Streptomycetes: Characteristics and Their Antimicrobial Activities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluation of Antimicrobial and Antiproliferative Activities of Actinobacteria Isolated from the Saline Lagoons of Northwest
bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.329441; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 EVALUATION OF ANTIMICROBIAL AND ANTIPROLIFERATIVE ACTIVITIES 2 OF ACTINOBACTERIA ISOLATED FROM THE SALINE LAGOONS OF 3 NORTHWEST PERU. 4 5 Rene Flores Clavo1,2,8, Nataly Ruiz Quiñones1,2,7, Álvaro Tasca Hernandez3¶, Ana Lucia 6 Tasca Gois Ruiz4, Lucia Elaine de Oliveira Braga4, Zhandra Lizeth Arce Gil6¶, Luis 7 Miguel Serquen Lopez7,8¶, Jonas Henrique Costa5, Taícia Pacheco Fill5, Marcos José 8 Salvador3¶, Fabiana Fantinatti Garboggini2. 9 10 1 Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of 11 Campinas (UNICAMP), Campinas, SP, Brazil. 12 2 Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), 13 University of Campinas (UNICAMP), Paulínia, SP, Brazil. 14 3 University of Campinas, Department of plant Biology Bioactive Products, Institute of 15 Biology Campinas, Sao Paulo, Brazil. 16 4 University of Campinas, Faculty Pharmaceutical Sciences, Campinas, Sao Paulo, Brazil. 17 5 University of Campinas, Institute of Chemistry, Campinas, Sao Paulo, Brazil. 18 6 Private University Santo Toribio of Mogrovejo, Facultity of Human Medicine, Chiclayo, 19 Lambayeque Perú. 20 7 Direction of Investigation Hospital Regional Lambayeque, Chiclayo, Lambayeque, Perú. 21 8 Research Center and Innovation and Sciences Actives Multidisciplinary (CIICAM), 22 Department of Biotechnology, Chiclayo, Lambayeque, Perú. 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.07.329441; this version posted October 7, 2020. -
Hormaomycin, a New Peptide Lactone Antibiotic Effective in Inducing
Hormaomycin, a New Peptide Lactone Antibiotic Effective in Inducing Cytodifferentiation and Antibiotic Biosynthesis in Some Streptomyces Species Nikolaus Andres, Heinz Wolf*, and Hans Zähner Institut für Biologie II, Lehrstuhl für Mikrobiologie I der Universität, Auf der Morgenstelle 28, D-7400 Tübingen, Bundesrepublik Deutschland Z. Naturforsch. 45c, 851-855 (1990); received April 10, 1990 Streptomyces, Signal Metabolite, Hormaomycin, Cytodifferentiation, Antibiotic Overproduc tion, Antibiotic Activity Hormaomycin is a novel signal metabolite from Streptomyces griseoflavus W-384 with aerial mycelium-inducing activity. The compound has been identified as an unusual peptide lactone. Hormaomycin displays three biological activities: First, it initiates the development of aerial mycelia in some Streptomyces strains. The mechanism responsible for this activity is unknown. Secondly, hormaomycin is effective in stimulating antibiotic production in different Strepto myces species. Thus, it is possible to get overproduction of a variety of antibiotics by the use of hormaomycin in fermentation processes. Thirdly, it inhibits the growth of some bacteria. The sensitive bacteria are restricted to coryneform taxa such as Arthrobacter and Corynebacterium which are closely related to Streptomyces. Introduction tones, few other kinds of regulatory compounds Bacteria of the genus Streptomyces have evolved were investigated. B-factor, a derivative of adeno complicated differentiation mechanisms that in sine, stimulates rifamycin production in Nocardia clude not only changes in metabolism but also sp. [8], C-factor is a 34.5 kDa-protein that induces sporulation in Streptomyces griseus [9]. The changes in cellular structure. The streptomycete life cycle involves the formation of a substrate macrodiolide pamamycin stimulates aerial mycelia mycelium which, after a period of vegetative formation in Streptomyces alboniger[ 10, 11]. -
The Isolation of a Novel Streptomyces Sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil That Inhibits Multiresistant Pathogens and Yeasts
applied sciences Article The Isolation of a Novel Streptomyces sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil that Inhibits Multiresistant Pathogens and Yeasts Gerry A. Quinn 1,* , Alyaa M. Abdelhameed 2, Nada K. Alharbi 3, Diego Cobice 1 , Simms A. Adu 1 , Martin T. Swain 4, Helena Carla Castro 5, Paul D. Facey 6, Hamid A. Bakshi 7 , Murtaza M. Tambuwala 7 and Ibrahim M. Banat 1 1 School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK; [email protected] (D.C.); [email protected] (S.A.A.); [email protected] (I.M.B.) 2 Department of Biotechnology, University of Diyala, Baqubah 32001, Iraq; [email protected] 3 Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11568, Saudi Arabia; [email protected] 4 Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Ab-erystwyth, Wales SY23 3EE, UK; [email protected] 5 Instituto de Biologia, Rua Outeiro de São João Batista, s/nº Campus do Valonguinho, Universidade Federal Fluminense, Niterói 24210-130, Brazil; [email protected] 6 Institute of Life Science, Medical School, Swansea University, Swansea, Wales SA2 8PP, UK; [email protected] 7 School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK; [email protected] (H.A.B.); [email protected] (M.M.T.) * Correspondence: [email protected] Abstract: The World Health Organization recently stated that new sources of antibiotics are urgently Citation: Quinn, G.A.; Abdelhameed, required to stem the global spread of antibiotic resistance, especially in multiresistant Gram-negative A.M.; Alharbi, N.K.; Cobice, D.; Adu, bacteria. -
Anticancer Drug Discovery from Microbial Sources: the Unique Mangrove Streptomycetes
molecules Review Anticancer Drug Discovery from Microbial Sources: The Unique Mangrove Streptomycetes Jodi Woan-Fei Law 1, Lydia Ngiik-Shiew Law 2, Vengadesh Letchumanan 1 , Loh Teng-Hern Tan 1, Sunny Hei Wong 3, Kok-Gan Chan 4,5,* , Nurul-Syakima Ab Mutalib 6,* and Learn-Han Lee 1,* 1 Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; [email protected] (J.W.-F.L.); [email protected] (V.L.); [email protected] (L.T.-H.T.) 2 Monash Credentialed Pharmacy Clinical Educator, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia; [email protected] 3 Li Ka Shing Institute of Health Sciences, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong, China; [email protected] 4 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia 5 International Genome Centre, Jiangsu University, Zhenjiang 212013, China 6 UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia * Correspondence: [email protected] (K.-G.C.); [email protected] (N.-S.A.M.); [email protected] (L.-H.L.) Academic Editor: Owen M. McDougal Received: 8 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Worldwide cancer incidence and mortality have always been a concern to the community. The cancer mortality rate has generally declined over the years; however, there is still an increased mortality rate in poorer countries that receives considerable attention from healthcare professionals. -
Gr up Industrial Microbiology & Biotechnology
SMGr up Industrial Microbiology & Biotechnology Sandeep Tiwari1, Syed Babar Jamal1, Paulo Vinícius Sanches Daltro de Carvalho1, Syed Shah Hassan1, Artur Silva2 and Vasco Azevedo1 1Universidade Federal de Minas Gerais, UFMG, Brazil 2Universidade Federal do Pará, Belém, PA, Brazil. *Corresponding author: Vasco Azevedo, Universidade Federal de Minas Gerais/Instituto de CiênciasBiológicas, Minas Gerais, Brazil, Email: [email protected] Published Date: February 15, 2015 ABSTRACT Microbes are small living organisms, quite diverse and adapt to various environments. They live on our planet long before that markedly effects the human, animals and plants life. Biotechnologically, molecular genetics of microbes is systematically manipulated, enable them possible through transfer of human insulin gene to a bacterium to treat diabetes, a milestone in for the production of beneficial products. The large-scale production of insulin was made the history of biotechnology. The microbial cultures are managed, monitored and maintained for their genotype/phenotype stability. Bacteria are one of the biotechnologically important microbes for example Escherichia coli, some species of lactic acid bacteria, and some viruses Using such as bacteriophages etc. recognized as anti-cancer oncolytic viruses. Moreover, yeast has also been used with broad-spectrum applications, such as Saccharomyces cerevisiae. biologically active primary and secondary metabolites like ethanol and antibiotics have been diverse genetic technologies, a number of beneficial products like microbial polymers, produced so far and used. Here, it would be injustice not to comment on the importance of vaccines for several infectious diseases through their ability to trigger the host immune system. Furthermore, roles of microorganisms in the production of pharmaceutical proteins A Text Book of Biotechnology | www.smgebooks.com 1 Copyright Azevedo V. -
Improved Taxonomy of the Genus Streptomyces
UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR. -
CHAPTER 104 an ACT Designating Streptomyces Griseus As the New
CHAPTER 104 AN ACT designating Streptomyces griseus as the New Jersey State Microbe and supplementing chapter 9A of Title 52 of the Revised Statutes. WHEREAS, Streptomyces griseus is a soil-based microorganism that was first discovered in New Jersey in 1916 by Dr. Selman Waksman and Dr. Roland Curtis; and WHEREAS, Soon after its discovery, the microbe drew international acclaim for its groundbreaking use as an antibiotic; and WHEREAS, In 1943, a research team from Rutgers University, led by Dr. Waksman with Albert Schatz and Elizabeth Bugie, used Streptomyces griseus to create streptomycin, the world’s first antibiotic for tuberculosis; and WHEREAS, The original discovery paper for streptomycin, entitled “Streptomycin, a Substance Exhibiting Antibiotic Activity Against Gram-Positive and Gram-Negative Bacteria,” was co- authored by Dr. Waksman, Dr. Schatz, and Elizabeth Bugie, and published in the Proceedings of the Society for Experimental Biology and Medicine; and WHEREAS, After clinical trials showed that streptomycin cured ailing tuberculosis patients, Merck & Company, a New Jersey-based pharmaceutical company, quickly made the drug available to the public; and WHEREAS, Prior to this discovery, tuberculosis was one of the deadliest diseases in human history and the second leading cause of death in the United States; and WHEREAS, Within 10 years of streptomycin’s release, tuberculosis mortality rates in the U.S. fell to a historic low, with only 9.1 tuberculosis-related deaths per 100,000 people in 1955 compared to the rate of 194 deaths per 100,000 people in 1900; and WHEREAS, According to a June 1947 New York Times article, streptomycin had “become one of the two wonder drugs of medicine” and offered the “promise to save more lives than were lost in both World Wars”; and WHEREAS, Dr. -
STREPTOMYCES GRISEUS (KRAINSKY) WAKSMAN and Henricil SELMAN A
STREPTOMYCES GRISEUS (KRAINSKY) WAKSMAN AND HENRICIl SELMAN A. WAKSMAN, H. CHRISTINE REILLY, AND DALE A. HARRIS New Jersey Agricultural Experiment Station, New Brunswick, New Jersey Received for publication May 10, 1948 Since the announcement of the isolation of streptomycin, an antibiotic sub- stance produced by certain strains of Streptomyces griseus (Schatz, Bugie, and Waksman, 1944), an extensive literature has accumulated dealing with this anti- biotic and with the organism producing it. Although most of the investigations are concerned with the production, isolation, and chemical purification of strepto- mycin, its antimicrobial properties, and especially its utilization as a chemo- therapeutic agent, various reports are also devoted to the isolation of new strepto- mycin-producing strains of S. griseus and of other actinomycetes and to the development of more potent strains. Only a very few of the cultures of S. griseus that have been isolated from natural substrates, following the islation of the two original cultures in 1943, were found capable of producing streptomycin. One such culture was reported from this laboratory (Waksman, Reilly, and Johnstone, 1946), and one or two from other laboratories (Carvajal, 1946a,b). It has been shown more recently (Waksman, Reilly, and Harris, 1947) that by the use of selective methods other streptomycin-producing strains can easily be isolated and identified. In addition to S. griseus, certain other actinomycetes are able to form strep- tomycin or streptomycinlike substances. One such culture was described by Johnstone and Waksman (1947) as Streptomyces bikiniensis, another culture was isolatedbyTrussell, Fulton, andGrant (1947) and was found capable of producing a mixture of two antibiotics, one of which appeared to be streptomycin and the other streptothricin. -
A Novel Hydroxamic Acid-Containing Antibiotic Produced by a Saharan Soil-Living Streptomyces Strain A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Open Archive Toulouse Archive Ouverte . . . . A novel hydroxamic acid-containing antibiotic produced by Streptomyces a Saharan soil-living strain 1,2 1 3 1 4 4 5 1 A. Yekkour , A. Meklat , C. Bijani , O. Toumatia , R. Errakhi , A. Lebrihi , F. Mathieu , A. Zitouni 1 and N. Sabaou 1 Laboratoire de Biologie des Systemes Microbiens (LBSM), Ecole Normale Superieure de Kouba, Alger, Algeria 2 Centre de Recherche Polyvalent, Institut National de la Recherche Agronomique d’Algerie, Alger, Algeria 3 Laboratoire de Chimie de Coordination (LCC), CNRS, Universite de Toulouse, UPS, INPT, Toulouse, France 4 Universite Moulay Ismail, Meknes, Morocco 5 Universite de Toulouse, Laboratoire de Genie Chimique UMR 5503 (CNRS/INPT/UPS), INP de Toulouse/ENSAT, Castanet-Tolosan Cedex, France Significance and Impact of the Study: This study presents the isolation of a Streptomyces strain, named WAB9, from a Saharan soil in Algeria. This strain was found to produce a new hydroxamic acid-contain- ing molecule with interesting antimicrobial activities towards various multidrug-resistant micro-organ- isms. Although hydroxamic acid-containing molecules are known to exhibit low toxicities in general, only real evaluations of the toxicity levels could decide on the applications for which this new molecule is potentially most appropriate. Thus, this article provides a new framework of research. Keywords Abstract antimicrobial activity, hydroxamic acid, Streptomyces, structure elucidation, During screening for potentially antimicrobial actinobacteria, a highly taxonomy. antagonistic strain, designated WAB9, was isolated from a Saharan soil of Algeria. A polyphasic approach characterized the strain taxonomically as a Correspondence member of the genus Streptomyces. -
Molecular Identification of Str a Gene Responsible for Streptomycin Production from Streptomyces Isolates
The Pharma Innovation Journal 2020; 9(1): 18-24 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Molecular Identification of Str A gene responsible for TPI 2020; 9(1): 18-24 © 2020 TPI streptomycin production from Streptomyces isolates www.thepharmajournal.com Received: 11-11-2019 Accepted: 15-12-2019 Bayader Abdel Mohsen, Mohsen Hashim Risan and Asma G Oraibi Bayader Abdel Mohsen College of Biotechnology, Al- Abstract Nahrain University, Iraq The present study was aimed for molecular identification of Str A gene from Streptomyces isolates. Twenty-four isolates were identified as Streptomyces sp. based on their morphological and biochemical Mohsen Hashim Risan characteristics. Twelve isolates were positive in the PCR technique. Performing PCR reactions using College of Biotechnology, Al- primer pair on DNA. The results of Str A gene detection clarify that Two isolate of Streptomyces isolates Nahrain University, Iraq gave a positive result and carrying Str gene, while 10 of Streptomyces isolates were lacking the gene. Be1 and B3-4 isolates gave DNA bands 700 bp in length. The results indicated that the Be1 and B3-4 isolates Asma G Oraibi are very close to the species Streptomyces griseus responsible for producing antibiotic streptomycin. College of Biotechnology, Al- Nahrain University, Iraq Keywords: Bacteria, Streptomyces, Str A, streptomycin, Iraq Introduction The largest genus of Actinomycetes and the type genus of the family is Streptomycetaceae (Kampfer, 2006, Al-Rubaye et al., 2018a, Risan et al., 2019) [13, 2, 28]. Over 600 species of [11] Streptomyces bacteria have been described (Euzeby, 2008) . As with the other Actinomyces, Streptomyces are Gram-positive, and have genomes with high guanine and cytosine content. -
Production of an Antibiotic-Like Activity by Streptomyces Sp. COUK1 Under Different Growth Conditions Olaitan G
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2014 Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions Olaitan G. Akintunde East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Biology Commons Recommended Citation Akintunde, Olaitan G., "Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions" (2014). Electronic Theses and Dissertations. Paper 2412. https://dc.etsu.edu/etd/2412 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions A thesis presented to the faculty of the Department of Health Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biology by Olaitan G. Akintunde August 2014 Dr. Bert Lampson Dr. Eric Mustain Dr. Foster Levy Keywords: Streptomyces, antibiotics, natural products, bioactive compounds ABSTRACT Production of an Antibiotic-like Activity by Streptomyces sp. COUK1 under Different Growth Conditions by Olaitan Akintunde Streptomyces are known to produce a large variety of antibiotics and other bioactive compounds with remarkable industrial importance. Streptomyces sp. COUK1 was found as a contaminant on a plate in which Rhodococcus erythropolis was used as a test strain in a disk diffusion assay and produced a zone of inhibition against the cultured R. -
Genomic and Phylogenomic Insights Into the Family Streptomycetaceae Lead to Proposal of Charcoactinosporaceae Fam. Nov. and 8 No
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genomic and phylogenomic insights into the family Streptomycetaceae 2 lead to proposal of Charcoactinosporaceae fam. nov. and 8 novel genera 3 with emended descriptions of Streptomyces calvus 4 Munusamy Madhaiyan1, †, * Venkatakrishnan Sivaraj Saravanan2, † Wah-Seng See-Too3, † 5 1Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 6 Singapore 117604; 2Department of Microbiology, Indira Gandhi College of Arts and Science, 7 Kathirkamam 605009, Pondicherry, India; 3Division of Genetics and Molecular Biology, 8 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 9 Malaysia 10 *Corresponding author: Temasek Life Sciences Laboratory, 1 Research Link, National 11 University of Singapore, Singapore 117604; E-mail: [email protected] 12 †All these authors have contributed equally to this work 13 Abstract 14 Streptomycetaceae is one of the oldest families within phylum Actinobacteria and it is large and 15 diverse in terms of number of described taxa. The members of the family are known for their 16 ability to produce medically important secondary metabolites and antibiotics. In this study, 17 strains showing low 16S rRNA gene similarity (<97.3 %) with other members of 18 Streptomycetaceae were identified and subjected to phylogenomic analysis using 33 orthologous 19 gene clusters (OGC) for accurate taxonomic reassignment resulted in identification of eight 20 distinct and deeply branching clades, further average amino acid identity (AAI) analysis showed 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.08.193797; this version posted July 8, 2020.