International Crops Research Institute for the Semi-Arid Tropics Citation: Sharma, H.C., Faujdar Singh, and Nwanze, K.F

Total Page:16

File Type:pdf, Size:1020Kb

International Crops Research Institute for the Semi-Arid Tropics Citation: Sharma, H.C., Faujdar Singh, and Nwanze, K.F International Crops Research Institute for the Semi-Arid Tropics Citation: Sharma, H.C., Faujdar Singh, and Nwanze, K.F. (eds.). Plant resistance to insects in sorghum. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. 216 pp. ISBN 92-9066-382-0. Order code BOE 025. Abstract Sorghum is one of the most important cereals in the semi-arid tropics. Nearly 150 insect species have been reported to damage the crop worldwide, causing an estimated loss of over US$ 1 000 million annually. Of these, shoot fly, stem borers, greenbug, sugarcane aphid, shoot bug, spider mites, armyworms, midge, head bug, and head caterpillars are the major pests. Plant resistance to insects is one of the most important components of pest management in sorghum. Thus, the 18 specialist scientists who have contributed the 25 papers included in this book, that is based on a training course for researchers involved in the development of insect-resistant cultivars for inte­ grated pest management in sustainable agriculture, describe and discuss the theoretical and practi­ cal aspects of resistance-screening techniques, mechanisms and inheritance of resistance, breeding for resistance, statistical designs, and strategies for integrated pest management. Information has also been provided about the international sorghum insect resistance testing program and the role of networks in collaborative research and technology exchange. The cost of this publication was partially supported by the Asian Development Bank. The opinions in this publication are those of the authors and not necessarily those of ICRISAT. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of ICRISAT concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Where trade names are used, this does not constitute endorsement of or discrimination against any product by the Institute. Plant Resistance to Insects in Sorghum Edited by H C Sharma, Faujdar Singh, and K F Nwanze ICRISAT International Crops Research Institute for the Semi-Arid Tropics Patancheru 502 324, Andhra Pradesh, India 1997 The Editors H C Sharma Senior Scientist (Entomology), ICRISAT, Patancheru 502 324, Andhra Pradesh, India Faujdar Singh General Manager, Product Development, Maharashtra Hybrid Seed Company Ltd, Block no. 6, Second Floor, Unity House, Abids Road, Hyderabad 500 001, Andhra Pradesh, India (formerly Senior Training Officer, ICRISAT) K F Nwanze Director General, West Africa Rice Development Association (WARDA), OI BP 2551, Bouake 0 1 , C6te d'lvoire (formerly Principal Scientist [Entomology], ICRISAT) The Authors R A Balikai University of Agricultural Sciences, Regional Research Station, Bijapur 586 101, Karnataka, India Subhas Chandra Statistics Unit, ICRISAT, Patancheru 502 324, Andhra Pradesh, India V S R Das Farm and Engineering Services Program (FESP), ICRISAT, Patancheru 502 324, Andhra Pradesh, India A H Duale Crop Protection Division (CPD), ICRISAT, Patancheru 502 324, Andhra Pradesh, India C L L Gowda Cereals and Legumes Asia Network (CLAN) Coordination Unit, ICRISAT, Patancheru 502 324, Andhra Pradesh, India S K Pal Farm and Engineering Services Program (FESP), ICRISAT, Patancheru 502 324, Andhra Pradesh, India A Ramakrishna Cereals and Legumes Asia Network (CLAN) Coordination Unit, ICRISAT, Patancheru 502 324, Andhra Pradesh, India H F W Rattunde Genetic Enhancement Division (GED), ICRISAT, Patancheru 502 324, Andhra Pradesh, India Belum V S Reddy Genetic Enhancement Division (GED), ICRISAT, Patancheru 502 324, Andhra Pradesh, India R V Sairam Cellular and Molecular Biology Division (CMBD), ICRISAT, Patancheru 502 324, Andhra Pradesh, India N Seetharama Cellular and Molecular Biology Division (CMBD), ICRISAT, Patancheru 502 324, Andhra Pradesh, India B U Singh National Research Centre for Sorghum (NRCS), Rajendranagar, Hyderabad 500 030, Andhra Pradesh, India S P Singh Department of Entomology, Haryana Agricultural University, Hisar 125 004, Haryana, India J W Stenhouse Genetic Enhancement Division (GED), ICRISAT, Patancheru 502 324, Andhra Pradesh, India V Subramanian Cellular and Molecular Biology Division (CMBD), ICRISAT, Patancheru 502 324, Andhra Pradesh, India Contents Introduction 1 Part 1 Principles of host-plant resistance to insect pests Fundamentals of entomological research 5 K F Nwanze Insect pests of sorghum: biology, extent of losses, and 9 economic thresholds H C Sharma and K F Nwanze Plant resistance to insects: basic principles 24 H C Sharma P a r t 2 S c r e e n i n g f o r r e s i s t a n c e t o i n s e c t s i n s o r g h u m Screening for resistance to sorghum shoot fly 35 K F Nwanze Screening for resistance to spotted stem borer 38 H C Sharma Effect of genotypic resistance on avoidable losses and economic 46 thresholds for the spotted stem borer S P Singh Screening for resistance to sorghum shoot bug and spider mites 52 B U Singh Screening for resistance to aphids in sorghum 60 R A Balikai Screening for resistance to sorghum head bugs 65 H C Sharma Screening for resistance to sorghum midge 72 H C Sharma Part 3 Mechanisms and inheritance of resistance Mechanisms of resistance to insects and their usefulness in 81 sorghum improvement H C Sharma, K F Nwanze, and V Subramanian Inheritance of resistance to insect pests in sorghum 101 Faujdar Singh Part 4 Breeding methodologies Breeding sorghums for insect resistance 115 Belum V S Reddy, H F W Rattunde, and J W Stenhouse Biotechnology and sorghum improvement for insect resistance 127 N Seetharama, R V Sairam, K F Nwanze, and V Subramanian Design and analysis of experiments: basic concepts 132 Subhas Chandra Part 5 insect pest management strategies Role of plant resistance to insects in sorghum integrated 151 pest management H C Sharma Effect of plant resistance to insects on the effectiveness 161 of natural enemies A H Duale and K F Nwanze Pesticide application and plant protection for sorghum 168 S K Pal and V S R Das Integrated pest management (IPM) in sorghum 173 K F Nwanze Part 6 International insect resistance testing program International insect resistance testing program 185 H C Sharma and K F Nwanze Appendices 1. Training course participants 201 2. Abbreviations and acronyms 204 Introduction Sorghum is one of the most important cereal crops in the semi-arid tropics. Over 150 species of insects cause damage to sorghum. The sorghum shoot fly (Atherigona soccata), stem borers (Chilo partellus and Busseola fusca), greenbug (Schizaphis graminum), sorghum midge (Stenodiplosis sorghicola), and head bugs (Calocoris angustatus and Eurystylus oldi) are the most important pests worldwide. Avoidable losses due to insects have been estimated to be over 32% in India, 9% in the USA, and 20% in Africa. In monetary terms, the losses due to insects have been estimated to be over US$ 1000 million annually in the semi-arid tropics. Recommendations for insect control on sorghum include such cultural practices as early and uniform sowing, biological control, breeding insect-resistant cultivars, and the use of insecticides. In rainfed agriculture, it is difficult to plant during the periods when insect damage can be avoided. The technology to utilize natural enemies for insect control in the classical sense needs to be developed. Insecticides are costly, and beyond the means of resource-poor farmers in the semi-arid tropics. Therefore, host-plant resistance can form an important component of pest management in sorghum. Using insect-resistant cultivars is not only compatible with other methods of pest control, but is also environment-friendly. There is no cost involvement for the farmers. To develop insect-resistant cultivars, it is important to ensure adequate and uniform insect infestation over seasons. Hot-spots can serve as useful locations to screen and breed for resistance to insects. However, it is difficult to achieve uniform insect infestation over seasons/locations under natural conditions. To overcome this problem, several techniques can be employed to augment natural insect populations and to achieve adequate insect infestation: collecting insects by different methods and confining them with plants at the most susceptible stage using cage techniques, or rearing them in a laboratory and infesting the test material in greenhouse or field conditions. To share knowledge on these procedures and techniques, a training course on "Host-Plant Resistance to Insects in Sorghum" was conducted at ICRISAT-Patancheru from 24 Oct to 3 Nov 1995. The papers presented during the course are published in this book which describes theoretical and practical aspects of resistance-screening techniques for important insect pests of sorghum. It also covers various aspects of insect rearing, collection, and augmentation for resistance screening, field and greenhouse screening techniques, and damage evaluation. It is hoped that this book will be useful in developing standardized procedures for resistance screening and data collection across locations, and foster closer collaboration among national agricultural research systems (NARS) and between NARS and ICRISAT. This will ultimately help in developing insect-resistant cultivars for increasing and stabilizing sorghum production in sustainable agriculture. 1 Part 1 Principles of Host-plant Resistance to Insect Pests Fundamentals of Entomological Research K F Nwanze Introduction Insects have existed on earth for over 350 million years, while human beings evolved only 1 million years ago. Insects provide many useful products such as silk, honey, and shellac, besides being eaten for food (caterpillars, grasshoppers, ants, termites, etc.). There must have been a period of mutual existence in nature, in which animals (including insects) and man lived in harmony. What are today regarded as diseases, or calamities, were viewed as natural regulating mechanisms. They still are, although humans may view them differently. However, humans became intruders in nature, and the most upsetting factor in the balance of nature.
Recommended publications
  • Stink Bug Management with Trap Cropping
    Stink Bug Management With Trap Cropping Dr. Russell F. Mizell, III Professor of Entomology University of Florida 155 Research Rd, Quincy, FL 32351 [email protected] ufinsect.ifas.ufl.edu 4 Major Species of Stink & Leaffooted Bugs In Southeast Euschistus servus Nezara viridula Chinavia hilaris (was Acrosternum hilare) Leptoglossus phyllopus Other Common Phytophagous Stink Bugs Euschistus Thyanta Banasa Oebelus Proxys Brochymena *Piezodorus dpughphoto *Halyomorpha *Megacopta *New invasive species-bad Common Stink Bug Immature Life Stages Stink Bug Morphology By Sex (Euschistus servus) Female Male Other True Bugs Largus succinctus L. Acanthocephala femorata Predacious Stink Bugs & Other Good Bugs From lower left: Alcaeorrhynchus grandis Podisus maculiventris Euthyrhychus floridanus Apiomerus floridensis Phytophagous vs Predacious Plant feeder Predator ‘phytophagous’ Stink Bug Natural Enemies Wasp Egg Parasites & Tachinid Flies Some Commonalities • Overwinter as adults – most species • Polyphagous – >1 host plant species • Food suitability is ‘qualitative’ • Move through the landscape to find • Respond to vegetation structure Some Commonalities • Have common natural enemies • Highly tolerant to insecticides • Relatively little knowledge for some spp. • Other tools not available – big problem! • Incremental approach required =IPM Strategy: Manage Biodiversity via Vegetation-for Profit • Cover crops • Intercrops, polyculture • Shelter belts, hedgerows • Trap crops • Outside orchard influences – crops, etc. • Spatial configurations? Landscape!
    [Show full text]
  • Downloaded from the Same Database
    G C A T T A C G G C A T genes Article Genetic Basis of Maize Resistance to Multiple Insect Pests: Integrated Genome-Wide Comparative Mapping and Candidate Gene Prioritization A. Badji 1,* , D. B. Kwemoi 2, L. Machida 3 , D. Okii 1, N. Mwila 1, S. Agbahoungba 4, F. Kumi 5 , A. Ibanda 1 , A. Bararyenya 1, M. Solemanegy 1, T. Odong 1, P. Wasswa 1, M. Otim 2, G. Asea 2, M. Ochwo-Ssemakula 1, H. Talwana 1, S. Kyamanywa 1 and P. Rubaihayo 1 1 Department of Agricultural Production, Makerere Univesity, P.O. Box 7062 Kampala, Uganda; [email protected] (D.O.); [email protected] (N.M.); [email protected] (A.I.); [email protected] (A.B.); [email protected] (M.S.); [email protected] (T.O.); [email protected] (P.W.); [email protected] (M.O.-S.); [email protected] (H.T.); [email protected] (S.K.); [email protected] (P.R.) 2 Cereals Program, National Crop Resource Research Institute, P.O. Box 7084 Kampala, Uganda; [email protected] (D.B.K.); [email protected] (M.O.); [email protected] (G.A.) 3 Alliance Bioversity International-CIAT, P.O. Box 24384 Kampala, Uganda; [email protected] 4 Laboratory of Applied Ecology, University of Abomey-Calavi, 01BP 526 Cotonou, Benin; [email protected] 5 Department of Crop Science, University of Cape Coast, P.O. Box 5007 PMB Cape Coast, Ghana; [email protected] * Correspondence: [email protected] Received: 19 May 2020; Accepted: 1 June 2020; Published: 24 June 2020 Abstract: Several species of herbivores feed on maize in field and storage setups, making the development of multiple insect resistance a critical breeding target.
    [Show full text]
  • Integrated Pest Management of the Mexican Rice Borer in Louisiana and Texas Sugarcane and Rice Francis P
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 Integrated pest management of the Mexican rice borer in Louisiana and Texas sugarcane and rice Francis P. F. Reay-Jones Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Reay-Jones, Francis P. F., "Integrated pest management of the Mexican rice borer in Louisiana and Texas sugarcane and rice" (2005). LSU Doctoral Dissertations. 761. https://digitalcommons.lsu.edu/gradschool_dissertations/761 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. INTEGRATED PEST MANAGEMENT OF THE MEXICAN RICE BORER IN LOUISIANA AND TEXAS SUGARCANE AND RICE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the formal requirements for the degree of Doctor of Philosophy in The Department of Entomology by Francis P. F. Reay-Jones B.S., Université Bordeaux 1, 1999 M.S., Université d’Angers/Institut National d’Horticulture, 2001 August 2005 ACKNOWLEDGEMENTS I wish to express my gratitude to my major advisor, Dr. Thomas E. Reagan, for his guidance, motivation, and also for introducing me with great enthusiasm to LSU football and Cajun cuisine. I would like to express my appreciation to my graduate committee, Drs. Benjamin L Legendre, E.
    [Show full text]
  • JTI Volume 2 Issue 4 Back Matter
    INSECT SCIENCE AN D ITS APPLICATION The International Journal of Tropical Insect Science Editor: Thomas R Odhiambo International Centre of Insect Physiology and Ecology (ICIPE) List of Contents, Author and Subject Index for Volume 2,1981 PERGAMON PRESS OXFORD • NEW YORK • TORONTO SYDNEY • PARIS • FRANKFURT Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.14, on 29 Sep 2021 at 15:28:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S174275840000103X Insect Science and its Application The International Journal of Tropical Insect Science Sponsored by the International Centre of Insect Physiology and Ecology (ICIPE) and the African Association of Insect Scientists (AAIS) Editor-in-Chief Thomas R. Odhiambo International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya Editorial Advisory Board F. T. Abu Shama, Khartoum, R. Levins, Boston, U.S.A. K. N. Saxena, Delhi, India Sudan M. Locke, Ontario, Canada H. Schmutterer, Giessen, P. L. Adkisson, Texas, U.S.A. F. G. Maxwell, Florida, U.S.A. F.R. Germany J. C. M. Carvalho, Rio de Janeiro, J. Meinwald, New York, U.S.A. L. M. Schoonhoven, Wageningen, Brazil P. L. Miller, Oxford, England The Netherlands R. Galun, Jerusalem, Israel J. Mouchet, Bondy, France J. E. Treherne, Cambridge, England T. Hidaka, Kyoto, Japan A. S. Msangi, Dar-es-Salaam, D. F. Waterhouse, Canberra, H. Hirumi, Nairobi, Kenya Tanzania Australia V. Landa, Prague, Czechoslovakia M. D. Pathak, Manila, A. Youdeowei, Ibadan, Nigeria The Philippines PUBLISHED QUARTERLY Publishing, Subscription and Advertising Offices: Headington Hill Hall, Oxford OX3 OBW, U.K.
    [Show full text]
  • Products Against Shoot Fly, Atherigona Soccata
    Journal of Entomology and Zoology Studies 2017; 5(3): 474-477 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2017; 5(3): 474-477 Efficacy of some novel insecticides and bio- © 2017 JEZS products against shoot fly, Atherigona Soccata Received: 10-03-2017 Accepted: 11-04-2017 (Rondani) in maize Sudhir Kumar Department of Entomology, Sardar Vallabhbhi Patel Sudhir Kumar, DV Singh, Kantipudi Rajesh Kumar and Awaneesh University of Agriculture & Kumar Technology, Meerut, Uttar Pradesh, India Abstract DV Singh An investigation to study the efficacy of some novel insecticides and bio-products against shoot fly, Department of Entomology, Atherigona soccata (Rondani) in maize was carried out for two consecutive seasons i.e. 2013 and 2014, Sardar Vallabhbhi Patel at Crop Research Centre, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut. University of Agriculture & Efficacy of different insecticides and bio-products viz. Imidacloprid 70WS, Thiamethoxam 70WS, Technology, Meerut, Carbofuran 3G, Phorate 10G, NSKE, Cow urine-NSKE, Imidacloprid 70WS-NSKE and Thiamethoxam Uttar Pradesh, India 70WS-NSKE were evaluated against number of eggs of A. soccata revealed that the treatments, Imidacloprid 70WS-NSKE was found best to reduce the number of eggs laid by A. soccata i.e. 0.00 Kantipudi Rajesh Kumar Department of Entomology, eggs/plant (11 DAE) and 0.45 eggs/plant (22 DAE) followed by Thiamethoxam 70WS-NSKE with 0.45 Banaras Hindu University, eggs/plant (11 DAE) and 0.72 eggs/plant (22 DAE). However, the maximum number of eggs survival of Varanasi, Uttar Pradesh, India A. soccata was recorded with untreated control 1.85 eggs/plant (11 DAE) and 2.30 eggs/plant (22 DAE).
    [Show full text]
  • Response of Chilo Partellus (Lepidoptera: Crambidae) to Bt Maize in South Africa
    Response of Chilo partellus (Lepidoptera: Crambidae) to Bt maize in South Africa J Vorster orcid.org/0000-0001-8126-6860 Dissertation submitted in fulfilment of the requirements for the Masters degree in Environmental Science at the North-West University Supervisor: Prof J van den Berg Co-supervisor: Prof MJ du Plessis Assistant supervisor: Dr A Erasmus Graduation May 2018 23441674 ACKNOWLEDGEMENTS This dissertation would not have been possible without the help of so many people. I am blessed and very grateful to have them in my life. I would like to start with our God Almighty and our Saviour who bestowed upon me the strength, wisdom and peace of mind to finish this project and who also have sent me these blessed people in my life. I would like to thank Prof. Johnnie van den Berg and Dr. Annemie Erasmus for all the guidance and support they have given me. You taught me that small things can make a big difference. Statistics can be difficult sometimes and I thank Prof. Hannalene du Plessis and Prof. Suria Elis for the help with the statistics. Thank you to all the staff at the ARC-GCI that assisted me with the trials in the lab and the planting. Elrine Strydom, Mabel du Toit, Heidi Meyer and Ursula du Plessis, thank you for the countless after hours we had to spend and for the warm hearted kindness you have given me. I would also like to thank my parents whom I dearly love for all the encouragement and motivation to do my best. You taught me that hard work does not come easily, but the fruit that you pick from it is what motivates us.
    [Show full text]
  • Annotated Checklist of the Plant Bug Tribe Mirini (Heteroptera: Miridae: Mirinae) Recorded on the Korean Peninsula, with Descriptions of Three New Species
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 115: 467–492, 2018 http://www.eje.cz doi: 10.14411/eje.2018.048 ORIGINAL ARTICLE Annotated checklist of the plant bug tribe Mirini (Heteroptera: Miridae: Mirinae) recorded on the Korean Peninsula, with descriptions of three new species MINSUK OH 1, 2, TOMOHIDE YASUNAGA3, RAM KESHARI DUWAL4 and SEUNGHWAN LEE 1, 2, * 1 Laboratory of Insect Biosystematics, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea; e-mail: [email protected] 2 Research Institute of Agriculture and Life Sciences, Seoul National University, Korea; e-mail: [email protected] 3 Research Associate, Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA; e-mail: [email protected] 4 Visiting Scientists, Agriculture and Agri-food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A, 0C6, Canada; e-mail: [email protected] Key words. Heteroptera, Miridae, Mirinae, Mirini, checklist, key, new species, new record, Korean Peninsula Abstract. An annotated checklist of the tribe Mirini (Miridae: Mirinae) recorded on the Korean peninsula is presented. A total of 113 species, including newly described and newly recorded species are recognized. Three new species, Apolygus hwasoonanus Oh, Yasunaga & Lee, sp. n., A. seonheulensis Oh, Yasunaga & Lee, sp. n. and Stenotus penniseticola Oh, Yasunaga & Lee, sp. n., are described. Eight species, Apolygus adustus (Jakovlev, 1876), Charagochilus (Charagochilus) longicornis Reuter, 1885, C. (C.) pallidicollis Zheng, 1990, Pinalitopsis rhodopotnia Yasunaga, Schwartz & Chérot, 2002, Philostephanus tibialis (Lu & Zheng, 1998), Rhabdomiris striatellus (Fabricius, 1794), Yamatolygus insulanus Yasunaga, 1992 and Y. pilosus Yasunaga, 1992 are re- ported for the fi rst time from the Korean peninsula.
    [Show full text]
  • Genomic Designing of Pearl Millet: a Resilient Crop for Arid and Semi-Arid Environments
    Chapter 6 Genomic Designing of Pearl Millet: A Resilient Crop for Arid and Semi-arid Environments Desalegn D. Serba, Rattan S. Yadav, Rajeev K. Varshney, S. K. Gupta, Govindaraj Mahalingam, Rakesh K. Srivastava, Rajeev Gupta, Ramasamy Perumal and Tesfaye T. Tesso Abstract Pearl millet [Pennisetum glaucum (L.) R. Br.; Syn. Cenchrus ameri- canus (L.) Morrone] is the sixth most important cereal in the world. Today, pearl millet is grown on more than 30 million ha mainly in West and Central Africa and the Indian sub-continent as a staple food for more than 90 million people in agri- culturally marginal areas. It is rich in proteins and minerals and has numerous health benefits such as being gluten-free and having slow-digesting starch. It is grown as a forage crop in temperate areas. It is drought and heat tolerant, and a climate-smart crop that can withstand unpredictable variability in climate. However, research on pearl millet improvement is lagging behind other major cereals mainly due to limited investment in terms of man and money power. So far breeding achievements include the development of cytoplasmic male sterility (CMS), maintenance counterparts (rf) system and nuclear fertility restoration genes (Rf) for hybrid breeding, dwarfing genes for reduced height, improved input responsive- ness, photoperiod neutrality for short growing season, and resistance to important diseases. Further improvement of pearl millet for genetic yield potential, stress tolerance, and nutritional quality traits would enhance food and nutrition security for people living in agriculturally dissolute environments. Application of molecular technology in the pearl millet breeding program has a promise in enhancing the selection efficiency while shortening the lengthy phenotypic selection process D.
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Comparative Biology of Shoot Fly, Atherigona Soccata (Rondani) On
    Chemical Science Review and Letters ISSN 2278-6783 Research Article Comparative Biology of Shoot Fly, Atherigona Soccata (Rondani) on Susceptible, Resistant Genotypes and Its F1 Hybrid of Sorghum S. Sekar1*, S. Jeyarani2 and N. Kumaravadivel3 1Ph.d Scholar, Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India 2Professor, Agricultural Entomology, Directorate of Open Distance Learning, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India 3Professor and Head, Department of Molecular Breeding and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India Abstract Comparative biology of Atherigona soccata (Rondani) was studied on Keywords: Shoot fly, biology, susceptible (K8), resistant (IS 2205) sorghum genotypes and its F1 hybrid. IS 2205 (Resistant genotype), Significant differences were observed between resistant susceptible genotypes K8 (Susceptible genotype) and its F1 hybrid with regard to larval, pupal and adult developmental parameters. Developmental periods of egg, larva and pupa was maximum on *Correspondence IS 2205, F1 hybrid and minimum on K8. Total life cycle of shoot fly was Author: S. Sekar prolonged on resistant genotype, IS 2205 (24.98 ±1.87 days) and its F1 hybrid Email: [email protected] (22.04 ±1.67 days) than susceptible genotype, K 8 (20.1±105 days). Length and width of egg, larva, pupa and growth indices like pupation (%), adult emergence (%), fecundity (nos./ female) ovipositional period (days) and adult longevity (male and female) were minimum on IS 2205 indicating higher degree of antibiosis in the resistant genotype. Observation on female: male ratio showed no significant variation between IS2205, F1 hybrid and K 8. Introduction Sorghum is an important food and fodder crop in India.
    [Show full text]
  • ENV /JM /M on O(2016)27 Unclassified
    Unclassified ENV/JM/MONO(2016)27 Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 29-Jun-2016 ___________________________________________________________________________________________ _____________ English - Or. English ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND Unclassified ENV/JM/MONO(2016)27 THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY Cancels & replaces the same document of 29 June 2016 CONSENSUS DOCUMENT ON THE BIOLOGY OF SORGHUM (Sorghum bicolor (L.) Moench) Series on Harmonisation of Regulatory Oversight in Biotechnology No. 62 English JT03398806 Complete document available on OLIS in its original format - This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of Or. English international frontiers and boundaries and to the name of any territory, city or area. ENV/JM/MONO(2016)27 2 ENV/JM/MONO(2016)27 OECD Environment, Health and Safety Publications Series on Harmonisation of Regulatory Oversight in Biotechnology No. 62 Consensus Document on the Biology of Sorghum (Sorghum bicolor (L.) Moench) Environment Directorate Organisation for Economic Co-operation and Development Paris 2016 3 ENV/JM/MONO(2016)27 Also published in the Series on Harmonisation of Regulatory Oversight in Biotechnology: No. 1, Commercialisation of Agricultural Products Derived through Modern Biotechnology: Survey Results (1995) No. 2, Analysis of Information Elements Used in the Assessment of Certain Products of Modern Biotechnology (1995) No. 3, Report of the OECD Workshop on the Commercialisation of Agricultural Products Derived through Modern Biotechnology (1995) No. 4, Industrial Products of Modern Biotechnology Intended for Release to the Environment: The Proceedings of the Fribourg Workshop (1996) No.
    [Show full text]
  • Lecture No 3 PESTS of SORGHUM, PEARL MILLET and FINGER MILLET
    Lecture No 3 PESTS OF SORGHUM, PEARL MILLET AND FINGER MILLET I. PESTS OF SORGHUM More than 150 species of insects have been reported to damage sorghum. However over a dozen species are very serious and constitute a major constraint in sorghum production. Shoot fly, stem borers, shoot and ear head bug and aphids are serious pests that bring reduction in the yield. Major pests 1. Sorghum Shootfly Atherigona soccata Muscidae Diptera 2. Stem borer Chilo partellus Crambidae Lepidoptera 3. Pink stem borer Sesamia inferens Noctuidae Lepidoptera 4 Shoot bug Peregrinus maidis Delphacidae Hemiptera 5. Earhead bug Calocoris angustatus Miridae Hemiptera 6. Sorghum midge Contarinia sorghicola Cecidomyiidae Diptera Rhopalosiphum maidis, 7. Plant lice (Aphids) Aphididae Hemiptera Melanaphis sacchari Minor Pests 8. Earhead web worm Cryptoblabes gnidiella Pyraustidae Lepidoptera 9. Gram caterpillar Helicoverpa armigera Noctuidae Lepidoptera 10. Plant bug Dolycoris indicus Pentatomidae Hemiptera 11. Stink bug Nezara viridula Pentatomidae Hemiptera 12. Mirid bug Creontiades pallidifer Miridae Hemiptera 13. Slug caterpillar Thosea apierens Cochlididae Lepidoptera 14. Leaf roller Marasmia trapezalis Pyralidae Lepidoptera Cryptocephalus 15. Flea beetle schestedii, Monolepta Chrysomelidae Coleoptera signata Red hairy Amsacta albistriga, 16. Arctiidae Lepidoptera caterpillar A. moorei 17. Semilooper Eublemma silicula Noctuidae Lepidoptera Myllocerus maculosus 18. Weevils Curculionidae Coleoptera M. discolor,M. subfaciatus Wingless 19. Colemania sphenaroides Acrididae Orthoptera grasshopper MAJOR PESTS 1.Sorghum Shootfly: Atherigona soccata (Muscidae: Diptera) Distribution and status Maharashtra, Andhra Pradesh, Tamil Nadu and Karnataka Host range: Maize, ragi, bajra, rice, wheat and grasses Damage symptoms The maggot on hatching migrates to the upper surface of leaf and enters between the leaf sheath and stem.
    [Show full text]