral range of all regions. manner by the use of adhesive tape samples that have unusual transmis­ A zero-check was made at the end of strips. Cloves and tongs were used to sion properties. Second, comparisons each region to determine the magni­ minimize contamination. A plot of with samples having different spectral tude and direction of any drift correc­ percent transmission vs. wavelength transmission values are laborious. Fi­ tions. was made on every sample. nally, the curves do not follow the A rectangular-shaped segment, ap­ standard division of optical radiation proximately 25 X 50 mm (1 X 2 in.) regions which are ultraviolet, less than Reproducibility was cut from the center portion of 400 nm, visible 400-760 nm, and every sample, assigned an arbitrary It is important that curtain thickness infrared, greater than 760 nm. These z o CO s z < z Transmission Range Optical Region LU 0-7% Ultraviolet (210-360 nm) U 0-700% Visible (340-700 nm) 0-700% Infrared (600-2600 nm) NANOMETERS Fig. 1—Typical spectral transmission curve of welding curtain obtained for ultraviolet radiation is 1% and for visible and infrared radiation is 100% 70-s|MARCH 1979 IOOO 1300 IOOO 1300 1600 1900 2200 NANOMETERS NANOMETERS Fig. 2—Typical modified spectral transmission plot Fig. 3—Composite of green curtains (samples B, E, H, K, N, P and X) difficulties can be averted by using the previous mentioned transformation sion tendency in this area while the during the time of study. Therefore, format technique. When this format is yellow and blue samples demonstrate one should not assume only aging used, a composite curve such as in Fig. a very sudden and distinct transmis­ caused the effect observed. Note that 2 results. sion change around 500 and 800 nm, with the same curtain, sample trans­ There is a small error in the compos­ respectively. mission values appear to decrease as ite curves due to the difference in 4. All curtain samples transmit in­ the contaminant level increases—Fig. sensitivity of the two sequentially used frared radiation. For example, the blue 10. spectrophotometer detectors. The er­ and yellow samples will transmit A theoretical relationship exists be­ ror associated with this factor is about about 90% in the infrared (IR) region tween spectral transmission levels and 5% and occurs at the junction of the while the gray samples transmit the thickness of the curtains provided that visible-infrared region. least at 20%. the curtain tint and its concentration In order to determine the degree of Samples of the same color and are the same. This relationship is spectral transmission uniformity in the approximately equivalent thickness, shown as equation (1): manufacturing process, a comparison but differing in age, generally show I (\) = \e(\)e-*«>* (1) was made among all curtain samples variation of transmission levels over of the same color. Figures 3-6 show the measured optical radiation region In this equation, which is often sample data according to color. Sev­ of less than 5% (Figs. 6, 7, and 8). referred to as Lambert's Law of eral characteristics are apparent from However, Fig.
Recommended publications
  • Observation of Strong Nonlinear Interactions in Parametric Down
    Observation of strong nonlinear interactions in parametric down- conversion of x-rays into ultraviolet radiation Authors: S. Sofer1*, O. Sefi1*, E. Strizhevsky1, S.P. Collins2, B. Detlefs3, Ch.J. Sahle3, and S. Shwartz1 *S. Sofer and O. Sefi contributed equally to this work. Affiliations: 1Physics Department and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, 52900 Israel 2 Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom 3 ESRF – The European Synchrotron, CS 40220, 38043 Grenoble Cedex 9, France. Summary: Nonlinear interactions between x-rays and long wavelengths can be used as a powerful atomic scale probe for light-matter interactions and for properties of valence electrons. This probe can provide novel microscopic information in solids that existing methods cannot reveal, hence to advance the understanding of many phenomena in condensed matter physics. However, thus far, reported x-ray nonlinear effects were very small and their observations required tremendous efforts. Here we report the observation of unexpected strong nonlinearities in parametric down-conversion (PDC) of x-rays to long wavelengths in gallium arsenide (GaAs) and in lithium niobate (LiNbO3) crystals, with efficiencies that are about 4 orders of magnitude stronger than the efficiencies measured in any material studied before. These strong nonlinearities cannot be explained by any known theory and indicate on possibilities for the development of a new spectroscopy method that is orbital and band selective. In this work we demonstrate the ability to use PDC of x-rays to investigate the spectral response of materials in a very broad range of wavelengths from the infrared regime to the soft x-ray regime.
    [Show full text]
  • Energy Distribution of Optical Radiation Emitted by Electrical Discharges in Insulating Liquids
    energies Article Energy Distribution of Optical Radiation Emitted by Electrical Discharges in Insulating Liquids Michał Kozioł Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland; [email protected] Received: 26 March 2020; Accepted: 29 April 2020; Published: 1 May 2020 Abstract: This article presents the results of the analysis of energy distribution of optical radiation emitted by electrical discharges in insulating liquids, such as synthetic ester, natural ester, and mineral oil. The measurements of optical radiation were carried out on a system of needle–needle type electrodes and on a system for surface discharges, which were immersed in brand new insulating liquids. Optical radiation was recorded using optical spectrophotometry method. On the basis of the obtained results, potential possibilities of using the analysis of the energy distribution of optical radiation as an additional descriptor for the recognition of individual sources of electric discharges were indicated. The results can also be used in the design of various types of detectors, as well as high-voltage diagnostic systems and arc protection systems. Keywords: optical radiation; electrical discharges; insulating liquids; energy distribution 1. Introduction One of the characteristic features of electrical discharges is the emission to the space in which they occur, an electromagnetic wave with a very wide range. Such typical ranges of emitted radiation include ionizing radiation, such as X-rays, optical radiation, acoustic emission, and radio wave emission. Based on most of these emitted ranges, diagnostic methods were developed, which enables the detection and location of the source of electrical discharges, which is a great achievement in the diagnostics of high-voltage electrical insulating devices [1–4].
    [Show full text]
  • Protecting Workers from Ultraviolet Radiation
    Protecting Workers from Ultraviolet Radiation Editors: Paolo Vecchia, Maila Hietanen, Bruce E. Stuck Emilie van Deventer, Shengli Niu International Commission on Non-Ionizing Radiation Protection In Collaboration with: International Labour Organization World Health Organization ICNIRP 14/2007 International Commission on Non-Ionizing Radiation Protection ICNIRP Cataloguing in Publication Data Protecting Workers from Ultraviolet Radiation Protection ICNIRP 14/2007 1. Ultraviolet Radiation 2. Biological effects 3. Non-Ionizing Radiation ISBN 978-3-934994-07-2 The International Commission on Non-Ionizing Radiation Protection welcomes requests for permission to reproduce or translate its publications, in part or full. Applications and enquiries should be addressed to the Scientific Secretariat, which will be glad to provide the latest information on any changes made to the text, plans for new editions, and reprints and translations already available. © International Commission on Non-Ionizing Radiation Protection 2007 Publications of the International Commission on Non-Ionizing Radiation Protection enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. ICNIRP Scientific Secretary Dr. G. Ziegelberger Bundesamt für Strahlenschutz Ingolstädter Landstraße 1 85764 Oberschleißheim Germany Tel: (+ 49 1888) 333 2156 Fax: (+49 1888) 333 2155 e-mail: [email protected] www.icnirp.org Printed by DCM, Meckenheim International Commission on Non-Ionizing Radiation Protection The International Commission on Non-Ionizing Radiation Protection (ICNIRP) is an independent scientific organization whose aims are to provide guidance and advice on the health hazards of non-ionizing radiation exposure. ICNIRP was established to advance non-ionizing radiation protection for the benefit of people and the environment.
    [Show full text]
  • A High-Power Source of Optical Radiation with Microwave Excitation
    ISBN: 978-84-9048-719-8 DOI: http://dx.doi.org/10.4995/Ampere2019.2019.9761 A HIGH-POWER SOURCE OF OPTICAL RADIATION WITH MICROWAVE EXCITATION G. Churyumov1, 2, A. Denisov1, T. Frolova2, N. Wang1, J. Qiu1 11Harbin Institute of Technology, 92, West Dazhi Street, Nan Gang District, Harbin, China 2 Kharkiv National University of Radio Electronics, 14, Nauky Ave., 61166, Kharkiv, Ukraine [email protected] Keywords: microwave heating, magnetron, electrodeless sulfur lamp, plasma, microwave excitation 1. Introduction For more than 50 years, interest to the microwave heating technology has not weakened. In addition to the traditional areas of its application, which described in detail in [1], recently there has been an expansion of technological possibilities for the use of microwave energy associated with the impact of electromagnetic waves of the microwave range on various materials (sintering of metal and ceramic powders) and media, including plasma [2]. One such new direction is the creation of high-power and environmentally friendly sources of optical radiation on the basis of the electrodeless sulfur lamp with microwave excitation [2, 3]. As it is known, Michael Ury and his associates at Fusion Systems invented this radically new lamp in 1990, but the lamp was not ideal because of the complexity of its design [4]. Therefore, it was not put into production. However, every year the scientific interest was growing. An analysis of scientific publications shows that every 5 years a new country is joined to this issue. Now more than in 10 countries of all would including USA, Great Britain, South Korea, Netherlands, Germany, Russia, and so on where there are research teams that are carried out an investigation concerning the electrodeless lamps with microwave excitation.
    [Show full text]
  • Chapter 37: Artificial Optical Radiation
    37 Artificial Optical Radiation Safety Scope 1 Artificial optical radiation (AOR) is electromagnetic radiation emitted by non-natural sources in the wavelength range 100 nm to 1 mm. It includes coherent (laser) and non- coherent (broadband) optical radiation but not all of this radiation is in the visible region1. Hazards from exposure to optical radiation are wavelength dependent, and it is convenient to breakdown the spectrum broadly into three regions namely ultra-violet (UV) radiation; visible radiation; and infra-red (IR) radiation. Both the UV and IR regions may be further broken down into 3 subdivisions. This Chapter details the requirements for the keeping, using and disposal of equipment emitting AOR, or equipment containing components which emit AOR. Table 1 Optical radiation wavelength regions Optical radiation wavelength regions CIE Definition ICNIRP/IEC/ACGIH definition Region λ(nm) λ (nm) UV-C 100 - 280 180 - 280 UV-B 280 - 315 280 - 315 UV-A 315 - 380 315 - 400 Visible 380 - 760 400 - 700 IR-A 760 - 1400 700 - 1400 IR-B 1400 - 3000 1400 - 3000 IR-C 3000 - 1000000 3000 - 1000000 NOTES (1) CIE - International Commission on Illumination. (2) ICNIRP - International Commission on Non Ionising Radiation Protection. (3) IEC - International Electro-technical Committee. (4) ACGIH - American Congress of Government Industrial Hygienists. 1 Generally, AOR is not considered to be a type of ionising radiation. However, parts of the ultraviolet (UV) spectrum furthest from the visible region have some ionising properties. 1 JSP 392 Pt 2 Chapter 37 (V1.1 Dec 2020) Statutory Requirements 2 The Control of Artificial Optical Radiation at Work Regulations 2010 (CAOR 10) applies directly.
    [Show full text]
  • HHE Report No. HETA-98-0224-2714, the Trane
    ThisThis Heal Healthth Ha Hazzardard E Evvaluaaluationtion ( H(HHHEE) )report report and and any any r ereccoommmmendendaatitonsions m madeade herein herein are are f orfor t hethe s sppeeccifiicfic f afacciliilityty e evvaluaaluatedted and and may may not not b bee un univeriverssaalllyly appappliliccabable.le. A Anyny re reccoommmmendaendatitoionnss m madeade are are n noot tt oto be be c consonsideredidered as as f ifnalinal s statatetemmeenntsts of of N NIOIOSSHH po polilcicyy or or of of any any agen agenccyy or or i ndindivivididuualal i nvoinvolvlved.ed. AdditionalAdditional HHE HHE repor reportsts are are ava availilabablele at at h htttptp:/://ww/wwww.c.cddcc.gov.gov/n/nioiosshh/hhe/hhe/repor/reportsts ThisThis HealHealtthh HaHazzardard EEvvaluaaluattionion ((HHHHEE)) reportreport andand anyany rreeccoommmmendendaattiionsons mmadeade hereinherein areare fforor tthehe ssppeecciifficic ffaacciliilittyy eevvaluaaluatteded andand maymay notnot bbee ununiiververssaallllyy appappapplililicccababablle.e.le. A AAnynyny re rerecccooommmmmmendaendaendattitiooionnnsss m mmadeadeade are areare n nnooott t t totoo be bebe c cconsonsonsiideredderedidered as asas f fifinalnalinal s ssttataatteteemmmeeennnttstss of ofof N NNIIOIOOSSSHHH po popolliilccicyyy or oror of ofof any anyany agen agenagencccyyy or oror i indndindiivviviiddiduuualalal i invonvoinvollvvlved.ed.ed. AdditionalAdditional HHEHHE reporreporttss areare avaavaililabablele atat hhtttpp::///wwwwww..ccddcc..govgov//nnioiosshh//hhehhe//reporreporttss This Health Hazard Evaluation (HHE) report and any recommendations made herein are for the specific facility evaluated and may not be universally applicable. Any recommendations made are not to be considered as final statements of NIOSH policy or of any agency or individual involved. Additional HHE reports are available at http://www.cdc.gov/niosh/hhe/reports HETA 98–0224–2714 The Trane Company Ft.
    [Show full text]
  • The Eye and Electromagnetic Radiation
    The Eye and Electromagnetic Radiation Patrick D. Yoshinaga, OD, MPH, FAAO Author’s Bio Dr. Pat Yoshinaga is an Assistant Professor at the Marshall B. Ketchum University, Southern California College of Optometry and teaches in the areas of ophthalmic optics, public health, and low vision. He is a Fellow of the American Academy of Optometry and a Diplomate in the Academy’s Public Health and Environmental Vision Section. Previously he has worked in private practice and has served as Director of Contact Lens Services at the University of Southern California Doheny Eye Institute. ________________________________________________________________________________________________ Throughout our lifetimes we are all exposed to sunlight, which includes a broad section of the electromagnetic spectrum. Included in this section are ultraviolet light (UV), with wavelengths from approximately 295 nm to 400 nm, visible light (400-800 nm) and infrared (800-1200 nm) [1]. Sunlight and UV radiation can have both beneficial and detrimental effects on humans. Detrimental effects include aging of the skin, sunburn, skin cancer and cataracts. However, sunlight and UV exposure are beneficial for vitamin D development, which can affect bone health. Additionally, sunlight affects melatonin and serotonin production, which help regulate the body’s circadian rhythm and may also contribute to overall health [2]. When considering UV rays we understand that the UV spectrum is divided into UVC rays (100-280 nm), UVB rays (280-315 nm), and UVA rays (315-400 nm). It has been well documented that UV radiation can damage the eye. Factors that affect the damage that the eye may incur include the wavelength of light, the intensity, duration of exposure, cumulative effect, angle of incidence, solar elevation in the sky, ground reflection, altitude, and the anatomy of the eyebrow and eyelids [1, 3].
    [Show full text]
  • Terahertz Waves for Communications and Sensing
    M. J. FITCH AND R. OSIANDER Terahertz Waves for Communications and Sensing Michael J. Fitch and Robert Osiander The development of technology in the THz frequency band has seen rapid progress recently. Considered as an extension of the microwave and millimeter wave bands, the THz frequency offers greater communications bandwidth than is available at microwave frequencies. The development of sources and detectors for this frequency range has been driven by other applications such as spectroscopy, imaging, and impulse ranging. Only recently modulators and fi lters have been added to enable the development of communi- cations applications. APL’s contributions to date in THz research have been primarily in the areas of spectroscopy and imaging. This article gives an overview of THz technology for communications and sensing applications, with some discussion of the sources, detec- tors, and modulators needed for a practical THz communications system. INTRODUCTION Until recently, the THz (1012 Hz) region of the elec- the development of effi cient sources, sensitive detectors, tromagnetic spectrum from about 100 GHz to 10 THz and suitable modulators in this range. has been almost inaccessible because of the lack of effi - The electromagnetic spectrum is shown in Fig. 1. For cient sources and detectors in this “THz gap.” Beginning the lower frequencies, including RFs for AM and FM in the 1960s, the main interest in developing detectors radio as well as microwaves, the sources are based on in this frequency range was motivated by astrophys- electric generation governed by the classical transport ics, since the rotational spectra of some gases of astro- of electrons.
    [Show full text]
  • Lasers and Optical Radiation
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of either the World Health Organization, the United Nations Environment Programme, or the International Radiation Protection As- sociation, Environmental Health Criteria 23 LASERS AND OPTICAL RADIATION Published under the joint sponsorship of the United Nations Environment Programme, the World Health Organization, and the International Radiation Protection Association 4 World Health Organization -re- Geneva, 1982 ISBN 92 4 1540834 © World Health Organization 1982 Publications of the World Health Organization enjoy copyright protec- tion in accordance with the provisions of Protocol 2 of the Universal Copy- right Convention. For rights of reproduction or translation of WHO publica- tions, In part or in toto, application should be made to the Office of Publica- tions, World Health Organization, Geneva, Switzerland. The World Health Organization welcomes such applications. The designations employed and the presentation of the material in this publication dor6f4mply the expression of any opinion whatsoever on the part of the Secretariat of the World Health Organization concerning the legal status of any eotit4territory, city or area or of its authorities, or concerning the delimitatien,of its frontiers or boundaries. The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by the World Health Organization in Preference to others of a similar oature that are not men- tioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital Letters. PRINTED IN FINLAND 33 5635 VAMMALA 7 5i) -3- CONTENTS ENVIRONMENTAL HEALTH CRITERIA FOR LASERS AND OPTICAL RADIATION .......................
    [Show full text]
  • Theory of Nonlinear Interactions Between X Rays and Optical Radiation in Crystals
    PHYSICAL REVIEW RESEARCH 1, 033133 (2019) Theory of nonlinear interactions between x rays and optical radiation in crystals R. Cohen and S. Shwartz Physics Department and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel (Received 17 December 2018; published 27 November 2019) We show that the nonlinear interactions between x rays and longer wavelengths in crystals depend strongly on the band structure and related properties. Consequently, these types of interactions can be used as a powerful probe for fundamental properties of crystalline bulk materials. In contrast to previous work that highlighted that these types of nonlinear interactions can provide microscopic information on the valence electrons at the atomic scale resolution, we show that these interactions also contain information that is related to the periodic potential of the crystal. We explain how it is possible to distinguish between the two contributions. Our work indicates on the possibility for the development of novel multidimensional pump-probe metrology techniques that will provide spectroscopic information combined with structural information including ultrafast dynamics at the atomic scale. DOI: 10.1103/PhysRevResearch.1.033133 I. INTRODUCTION matching). The use of the reciprocal lattice vector also pro- vides the atomic scale resolution, which can be achieved by The possibility to utilize nonlinear interactions between measuring the efficiencies of the effect for many reciprocal x rays and radiation at wavelengths ranging from infrared lattice vectors and by using Fourier analysis [3]. Since the (IR) to ultraviolet (UV) as an atomic-scale probe for inter- goal of the measurements is to probe microscopic informa- molecular interactions and for properties of valence electrons tion, the use of crystals introduces a new challenge for the has been discussed in several publications [1–9].
    [Show full text]
  • Optical Radiations in Medicine a Survey of Uses, Measurement and Sources
    AAPM REPORT NO. 3 I OPTICAL RADIATIONS IN MEDlClNE Published for the American Association of Physics in Medicine by the American Institute of Physics FOREWARD The American Association of Physicists in Medicine is organized, as stated in one of its declared purposes, to encourage interest and training in medical physics and related fields. The Association pursues its purposes through a structure of Task Forces, Committees and Councils which prepare recommendations and reviews in the form of reports. These reports cover topics which may be scientific, educational or professional in nature, and they are published after considering the concern of each report. The present publication is a survey prepared under the auspices of the Optical Radiation Task Force at the direction of the General Medical physics commit- tee (chairmen, Paul L. Carson) established by the AAPM Science council. Edward W. Webster, Ph.D. Chairmen, Publications Committee ISBN: l-88340-06-1 OPTICAL RADIATIONS IN MEDICINE A SURVEY OF USES, MEASUREMENT AND SOURCES Edwin C. McCullough, Ph.D. Mayo Clinic/Foundation Rochester, Minnesota ©COPYRIGHT American Association of Physicists in Medicine 1977 -l- ABSTRACT: The extensive use of optical radiations in the diagnostic and therapeutic management of patients invites the interested physicist to pro- vide calibration and quality control. Various medical uses of optical ra- diations in medicine as well as measurement instrumentation and radiation sources are surveyed. If one surveys the uses of nonionizing radiation at any hospital one finds that a large number of patients are exposed to nonionizing radiation during diagnostic and therapeutic management. Although nonionizing radiation includes ultrasound, microwaves, and radiowaves in addition to “optical” ra- diations (ultraviolet, visible and infrared), this survey will include only the diagnostic and therapeutic uses of optical radiations.
    [Show full text]
  • Assessing the Relationship Between Microwave Vegetation Optical Depth and T Gross Primary Production ⁎ Irene E
    Int J Appl Earth Obs Geoinformation 65 (2018) 79–91 Contents lists available at ScienceDirect Int J Appl Earth Obs Geoinformation journal homepage: www.elsevier.com/locate/jag Assessing the relationship between microwave vegetation optical depth and T gross primary production ⁎ Irene E. Teubnera, , Matthias Forkela, Martin Jungb, Yi Y. Liuc, Diego G. Mirallesd, Robert Parinussae, Robin van der Schaliee, Mariette Vreugdenhila, Christopher R. Schwalmf,g, Gianluca Tramontanah, Gustau Camps-Vallsi, Wouter A. Dorigoa a Department of Geodesy and Geoinformation, TU Wien, Gußhausstraße 27-29, 1040 Vienna, Austria b Department for Biogeochemical Integration, Max Planck Institute for Biogeochemistry, P.O. Box 10 01 64, 07701 Jena, Germany c School of Geography and Remote Sensing, Nanjing University of Information Science & Technology (NUIST), No.219, Ningliu Road, Nanjing, Jiangsu 210044, China d Laboratory of Hydrology and Water Management, Ghent University, Campus Coupure, Coupure links 653, B-9000 Ghent, Belgium e VanderSat B.V., Huygensstraat 34, 2201 DK Noordwijk, The Netherlands f Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540-1644, USA g Center for Ecosystem Science and Society, Northern Arizona University, P.O. Box 5620, Flagstaff, AZ 86011, USA h Department for Innovation in Biological Agro-food and Forest systems (DIBAF), Tuscia University, Via San Camillo de Lellis s.n.c., 01100 Viterbo, Italy i Image and Signal Processing Group (ISP), Universitat de València, Calle Catedrático José Beltrán 2, 46980 Paterna (València), Spain ARTICLE INFO ABSTRACT Keywords: At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is Microwave remote sensing commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing Vegetation dynamics data.
    [Show full text]