Crayfish Identification, Distribution and Legislation
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
DNA-Based Methods for Freshwater Biodiversity Conservation
DNA-based methods for freshwater biodiversity conservation - Phylogeographic analysis of noble crayfish (Astacus astacus) and new insights into the distribution of crayfish plague DISSERTATION zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften Fachbereich 7: Natur- und Umweltwissenschaften der Universität Koblenz-Landau Campus Landau vorgelegt am 16. Januar 2013 von Anne Schrimpf geboren am 21. September 1984 in Frankfurt am Main Referent: Prof. Dr. Ralf Schulz Koreferent: Prof. Dr. Klaus Schwenk - This thesis is dedicated to my grandparents - Content CONTENT CONTENT ............................................................................................................... 5 ABSTRACT ............................................................................................................ 8 ZUSAMMENFASSUNG ........................................................................................ 10 ABBEREVIATIONS .............................................................................................. 13 GENERAL INTRODUCTION ................................................................................ 15 Conservation of biological diversity ........................................................................ 15 The freshwater crayfish ............................................................................................ 17 General ............................................................................................................... 17 The noble crayfish (Astacus astacus) ................................................................ -
Crustacea-Arthropoda) Fauna of Sinop and Samsun and Their Ecology
J. Black Sea/Mediterranean Environment Vol. 15: 47- 60 (2009) Freshwater and brackish water Malacostraca (Crustacea-Arthropoda) fauna of Sinop and Samsun and their ecology Sinop ve Samsun illeri tatlısu ve acısu Malacostraca (Crustacea-Arthropoda) faunası ve ekolojileri Mehmet Akbulut1*, M. Ruşen Ustaoğlu2, Ekrem Şanver Çelik1 1 Çanakkale Onsekiz Mart University, Fisheries Faculty, Çanakkale-Turkey 2 Ege University, Fisheries Faculty, Izmir-Turkey Abstract Malacostraca fauna collected from freshwater and brackishwater in Sinop and Samsun were studied from 181 stations between February 1999 and September 2000. 19 species and 4 subspecies belonging to 15 genuses were found in 134 stations. In total, 23 taxon were found: 11 Amphipoda, 6 Decapoda, 4 Isopoda, and 2 Mysidacea. Limnomysis benedeni is the first time in Turkish Mysidacea fauna. In this work at the first time recorded group are Gammarus pulex pulex, Gammarus aequicauda, Gammarus uludagi, Gammarus komareki, Gammarus longipedis, Gammarus balcanicus, Echinogammarus ischnus, Orchestia stephenseni Paramysis kosswigi, Idotea baltica basteri, Idotea hectica, Sphaeroma serratum, Palaemon adspersus, Crangon crangon, Potamon ibericum tauricum and Carcinus aestuarii in the studied area. Potamon ibericum tauricum is the most encountered and widespread species. Key words: Freshwater, brackish water, Malacostraca, Sinop, Samsun, Turkey Introduction The Malacostraca is the largest subgroup of crustaceans and includes the decapods such as crabs, mole crabs, lobsters, true shrimps and the stomatopods or mantis shrimps. There are more than 22,000 taxa in this group representing two third of all crustacean species and contains all the larger forms. *Corresponding author: [email protected] 47 Malacostracans play an important role in aquatic ecosystems and therefore their conservation is important. -
Crayfish News Volume 32 Issue 1-2: Page 1
June 2010 Volume 32, Issue 1-2 ISSN: 1023-8174 (print), 2150-9239 (online) The Official Newsletter of the International Association of Astacology Inside this issue: Cover Story 1 Searching for Crayfish in the President’s Corner 2 River Bug, Ukraine Info About IAA18 3 Future Directions 4 Symposium Info Short Articles 6 Male Form 6 Alternation in Spinycheek Crayfish, Orconectes limosus, at Cessy (East-central France): The Discovery of Anomalous Form Males IAA Related News 10 News Items From 11 Around the World Meeting 13 Announcements Literature of 16 Interest to Astacologists Figure 1. Astacus leptodactylus from the River Bug, Ukraine. comparison with other species, information n official opportunity for the author on A. pachypus is very limited (Souty-Grosset A to travel to the Ukraine was the 2nd et al., 2006). Since no specimens were meeting of the signatories to the available to be photographed for the “Memorandum of Understanding (MoU) on identification guide of crayfish species in the Conservation and Management of the Europe (Pöckl et al., 2006), only a sketch was middle European population of the Great presented. Bustard (Otis tarda)” under the “Convention Feodosia, located on the Crimean of Migratory Species of Wild Animals” (CMS th Peninsula, is not easily reached by airplane, or Bonn Convention) from November 8-12 with the nearest airport being in Simferopol. 2008. There are no direct flights to this region from The author has always dreamed of most European capitals, with connecting visiting the Ukraine in order to collect flights running through Kiev, Moscow or specimens of the thick-clawed crayfish, Istanbul. -
The Catalogue of the Freshwater Crayfish (Crustacea: Decapoda: Astacidae) from Romania Preserved in “Grigore Antipa” National Museum of Natural History of Bucharest
Travaux du Muséum National d’Histoire Naturelle © Décembre Vol. LIII pp. 115–123 «Grigore Antipa» 2010 DOI: 10.2478/v10191-010-0008-5 THE CATALOGUE OF THE FRESHWATER CRAYFISH (CRUSTACEA: DECAPODA: ASTACIDAE) FROM ROMANIA PRESERVED IN “GRIGORE ANTIPA” NATIONAL MUSEUM OF NATURAL HISTORY OF BUCHAREST IORGU PETRESCU, ANA-MARIA PETRESCU Abstract. The largest collection of freshwater crayfish of Romania is preserved in “Grigore Antipa” National Museum of Natural History of Bucharest. The collection consists of 426 specimens of Astacus astacus, A. leptodactylus and Austropotamobius torrentium. Résumé. La plus grande collection d’écrevisses de Roumanie se trouve au Muséum National d’Histoire Naturelle «Grigore Antipa» de Bucarest. Elle comprend 426 exemplaires appartenant à deux genres et trois espèces, Astacus astacus, A. leptodactylus et Austropotamobius torrentium. Key words: Astacidae, Romania, museum collection, catalogue. INTRODUCTION The first paper dealing with the freshwater crayfish of Romania is that of Cosmovici, published in 1901 (Bãcescu, 1967) in which it is about the freshwater crayfish from the surroundings of Iaºi. The second one, much complex, is that of Scriban (1908), who reports Austropotamobius torrentium for the first time, from Racovãþ, Bahna basin (Mehedinþi county). Also Scriban made the first comment on the morphology and distribution of the species Astacus astacus, A. leptodactylus and Austropotamobius torrentium, mentioning their distinctive features. Also, he published the first drawings of these species (cephalothorax). Entz (1912) dedicated a large study to the crayfish of Hungary, where data on the crayfish of Transylvania are included. Probably it is the amplest paper dedicated to the crayfish of the Romanian fauna from the beginning of the last century, with numerous data on the outer morphology, distinctive features between species, with more detailed figures and with the very first morphometric measures, and also with much detailed data on the distribution in Transylvania. -
Estimating the Population Size of Astacus Leptodactylus (Decapoda: Astacidae) by Mark-Recapture Technique in E₣Irdir Lake, Turkey
African Journal of Biotechnology Vol. 10(55), pp. 11778-11783, 21 September, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.758 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Estimating the population size of Astacus leptodactylus (Decapoda: Astacidae) by mark-recapture technique in Eirdir lake, Turkey Yildiz Bolat1*, Yavuz Mazlum2, Aydin Demirci2 and Habil Uur Koca1 1Departmant of Fishing and Fish Processing Technology, Faculty of Fisheries, University of Süleyman Demirel, 32500 Eirdir, Isparta, Turkey. 2Faculty of Fisheries, Mustafa Kemal University, TR-31200 Iskenderun-Hatay, Turkey. Accepted 13 June, 2011 The mark-recapture technique for closed populations was employed to estimate the population size and density of Astacus leptodactylus during August and September, 2005 by using minnow traps of 34 mm mesh size in Eirdir Lake. A total of 600 minnow traps were set randomly along the shoreline at approximately 3, 5 and 7 m depth. The nets were set in the late afternoon to each study depths, and were hauled the next day or after two days. The research was performed two times each month. In August, 1956 adult crayfish and in September, 2756 adult crayfish were marked by cauterization of the carapace. The recapture rates were found to be 3.5% in August and 2.3% in September, respectively. A total of 200 crayfish were randomly selected, 74 females and 126 males. The sex ratio was 1:1.7. Moreover, length and weight data gotten from 200 untagged crayfish showed that females and males differed significantly in their weight, but no significant difference was evident in the carapace length. -
A Toolkit for Developing a Catchment-Scale Conservation
A toolkit for developing catchment-scale conservation strategy for White-clawed crayfish A toolkit for developing catchment-scale conservation strategy for White- clawed crayfish Version 2 October 2011 Reference this document as: Peay S., Kindemba V., Attwood F. and Christmas M. (2011). A toolkit for developing catchment-scale conservation strategy for White-clawed crayfish. Version 1 October 2011 Buglife – The Invertebrate Conservation Trust, Peterborough. ISBN 978-1-908657-00-8 Available to download from the crayfish website www.crayfish.org.uk Document history Consultation draft issued January 2011 Final Version 1 issued October 2011 White-clawed crayfish Signal crayfish Acknowledgements: This guidance has been produced with funding from the Environment Agency. The project has been developed following a crayfish conservation workshop held by the Environment Agency in July 2009 at Malham Tarn Field Centre, North Yorkshire. Assistance with graphics in the guidance was provided by Paul Bryden. Photographs are by Stephanie Peay. Thanks go to all those who have kindly provided comments on earlier drafts, including Margaret Palmer and Suzannah Dangerfield, Buglife; Pete Sibley, Environment Agency; Julia Stansfield, Environment Agency; Mike Howe, Countryside Council for Wales, David Heaver, Natural England, Joanne Backshall, Eden Rivers Trust; Abigail Stancliffe-Vaughn, University of East Anglia, Paul Bradley, PBA Applied Ecology. Contents 1. Introduction 1 1.1 How to use this guidance on conservation strategy for White-clawed crayfish ......................... 1 2. Considerations before starting a catchment strategy 3 2.1 Policy and regulations in the countries of the UK ...................................................................... 3 2.2 Status of crayfish in the River Basin Districts ............................................................................. 4 2.3 Policy and planning at country to catchment scale ................................................................... -
Differentiation and Pathogenicity Within the Saprolegniaceae
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 680 _____________________________ _____________________________ Differentiation and Pathogenicity within the Saprolegniaceae Studies on Physiology and Gene Expression Patterns in Saprolegnia parasitica and Aphanomyces astaci BY GUNNAR ANDERSSON ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2001 Dissertation for the Degree of Doctor of Philosophy in Physiological Mycology presented at Uppsala University in 2002 Abstract Andersson, M. G. 2001. Differentiation and Pathogenicity within the Saprolegniaceae. Studies on Physiology and Gene Expression Patterns in Saprolegnia parasitica and Aphanomyces astaci. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 680, 41 pp. Uppsala. ISBN 91-554-5203-5. Saprolegnia parasitica and Aphanomyces astaci are parasitic water moulds belonging to the Oomycetes. Despite their importance as parasites they are very little studied at the molecular level and the work described in this thesis was aimed at increasing the molecular knowledge of these organisms by cloning and characterising genes of potential importance for reproduction and pathogenicity. Stage-specific transcripts from Saprolegnia parasitica were isolated by differential display RT-PCR. One of the markers, puf1 encodes a putative mRNA binding protein which may be involved in post-transcriptional regulation of gene expression. S. parasitica puf1 is expressed exclusively in spore cysts that have not been determined for germination or repeated zoospore emergence indicating that the cyst stage has two phases, of about equal duration, which are physiologically and transcriptionally distinct. A similar expression pattern is observed in Aphanomyces spp. with different regulation of spore development and in the transcript is detected in both primary and secondary cysts. -
Crayfish in Crisis
Crayfish in Crisis The rate of loss of White-clawed crayfish in England and Wales is rapid and shows no sign of slowing as Signal crayfish and other introduced crayfish invade more rivers. If this pattern continues, there is a high risk that White-clawed crayfish will become extinct in most of their current range in England and Wales over the next 20 years. Crayfish plague One of the major reasons for the decline in White-clawed crayfish is the spread of ‘Crayfish Plague’. The cause of this disease is a water mould called Aphanomyces astaci, which attacks the soft tissue of crayfish. It is carried and spread mostly by Signal crayfish (Pacifasticus leniusculus), which are unaffected by it. However other introduced crayfish species do carry plague, including the Red swamp (Procambarus clarkii) and the Spiny-cheeked (Orconectes limosus). Our White-clawed crayfish are not immune to plague and once introduced it rapidly kills off all that are present in an area in just a few weeks. Crayfish plague is easily moved between sites as it can be transported on wet angling equipment and wet clothes. The spores of crayfish plague can even remain active on damp gear for as long as 22 days. For more information about Non-native crayfish and disease, click here. Stopping the spread of crayfish plague All waterway users need to be aware about good practice to help prevent the spread of invasive crayfish species and diseases. Crayfish plague can be easily spread between sites on wet angling kit or water sports equipment. If you use rivers and lakes either as a walker, angler or for other activities (canoeists, divers, gorge walkers etc.), there are some simple things that you can do to help to prevent the spread of plague such as following the Check, Clean, Dry code in order to Stop the Spread of Crayfish Plague. -
Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Parasitology, Harold W. Manter Laboratory of Laboratory of Parasitology 3-2002 Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected] Louis H. Evans Curtin University of Technology Frances J. Stephens Curtin University of Technology Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Aquaculture and Fisheries Commons, and the Parasitology Commons Edgerton, Brett .;F Evans, Louis H.; Stephens, Frances J.; and Overstreet, Robin M., "Synopsis of Freshwater Crayfish Diseases and Commensal Organisms" (2002). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 884. https://digitalcommons.unl.edu/parasitologyfacpubs/884 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Aquaculture 206:1–2 (March 2002), pp. 57–135; doi: 10.1016/S0044-8486(01)00865-1 Copyright © 2002 Elsevier Science. Creative Commons Attribution Non-Commercial No Deriva- tives License. Accepted October 18, 2001; published online November 30, 2001. Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett F. Edgerton,1 Louis H. Evans,2 Frances J. Stephens,2 and Robin M. Overstreet3 1. Department of Microbiology and Immunology, James Cook University, Townsville, QLD 4810, Australia 2. -
Assessment of the Risk to Norwegian Biodiversity from Import and Keeping of Crustaceans in Freshwater Aquaria
VKM Report 2021: 02 Assessment of the risk to Norwegian biodiversity from import and keeping of crustaceans in freshwater aquaria Scientific Opinion of the Panel on Alien Organisms and Trade in Endangered Species of the Norwegian Scientific Committee for Food and Environment VKM Report 2021: 02 Assessment of the risk to Norwegian biodiversity from import and keeping of crustaceans in freshwater aquaria. Scientific Opinion of the Panel on Alien Organisms and trade in Endangered Species (CITES) of the Norwegian Scientific Committee for Food and Environment 15.02.2021 ISBN: 978-82-8259-356-4 ISSN: 2535-4019 Norwegian Scientific Committee for Food and Environment (VKM) Postboks 222 Skøyen 0213 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] vkm.no vkm.no/english Cover photo: Mohammed Anwarul Kabir Choudhury/Mostphotos.com Suggested citation: VKM, Gaute Velle, Lennart Edsman, Charlotte Evangelista, Stein Ivar Johnsen, Martin Malmstrøm, Trude Vrålstad, Hugo de Boer, Katrine Eldegard, Kjetil Hindar, Lars Robert Hole, Johanna Järnegren, Kyrre Kausrud, Inger Måren, Erlend B. Nilsen, Eli Rueness, Eva B. Thorstad and Anders Nielsen (2021). Assessment of the risk to Norwegian biodiversity from import and keeping of crustaceans in freshwater aquaria. Scientific Opinion of the Panel on Alien Organisms and trade in Endangered Species (CITES) of the Norwegian Scientific Committee for Food and Environment. VKM report 2021:02, ISBN: 978-82-8259- 356-4, ISSN: 2535-4019. Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway. 2 Assessment of the risk to Norwegian biodiversity from import and keeping of crustaceans in freshwater aquaria Preparation of the opinion The Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) appointed a project group to draft the opinion. -
Georgiev 2006.Pdf
IUCN Otter Spec. Group Bull. 23(1) 2006 IUCN OTTER SPECIALIST GROUP BULLETIN VOLUME 23 ISSUE 1 PAGES 4 - 10 Citation: Georgiev, D.G. (2006) Diet of the Otter Lutra lutra in Different Habitats of South-Eastern Bulgaria IUCN Otter Spec. Group Bull. 23 (1): 4 - 10 DIET OF THE OTTER Lutra Lutra IN DIFFERENT HABITATS OF SOUTH- EASTERN BULGARIA Dilian G. GEORGIEV Department of Ecology and Environmental conservation, University of Plovdiv, Tzar Assen Str. 24, BG-4000 Plovdiv, Bulgaria e-mail: [email protected], [email protected] (received 12th April 2006, accepted 14th June 2004) Abstract: The study was carried out in three geographic regions of south-eastern Bulgaria with similar conditions: Upper Thracian Valley, Kazanlashka Valley, Surnena Sredna Gora Mountain and Black Sea Coast. The material was collected between 29.02.2005 – 21.03.2006 from various habitats. A total of 78 species were registered in the otter diet, and 65 of them were new records for Bulgaria. Following this study, a total of 101 different species of prey are known in this country. The main food source of the otter was found to be fish (Carassius auratus gibelio, C. carassius, Perca fluviatilis, Lepomis gibbosus, Barbus cyclolepis), but in rivers marsh frogs (Rana ridibunda) and freshwater crabs (Potamon ibericum) were also dominant prey. The main food source species and the trophic niche breadth of the otter in the region studied varied through the seasons and according to different habitats. Keywords: otter, Lutra lutra, diet, habitats, Bulgaria. INTRODUCTION The diet of the otter in Bulgaria was poorly known. Until now (GEORGIEV, 2004) 36 food components were reported: 2 species of molluscs (Mollusca: Bivalvia), 5 species of crustaceans (Crustacea), 4 species of insects (Insecta), 9 fish species (Pisces), 2 amphibian species (Amphibia: Anura), 3 species of reptiles (Reptilia: Serpentes, Chelonia), 4 bird species (Aves), 2 species of mammals, one of them eaten as a carcass (Mammalia), fruits from 4 plant species and garbage. -
Crayfish Plague Epizootics in Germany-Classification of Two
DISEASES OF AQUATIC ORGANISMS Vol. 35: 235-238,1999 Published February 26 Dis Aquat Org NOTE Crayfish plague epizootics in Germany-classification of two German isolates of the crayfish plague fungus Aphanomyces astaci by random amplification of polymorphic DNA Birgit Oidtmann1,*,Lage Cerenius2,Ines Schmidl, Rudolf ~offmann',Kenneth soderhal12 '~nstituteof Zoology, Fish Biology and Fish Diseases. University of Munich, Kaulbachstr. 37, D-80539 Munich, Germany '~ivisionof Physiological Mycology, University of Uppsala, Villavigen 6. S-752 36 Uppsala, Sweden ABSTRACT: Following 2 outbreaks of crayfish plague m cumb to infection. During the past century, the distrib- southern Germany, the causative agent, the oomycete fungus ution of non-native crayfish species has dramatically Aphanomyces astaci, was isolated from the diseased Astacus increased due to stocking activities, the natural spread astacus. The identity of the 2 strains was confirmed using established techniques, such as physiology, spore production of stocked populations, and the release of exotic and the fact that the isolated strains were hlghly virulent for crayfish by private aquarist or pond owners. In areas, A. astacus in infection experiments. The relationship between where American species have been introduced, mass these German strains and other A astaci strains was In- mortalities of European crayfish have frequently been vestigated using randomly amplified polymorphic DNA-poly- merase chain reaction (RAPD-PCR).The German strains were documented (Alderman 1996). found to be closely related to a strain that had been isolated Mass mortalities of Astacus astacus were observed in from PacLfastacus len~usculusfrom Lake Tahoe, USA. 1996 in 3 independent sites in southern Germany sep- arated by at least 80 km.