Differences in Local Perceptions of Osteochilus Spilurus (Cyprinidae: Labeoninae) from Several Islands in Indonesia
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Siak River in Central Sumatra, Indonesia
Tropical blackwater biogeochemistry: The Siak River in Central Sumatra, Indonesia Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Antje Baum Bremen 2008 Advisory Committee: 1. Reviewer: Dr. Tim Rixen Center for Tropical Marine Ecology (ZMT), Bremen, Germany 2. Reviewer: Prof. Dr. Wolfgang Balzer University of Bremen 1. Examiner: Prof. Dr. Venugopalan Ittekkot Center for Tropical Marine Ecology (ZMT), Bremen, Germany 2. Examiner: Dr. Daniela Unger Center for Tropical Marine Ecology (ZMT), Bremen, Germany I Contents Summary .................................................................................................................... III Zusammenfassung...................................................................................................VII 1. Introduction........................................................................................................ 11 2. Published and submitted papers..................................................................... 15 2.1. Sources of dissolved inorganic nutrients in the peat-draining river Siak, Central Sumatra, Indonesia ................................................................................... 15 2.2. The Siak, a tropical black water river in central Sumatra on the verge of anoxia ..................................................................................................................... 31 2.3. Relevance of peat draining rivers in central Sumatra for riverine input of dissolved organic carbon into the -
Ekspedisi Saintifik Biodiversiti Hutan Paya Gambut Selangor Utara 28 November 2013 Hotel Quality, Shah Alam SELANGOR D
Prosiding Ekspedisi Saintifik Biodiversiti Hutan Paya Gambut Selangor Utara 28 November 2013 Hotel Quality, Shah Alam SELANGOR D. E. Seminar Ekspedisi Saintifik Biodiversiti Hutan Paya Gambut Selangor Utara 2013 Dianjurkan oleh Jabatan Perhutanan Semenanjung Malaysia Jabatan Perhutanan Negeri Selangor Malaysian Nature Society Ditaja oleh ASEAN Peatland Forest Programme (APFP) Dengan Kerjasama Kementerian Sumber Asli and Alam Sekitar (NRE) Jabatan Perlindungan Hidupan Liar dan Taman Negara (PERHILITAN) Semenanjung Malaysia PROSIDING 1 SEMINAR EKSPEDISI SAINTIFIK BIODIVERSITI HUTAN PAYA GAMBUT SELANGOR UTARA 2013 ISI KANDUNGAN PENGENALAN North Selangor Peat Swamp Forest .................................................................................................. 2 North Selangor Peat Swamp Forest Scientific Biodiversity Expedition 2013...................................... 3 ATURCARA SEMINAR ........................................................................................................................... 5 KERTAS PERBENTANGAN The Socio-Economic Survey on Importance of Peat Swamp Forest Ecosystem to Local Communities Adjacent to Raja Musa Forest Reserve ........................................................................................ 9 Assessment of North Selangor Peat Swamp Forest for Forest Tourism ........................................... 34 Developing a Preliminary Checklist of Birds at NSPSF ..................................................................... 41 The Southern Pied Hornbill of Sungai Panjang, Sabak -
The Impact of Forest and Peatland Exploitation Towards Decreasing Biodiversity of Fishes in Rangau River, Riau-Indonesia
I J A B E R, Vol. 14, No. 14 (2016): 10343-10355 THE IMPACT OF FOREST AND PEATLAND EXPLOITATION TOWARDS DECREASING BIODIVERSITY OF FISHES IN RANGAU RIVER, RIAU-INDONESIA Yustina* Abstract: This survey study was periodically conducted in July, 6 times every year. There were 3 periods: 1st period (2002); 2nd period (2008) and 3rd period (2014). It sheds light on the impact of forest and peat land exploitation on decreasing biodiversity of fishes in Rangau River, Riau- Indonesia. Using some catching tools such as landing net, fishing trap, fishnet stocking and fishing rod. The sampling activity was administered at eight stations which were conducted by applying “catch per unit effort technique” in primary time: 19.30-07.30, for 3 repetitions for each fish net measurement within 30 minutes at every station, at position or continuously casting. The sampled fish were selected which were relatively in minor size but had represent their features and species. The fish were labelled and were preserved with 40% formalin. The determination and identification of fish were conducted at laboratory. Secondary data was collected by mean of interviewing the local fishermen about the surrounding environment condition of Rangau river. Data analysis consisted of biodiversity data, biodiversity index and fish existence frequency. The finding in 1st period, in 2002, total caught fish were 60 species: 36 genera and 17 families. In 2nd period in 2008, total caught fish were 38 species which consist of 30 genera and 16 families. In 3rd period, in 2014, there were 23 of fish species were found comprising 17 genera, 12 families. -
Administrative Court Jurisdiction 95-8
Index Aceh, high court of 55 Babon River case 38, 64, 74-5, 117, 134- administrative courts, Indonesian 49, 249, 255, 260, 262, 271, 288 – administrative court jurisdiction Balai Budidaya Air Payau Jepara 135 95-8 Balai Tehnik Kesehatan Lingkungan – Jakarta administrative court 97, 108- (Technical Institute for Environmental 10 Health) 138, 143, 172 – Presidential decrees, inability to re- Banger River case 38, 78-9, 112, 117-33, view 97, 103-5, 114, 258 146-9, 249, 252-3, 260, 262, 271, 285, – quality of judicial administration 14 287 – specialist training of judges in envi- Banti village 91, see also WALHI v. PT ronmental law 263-4, 291-2 Freeport case administrative environmental litigation Bapedal see Environmental Impact 93-116 Agency agriculture sector, environmental dis- Barito Pacific 37 pute resolutions in 46-7 Batang district government 165-6, 169- Amungme, indigenous people displaced 70, 281 by Grasberg mine 44, 106-7 Becker, Theodore L., definition of judi- APHI see Indonesian Forestry cial independence 15 Entrepreneurs Association Bedner, A., recommendations for judicial article 20 EMA 1982 cases 68-73 reform 265 article 34 EMA 1997 cases 36, 49, 63, 73- Bedono village 134, 136, 139-40, 142, 80, 89, 112-3, 121-2, 127, 137, 142, 148, 146-7, see also Babon River case 254-5, 291 Belumai River 38, 54, 72-3 article 37 EMA 36, 49, 57-66, 74, 111, Bina Produksi Melosia, PT 100-1, see also 247, 254, 256, 259, 292, see also repre- Sulae case sentative actions Bintang Buana, PT 134, 137, 139, see also article 1365 of the Civil Code -
Sediment Movements in Estuary of Siak River, Riau Basin, Indonesia
ISSN 2354-9114 (online), ISSN 0024-9521 (print) Indonesian Journal of Geography Vol.53 , No. 1, 2021 (103 – 107) DOI: http://dx.doi.org/10.22146/ijg.57100 website: https://jurnal.ugm.ac.id/ijg ©2021 Faculty of Geography UGM and e Indonesian Geographers Association RESEARCH ARTICLE Sediment Movements in Estuary of Siak River, Riau Basin, Indonesia Mubarak and Ahmad Nurhuda Department of Marine Science, Universitas Riau, Pekanbaru, Indonesia Received: 2020-10-11 Abstract. Siak river has a long history as a transportation lane in the east of Sumatera. From traditional Accepted: 2021-03-30 to timber transportations are dependent on this river. Now the river is a severe suffering pollutant spill from many sources. Anthropological activities were higher contributions in the degradation of river environments. Many works were reported about pollution in Siak river. But how the distribution of model Keywords: sediment transport in the mouth of the river is less to be explained. We consider hydrodynamics model of estuary; hydrodynamics model; the mouth of Siak river for modeling the sediment distribution. is simulation gives a fundamental and total suspended solid; clear understanding of how total solid sediment (TSS) distribution when őood and ebb tide happens. At ebb sediment; tide, TSS dispersion is higher than at őood tide. ere is found that the sediment is concentrated in the Siak River plume of Siak river in Bengkalis strait. e composition of the sediment is dominated by organic matters. Correspondent email: ©2021 by the authors. Licensee Indonesian Journal of Geography, Indonesia. [email protected] is article is an open access article distributed under the terms and conditions of the Creative Commons Attribution(CC BY NC) licensehttps://creativecommons.org/licenses/by-nc/4.0/. -
Progress and Possibilities in Indonesia: Case Study
case study progress and possibilities in Indonesia 90+ years Chevron’s partnership with Indonesia creates local, high-quality jobs that raise income levels and generate government revenues. The partnership spans more than 90 years and over that time has generated close to $200 billion in government revenue for Indonesia. personal income gross domestic product job opportunities one chevron job supported an $736 million $11.9 billion+ average of 36* other added to real incomes in added to Indonesia’s jobs in Indonesia Indonesia by Chevron and our GDP by Chevron and our partners (2013) partners (2013) *14 tier-1 supplier jobs, 9 extended supplier jobs, 13 induced jobs (2009 to 2013) The term “Chevron” in this document refers to Chevron’s subsidiaries in Indonesia, including PT Chevron Pacific Indonesia and Chevron Indonesia Company. Progress and Possibilities in Indonesia 1 “Because of this [Darmasiswa Chevron Riau] scholarship, I could fund my education without burdening my parents, learn skills to enter the workforce and be independent in life.” — Rita Kusrina Analyst for PT Chevron Pacific Indonesia (CPI) Rita Kusrina was one of the best students in Sungai Raya, a small town on the Indonesian island of Tanjung Balai Karimun, and she was talented enough to earn a prestigious scholarship to Polyteknik Caltex Riau in Sumatra. She remembers how, on the day she arrived there in 2002, she was filled with a sense of possibility. “Because of this scholarship, I could fund my education without burdening my parents, learn skills to enter the workforce and be independent in life,” Kusrina said. She graduated in 2005 with a degree in computer engineering. -
Dutch East Indies)
.1" >. -. DS 6/5- GOiENELL' IJNIVERSIT> LIBRARIES riilACA, N. Y. 1483 M. Echols cm Soutbeast. Asia M. OLIN LIBRARY CORNELL UNIVERSITY LlflfiAfiY 3 1924 062 748 995 Cornell University Library The original of tiiis book is in tine Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924062748995 I.D. 1209 A MANUAL OF NETHERLANDS INDIA (DUTCH EAST INDIES) Compiled by the Geographical Section of the Naval Intelligence Division, Naval Staff, Admiralty LONDON : - PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE. To be purchased through any Bookseller or directly from H.M. STATIONERY OFFICE at the following addresses: Imperial House, Kinqswat, London, W.C. 2, and ,28 Abingdon Street, London, S.W.I; 37 Peter Street, Manchester; 1 St. Andrew's Crescent, Cardiff; 23 Forth Street, Edinburgh; or from E. PONSONBY, Ltd., 116 Grafton Street, Dublin. Price 10s. net Printed under the authority of His Majesty's Stationery Office By Frederick Hall at the University Press, Oxford. ill ^ — CONTENTS CHAP. PAGE I. Introduction and General Survey . 9 The Malay Archipelago and the Dutch possessions—Area Physical geography of the archipelago—Frontiers and adjacent territories—Lines of international communication—Dutch progress in Netherlands India (Relative importance of Java Summary of economic development—Administrative and economic problems—Comments on Dutch administration). II. Physical Geography and Geology . .21 Jaya—Islands adjacent to Java—Sumatra^^Islands adja- — cent to Sumatra—Borneo ^Islands —adjacent to Borneo CeLel3^—Islands adjacent to Celebes ^The Mpluoeas—^Dutoh_ QQ New Guinea—^Islands adjacent to New Guinea—Leaser Sunda Islands. -
PRELIMINARY STUDY on the DISTRIBUTION and CONSERVATION STATUS of the EAST SUMATRAN BANDED LANGUR Presbytis Femoralis Percura in RIAU PROVINCE, SUMATRA, INDONESIA
25 Asian Primates Journal 8(1), 2019 PRELIMINARY STUDY ON THE DISTRIBUTION AND CONSERVATION STATUS OF THE EAST SUMATRAN BANDED LANGUR Presbytis femoralis percura IN RIAU PROVINCE, SUMATRA, INDONESIA Rizaldi1, Kurnia Ilham1, Irvan Prasetio1, Zan Hui Lee2, Sabrina Jabbar3, Andie Ang3* 1 Department of Biology, Andalas University, Padang, West Sumatra 25163, Indonesia. E-mail: [email protected], E-mail: [email protected], E-mail: [email protected] 2 Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Selangor, Malaysia. Email: [email protected] 3 Raffles’ Banded Langur Working Group, Wildlife Reserves Singapore Conservation Fund, Singapore 729826. E-mail: [email protected], E-mail: [email protected] * Corresponding author ABSTRACT The East Sumatran Banded Langur Presbytis femoralis percura is a very little known colobine primate, endemic to Riau Province in Sumatra. Nothing much is known of its population size and distribution, except that it was confined in the area between Rokan and Siak rivers. We carried out an eight-day reconnaissance field trip and determined the presence of P. f. percura in seven locations in Riau Province, which extends south of the Siak River, beyond its previously reported range. We also obtained probably the first publicly available full-frontal coloured photos of the taxon in the wild, and photos of the Riau Pale-thighed Langur P. siamensis cana. Considering that the known populations of P. f. percura are restricted to small and isolated forest remnants, and that the remaining forests are rapidly being converted into oil palm plantations, we propose to change the listing of P. -
(Cyprinidae: Labeoninae ) Originating from Bangka and Belitung Islands, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 22, Number 2, February 2021 E-ISSN: 2085-4722 Pages: 794-802 DOI: 10.13057/biodiv/d220233 First genetic record and the phylogenetic relationship of Osteochilus spilurus (Cyprinidae: Labeoninae ) originating from Bangka and Belitung Islands, Indonesia ARDIANSYAH KURNIAWAN1,2,, ANIK M. HARIATI3, ANDI KURNIAWAN3, DEWA G.R. WIADNYA3 1Doctoral Program, Faculty of Fisheries and Marine Science, Universitas Brawijaya. Jl. Veteran, Malang 65145, East Java, Indonesia. Tel.: +62-341-553512, Fax.: +62-341-557837, email: [email protected]/[email protected] 2Department of Aquaculture, Faculty of Fisheries, Agriculture and Biology, Universitas Bangka Belitung. Jl. Kampus Peradaban Balunijuk, Merawang Bangka 33172, Bangka Belitung Islands, Indonesia 3Faculty of Fisheries and Marine Science, Universitas Brawijaya. Jl. Veteran, Malang 65145, East Java, Indonesia. Tel.: +62-341-553512, Fax.: +62-341-557837, email: [email protected] Manuscript received: 30 November 2020. Revision accepted: 16 January 2021. Abstract. Kurniawan A, Hariati AM, Kurniawan A, Wiadnya DGR. 2021. First genetic record and the phylogenetic relationship of Osteochilus spilurus (Cyprinidae: Labeoninae) originating from Bangka and Belitung Islands, Indonesia. Biodiversitas 22: 794-802. Osteochilus spilurus is a freshwater fish from Southeast Asia. Species identification for this fish in Indonesia is still solely limited to morphological characteristics. Therefore it is highly important to validate using short DNA sequences that have been proven to be fast, effective, and accurate. Fish specimens were collected from Lenggang river in Belitung island, and Lebak river in Bangka island, Indonesia. Mitochondrial cytochrome b gene (cyt b, 408 bp) was amplified and sequenced. We collected fish specimens from Lenggang River in Belitung Island and Lebak River in Bangka Island, Indonesia. -
Carbon Leaching from Tropical Peat Soils and Consequences for Carbon Balances
ORIGINAL RESEARCH published: 13 July 2016 doi: 10.3389/feart.2016.00074 Carbon Leaching from Tropical Peat Soils and Consequences for Carbon Balances Tim Rixen 1, 2*, Antje Baum 1, Francisca Wit 1 and Joko Samiaji 3 1 Leibniz Center for Tropical Marine Ecology, Bremen, Germany, 2 Department of Biogeochemistry, Institute of Geology, University of Hamburg, Hamburg, Germany, 3 Faculty of Fishery and Marine Science, University of Riau, Pekanbaru, Indonesia Drainage and deforestation turned Southeast (SE) Asian peat soils into a globally important CO2 source, because both processes accelerate peat decomposition. Carbon losses through soil leaching have so far not been quantified and the underlying processes have hardly been studied. In this study, we use results derived from nine expeditions to six Sumatran rivers and a mixing model to determine leaching processes in tropical peat soils, which are heavily disturbed by drainage and deforestation. Here we show that a reduced evapotranspiration and the resulting increased freshwater discharge in addition to the supply of labile leaf litter produced by re-growing secondary forests increase leaching of carbon by ∼200%. Enhanced freshwater fluxes and leaching of labile leaf litter from secondary vegetation appear to contribute 38 and 62% to the total increase, respectively. Decomposition of leached labile DOC can lead to hypoxic conditions in Edited by: Francien Peterse, rivers draining disturbed peatlands. Leaching of the more refractory DOC from peat is an Universiteit Utrecht, Netherlands irrecoverable loss of soil that threatens the stability of peat-fringed coasts in SE Asia. Reviewed by: Keywords: tropical peat soil, degradation, secondary vegetation, carbon loss, Sumatra, Indonesia William Patrick Gilhooly III, Indiana University Purdue University Indianapolis, USA Chris Evans, INTRODUCTION Centre for Ecology and Hydrology, UK *Correspondence: Pristine peat swamp forests are rare with only circa 10% left on the islands of Borneo and Sumatra Tim Rixen (Miettinen and Liew, 2010). -
Family Cyprinidae Subfamily Labeoninae
SUBFAMILY Labeoninae Bleeker, 1859 - labeonins, labeos, algae-eaters, carps etc. [=?Paeonomiae, ?Apalopterinae, Platycarinae, Temnochilae, Labeonini, ?Plalacrognathini, Garrae, Gymnostomi, Rohteichthyina, Discognathina, Parapsilorhynchidae, Banganina, Osteochilina, Semilabeoina] Notes: Name in prevailing recent practice ?Paeonomiae McClelland, 1838:943 [ref. 2924] (subfamily) ? Cirrhinus [corrected to Paeonominae by McClelland 1839:225, 261, 264 [ref. 2923]; no stem of the type genus, not available, Article 11.7.1.1] ?Apalopterinae McClelland, 1839:226, 261, 299 [ref. 2923] (subfamily) ? Platycara [no stem of the type genus, not available, Article 11.7.1.1] Platycarinae Macleay, 1841:271 [ref. 32498] (family) Platycara [also Macleay 1842:204 [ref. 32499]] Temnochilae Heckel, 1847:280, 281 [ref. 2068] (Abtheilung) ? Labeo [no stem of the type genus, not available, Article 11.7.1.1] Labeonini Bleeker, 1859d:XXVIII [ref. 371] (stirps) Labeo [family-group name used as valid by: Rainboth 1991 [ref. 32596], Nelson 1994 [ref. 26204], Yue et al. 2000 [ref. 25272], Zhang & Chen 2004 [ref. 27930], Li, Ran & Chen 2006 [ref. 29057], Nelson 2006 [ref. 32486], Zhang & Kottelat 2006 [ref. 28711], Zhang, Qiang & Lan 2008 [ref. 29452], Yang & Mayden 2010, Zheng, Yang, Chen & Wang 2010 [ref. 30961], Zhu, Zhang, Zhang & Han 2011 [ref. 31305], Yang et al. 2012a, Yang et al. 2012b [ref. 32362]] ?Phalacrognathini Bleeker, 1860a:422 [ref. 370] (cohors) ? Labeo [no stem of the type genus, not available, Article 11.7.1.1] Garrae Bleeker, 1863–64:24 [ref. 4859] (phalanx) Garra [also Bleeker 1863b:191 [ref. 397]; stem Garr- confirmed by Smith 1945:259 [ref. 4056], by Cavender & Coburn in Mayden 1992:322 [ref. 23260], by Mirza 2000:356 [ref. -
The Impact of Disturbed Peatlands on River Outgassing in Southeast Asia
ARTICLE Received 1 Apr 2015 | Accepted 8 Nov 2015 | Published 16 Dec 2015 DOI: 10.1038/ncomms10155 OPEN The impact of disturbed peatlands on river outgassing in Southeast Asia Francisca Wit1, Denise Mu¨ller1,2, Antje Baum1, Thorsten Warneke2, Widodo Setiyo Pranowo3, Moritz Mu¨ller4 & Tim Rixen1,5 River outgassing has proven to be an integral part of the carbon cycle. In Southeast Asia, river outgassing quantities are uncertain due to lack of measured data. Here we investigate six rivers in Indonesia and Malaysia, during five expeditions. CO2 fluxes from Southeast Asian rivers amount to 66.9±15.7 TgC per year, of which Indonesia releases 53.9±12.4 TgC per year. Malaysian rivers emit 6.2±1.6 TgC per year. These moderate values show that Southeast Asia is not the river outgassing hotspot as would be expected from the carbon- enriched peat soils. This is due to the relatively short residence time of dissolved organic carbon (DOC) in the river, as the peatlands, being the primary source of DOC, are located near the coast. Limitation of bacterial production, due to low pH, oxygen depletion or the refractory nature of DOC, potentially also contributes to moderate CO2 fluxes as this decelerates decomposition. 1 Leibniz Center for Tropical Marine Ecology (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany. 2 Institute for Environmental Physics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany. 3 Research & Development Center for Marine & Coastal Resources (P3SDLP), Gedung II Balitbang KP Lantai 4, Jalan Pasir Putih II, Ancol Timur, Jakarta 14430, Indonesia. 4 Swinburne University of Technology, Sarawak Campus, Jalan Simpang Tiga, Kuching, Sarawak 93350, Malaysia.