Higgs Boson Reconstruction and Detection Algorithm Analysis of the H0 → Z0 + Z0 → 2Μ+ + 2Μ− Decay Chain Using CMSSW

Total Page:16

File Type:pdf, Size:1020Kb

Higgs Boson Reconstruction and Detection Algorithm Analysis of the H0 → Z0 + Z0 → 2Μ+ + 2Μ− Decay Chain Using CMSSW Higgs Boson Reconstruction and Detection Algorithm Analysis of the h0 ! Z0 + Z0 ! 2µ+ + 2µ− Decay Chain Using CMSSW Matthew Sanders∗ Washington and Lee University (Dated: August 20, 2008) Abstract The Compact Muon Solenoid is expected to become operational towards the end of 2008. When it does, our understanding of the world of elementary particles could change dramatically with the discovery of new particles such as the Higgs boson. The CMS collaboration had already developed a programming package called CMS Software (CMSSW) to aid in the discovery of the Higgs boson and other new physics. Using CMSSW researchers can develop and test algorithms designed to successfully detect the Higgs boson. In this project, I developed and tested one such algorithm to reconstruct the Higgs boson from four muons. I then compared the effectiveness of my algorithm to the effectiveness of a similar algorithm that also reconstructs the Higgs boson from four muons. Contents to satisfy three ends. They hope to probe physics at the TeV level, discover new physics beyond the standard I. Introdcution 1 model (i.e. supersymmetry and/or extra dimensions) and A. What is CMS? 1 discover the Higgs boson [1]. The latter of these goals has B. The Higgs Boson been the focus of my research. A Brief History and Itroduction 2 C. An Introduction to CMSSW 2 A. What is CMS? II. Higgs Boson Reconstruction Through Algorithm Development and Analysis 3 The CMS collaboration is a collection of researchers A. Summer Project from various educational and private research institu- h0 ! Z0 + Z0 ! 2µ+ + 2µ− 3 tions. Together they created the CMS detector and the B. Comparing Algorithms Without Detector CMSSW high energy particle physics analysis package. Background 7 While the researchers are spread across the world, the C. Comparing Algorithms With Detector CMS itself detector is located underground in Cessey, (Pseudo)Background 8 France. As was already aforementioned, CMS stands for D. Further Exploration 9 compact muon solenoid. However, if one was to look at 1. Look For the Presence of a picture of the CMS detector, he/she would find that Z0 ! µ+ + µ− + γ Decays 10 "compact" is a relative term (See Figure 1). Contrary to 2. h0 ! Z0 + Z0 ! 4l Decay Chains 10 3. Geometric Cuts 10 III. Conclusion 10 IV. Special Thanks 10 References 11 I. INTRODCUTION When the Large Hadron Collider at CERN becomes fully operational, CMS will be one of two general pur- FIG. 1: A picture of the CMS detector with dimensions. No- pose experiments at CERN whose goal is to search for tice how small the person is in comparison. [1, 2] new physics. The CMS collaborations hopes to use CMS its name, the CMS detector is actually quite large as it weighs over 12,500 metric tones, has a length of over 21 ∗Dr. John Conway and Milan Nikolic, thank you for the direction meters and a diameter of over 15 meters. and advice throughout my research.; Electronic address: sandersm@ The purpose of the CMS is detector is to look for new wlu.edu physics by through pp¯ collisions at energy levels greater 2 than the capabilities of any current particle accelerator. bilities of the LHC, CMS should easily be able to detect The expected center of mass energy produced by the LHC a Higgs boson with a mass of 115 GeV/c2 if it exists. is about 14TeV using a magnetic field of 3.8 Tesla [1]. The Higgs boson has been referred to as the "God Par- At these energies, physicists hope that the of the con- ticle" in both popular culture and the scientific commu- stituents of the hadrons in the pp¯ collisions will lead to nity [1] and for good reason. The discovery of the Higgs the observation of new particles such as supersymmet- boson could prove to be a victory for the Standard Model ric particles like squarks and sleptons and/or the Higgs of particle physics However, if the researchers of the CMS boson. Of particular importance to my research is the collaboration fail to discover the Higgs boson, then an possible discovery of the Higgs boson. overhaul of our entire understanding of the world of ele- As its name implies, CMS will look for new particles, mentary particles must ensue. like the Higgs boson, primarily through the reconstruc- tion of detected muons. That is not to say, however, that other particles cannot also be reconstructed. In fact, C. An Introduction to CMSSW using CMSSW, one can reconstruct particles using just about any particle that CMS is capable of detecting. For CMS Software, more commonly referred to as example one can reconstruct the Higgs boson from the CMSSW, is an open source software package designed decay chain h0 ! Z0 + Z0 ! 2l+ + 2l− using any com- + − + − + − by the members of the CMS collaboration for use with bination of µ µ , τ τ or e e . Figure 2 shows how the CMS detector. CMSSW 1.6.8 was the primary tool various particles are expected to behave in the CMS de- I used for my research. Within CMSSW 1.6.8 one will tector. find three powerful analysis tools. The fist of these tools is the Monte Carlo high en- ergy particle physics event generator. My research used a Monte Carlo event generator known as Pythia, but the CMSSW package contains other sources of Monte Carlo event generators such as ParticleGuns. Pythia is spe- cially designed to work with Tevatron and LHC appli- cations (like CMS){in essence, Pythia produces a digital CMS. The build of Pythia (Pythia 6.4) available for use with CMSSW 1.6.8 is written in F77 (Fortran), but a newer version (Pythia 8.1) written in C++ has recently finished its development stages and is now ready for full scale use with LHC applications such as CMSSW [4]. The second analysis tool contained in CMSSW is FIG. 2: Notice expected flight of the muons and how they ROOT. ROOT is a C/C++ interpreter with a graph- penetrate many more layers of the CMS detector than any ics engine designed to analyze and plot large amounts of other particle. [1, 2] data. In the case of use with CMSSW, ROOT is used in conjunction with a user designed algorithm to analyze the Monte Carlo high energy particle physics events out- put by Pythia and plot the meaningful data contained B. The Higgs Boson within these events in histograms for further analysis. A Brief History and Itroduction The third analysis tool available in CMSSW is actu- ally a software package in and of itself. The scramv1 The primary purpose of the CMS detector will be to build tool contains the compiler or interpreter for the user find new physics. A particle of particular importance to designed algorithm code which can be written in either the CMS collaboration is the Higgs boson. The Higgs bo- C++ (a compiled language) or Python (an interpreted son is the only particle predicted by the Standard Model language). The scramv1 build tool also contains the that has not yet been discovered. Physicists theorize that "mastermind" behind the CMSSW package. Scramv1 the Higgs boson gives mass to all elementary particles build tool is designed to ensure that the user designed that have mass through the action of the Higgs mecha- algorithm code, the Pythia output files and the ROOT nism. The existence of the Higgs boson was first theo- histogram files all work nicely together without the user rized by a group led by physicist Peter Higgs in 1964 [3]. having to supervise. The scramv1 build tool is also able Physicists theorize that there may be several Stan- to build a workspace within which one can build, execute dard Model Higgs bosons of different masses as well as and save all of his/her codes and work. Higgs bosons that extend beyond the Standard Model [3]. Because CMSSW is open source, it is constantly chang- Physicists have estimated that the lowest possible mass ing as researchers develop new analysis packages for use. a Higgs boson can have is 115GeV/c2{just outside the As an open source tool, the developers of CMSSW are range of detection given our current particle accelerators constantly updating the CMSSW package and publishing (i.e. the Tevatron) [3]. However, given the size and capa- analysis algorithms and results. To view these analysis 3 packages as well as to learn more about CMSSW, visit the CMS Twiki website [5]. II. HIGGS BOSON RECONSTRUCTION THROUGH ALGORITHM DEVELOPMENT AND ANALYSIS I came to the University of California, Davis high en- ergy physics department with very basic understanding of elementary particle physics and no idea about what CMS and CMSSW were. Therefore, the first weeks of research with the UC Davis high energy physics department fo- cused becoming accustomed to the various tools I would need to aid me in my research. I spent the first three weeks of my research program reading the framework tu- torials on the CMS Twiki page [5], running through the CMSSW 1.6.8 particle reconstruction tutorials supplied by UC Davis graduate student Milan Nikolic on the UC Davis high energy particle physics website [6] and tak- FIG. 4: "Miracle of the top quark" explained. [3] ing crash courses in C++ programming and ROOT. All of these tasks were supplemented with readings from an elementary particle physics text book [7]. boson candidate my algorithm had to: 1. Find all of the muons and anti-muons in an event. A. Summer Project 2 h0 ! Z0 + Z0 ! 2µ+ + 2µ− 2. Reconstruct the Z boson masses (91.1876 GeV/c ) using the best µ+µ− pairs.
Recommended publications
  • Muon Decay 1
    Muon Decay 1 LIFETIME OF THE MUON Introduction Muons are unstable particles; otherwise, they are rather like electrons but with much higher masses, approximately 105 MeV. Radioactive nuclear decays do not release enough energy to produce them; however, they are readily available in the laboratory as the dominant component of the cosmic ray flux at the earth’s surface. There are two types of muons, with opposite charge, and they decay into electrons or positrons and two neutrinos according to the rules + + µ → e νe ν¯µ − − µ → e ν¯e νµ . The muon decay is a radioactiveprocess which follows the usual exponential law for the probability of survival for a given time t. Be sure that you understand the basis for this law. The goal of the experiment is to measure the muon lifetime which is roughly 2 µs. With care you can make the measurement with an accuracy of a few percent or better. In order to achieve this goal in a conceptually simple way, we look only at those muons that happen to come to rest inside our detector. That is, we first capture a muon and then measure the elapsed time until it decays. Muons are rather penetrating particles, they can easily go through meters of concrete. Nevertheless, a small fraction of the muons will be slowed down and stopped in the detector. As shown in Figure 1, the apparatus consists of two types of detectors. There is a tank filled with liquid scintillator (a big metal box) viewed by two photomultiplier tubes (Left and Right) and two plastic scintillation counters (flat panels wrapped in black tape), each viewed by a photomul- tiplier tube (Top and Bottom).
    [Show full text]
  • Muon Neutrino Mass Without Oscillations
    The Distant Possibility of Using a High-Luminosity Muon Source to Measure the Mass of the Neutrino Independent of Flavor Oscillations By John Michael Williams [email protected] Markanix Co. P. O. Box 2697 Redwood City, CA 94064 2001 February 19 (v. 1.02) Abstract: Short-baseline calculations reveal that if the neutrino were massive, it would show a beautifully structured spectrum in the energy difference between storage ring and detector; however, this spectrum seems beyond current experimental reach. An interval-timing paradigm would not seem feasible in a short-baseline experiment; however, interval timing on an Earth-Moon long baseline experiment might be able to improve current upper limits on the neutrino mass. Introduction After the Kamiokande and IMB proton-decay detectors unexpectedly recorded neutrinos (probably electron antineutrinos) arriving from the 1987A supernova, a plethora of papers issued on how to use this happy event to estimate the mass of the neutrino. Many of the estimates based on these data put an upper limit on the mass of the electron neutrino of perhaps 10 eV c2 [1]. When Super-Kamiokande and other instruments confirmed the apparent deficit in electron neutrinos from the Sun, and when a deficit in atmospheric muon- neutrinos likewise was observed, this prompted the extension of the kaon-oscillation theory to neutrinos, culminating in a flavor-oscillation theory based by analogy on the CKM quark mixing matrix. The oscillation theory was sensitive enough to provide evidence of a neutrino mass, even given the low statistics available at the largest instruments. J. M. Williams Neutrino Mass Without Oscillations (2001-02-19) 2 However, there is reason to doubt that the CKM analysis validly can be applied physically over the long, nonvirtual propagation distances of neutrinos [2].
    [Show full text]
  • Muons: Particles of the Moment
    FEATURES Measurements of the anomalous magnetic moment of the muon provide strong hints that the Standard Model of particle physics might be incomplete Muons: particles of the moment David W Hertzog WHEN asked what the most important strange, bottom and top; and six leptons, issue in particle physics is today, my ABORATORY namely the electron, muon and tau- colleagues offer three burning ques- L lepton plus their associated neutrinos. ATIONAL tions: What is the origin of mass? Why N A different set of particles is respon- is the universe made of matter and not sible for the interactions between these equal parts of matter and antimatter? ROOKHAVEN matter particles in the model. The elec- And is there any physics beyond the B tromagnetic interaction that binds elec- Standard Model? trons to nuclei results from the exchange The first question is being addressed of photons, whereas the strong force by a feverish quest to find the Higgs that binds quarks together inside neut- boson, which is believed to be respon- rons, protons and other hadrons is car- sible for the mass of fundamental par- ried by particles called gluons. The ticles. The Tevatron at Fermilab, which third force in the Standard Model – the is currently running, or the Large Had- weak nuclear interaction, which is re- ron Collider at CERN, which is due sponsible for radioactive decay – is car- to start experiments in 2007, should OWMAN ried by the W and Z bosons. B IPP eventually provide the answer to this R Physicists love the Standard Model, question by detecting the Higgs and but they do not like it.
    [Show full text]
  • Arxiv:1512.01765V2 [Physics.Atom-Ph]
    August12,2016 1:27 WSPCProceedings-9.75inx6.5in Antognini˙ICOLS˙3 page 1 1 Muonic atoms and the nuclear structure A. Antognini∗ for the CREMA collaboration Institute for Particle Physics, ETH, 8093 Zurich, Switzerland Laboratory for Particle Physics, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland ∗E-mail: [email protected] High-precision laser spectroscopy of atomic energy levels enables the measurement of nu- clear properties. Sensitivity to these properties is particularly enhanced in muonic atoms which are bound systems of a muon and a nucleus. Exemplary is the measurement of the proton charge radius from muonic hydrogen performed by the CREMA collaboration which resulted in an order of magnitude more precise charge radius as extracted from other methods but at a variance of 7 standard deviations. Here, we summarize the role of muonic atoms for the extraction of nuclear charge radii, we present the status of the so called “proton charge radius puzzle”, and we sketch how muonic atoms can be used to infer also the magnetic nuclear radii, demonstrating again an interesting interplay between atomic and particle/nuclear physics. Keywords: Proton radius; Muon; Laser spectroscopy, Muonic atoms; Charge and mag- netic radii; Hydrogen; Electron-proton scattering; Hyperfine splitting; Nuclear models. 1. What atomic physics can do for nuclear physics The theory of the energy levels for few electrons systems, which is based on bound- state QED, has an exceptional predictive power that can be systematically improved due to the perturbative nature of the theory itself [1, 2]. On the other side, laser spectroscopy yields spacing between energy levels in these atomic systems so pre- cisely, that even tiny effects related with the nuclear structure already influence several significant digits of these measurements.
    [Show full text]
  • Search for Higgs Boson Decays to Beyond-The-Standard-Model Light Bosons in Four-Lepton Events√ with the ATLAS Detector at S = 13 Tev
    EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN) JHEP 06 (2018) 166 CERN-EP-2017-293 DOI: 10.1007/JHEP06(2018)166 25th July 2018 Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton eventsp with the ATLAS detector at s = 13 TeV The ATLAS Collaboration A search is conducted for a beyond-the-Standard-Model boson using events where a Higgs boson with mass 125 GeV decays to four leptons (` = e or µ). This decay is presumed to occur via an intermediate state which contains one or two on-shell, promptly decaying bosons: H ! ZX/XX ! 4`, where X is a new vector boson Zd or pseudoscalar a with mass between 1 and 60 GeV. The search uses pp collision data collected with the ATLAS detectorp at the LHC with an integrated luminosity of 36.1 fb−1 at a centre-of-mass energy s = 13 TeV. No significant excess of events above Standard Model background predictions is observed; therefore, upper limits at 95% confidence level are set on model-independent fiducial cross- sections, and on the Higgs boson decay branching ratios to vector and pseudoscalar bosons in two benchmark models. arXiv:1802.03388v2 [hep-ex] 24 Jul 2018 © 2018 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license. Contents 1 Introduction 2 2 Benchmark models3 2.1 Vector-boson model4 2.2 Pseudoscalar-boson model5 3 ATLAS detector 6 4 Event reconstruction7 4.1 Trigger and event preselection7 4.2 Lepton reconstruction7 4.3 Definition of invariant-mass kinematic variables8 4.4
    [Show full text]
  • Explaining Muon G − 2 Data in the Μνssm Arxiv:1912.04163V3 [Hep-Ph]
    Explaining muon g 2 data in the µνSSM − Essodjolo Kpatcha∗a,b, Iñaki Lara†c, Daniel E. López-Fogliani‡d,e, Carlos Muñoz§a,b, and Natsumi Nagata¶f aDepartamento de Física Teórica, Universidad Autónoma de Madrid (UAM), Campus de Cantoblanco, 28049 Madrid, Spain bInstituto de Física Teórica (IFT) UAM-CSIC, Campus de Cantoblanco, 28049 Madrid, Spain cFaculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland dInstituto de Física de Buenos Aires UBA & CONICET, Departamento de Física, Facultad de Ciencia Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina e Pontificia Universidad Católica Argentina, 1107 Buenos Aires, Argentina fDepartment of Physics, University of Tokyo, Tokyo 113-0033, Japan Abstract We analyze the anomalous magnetic moment of the muon g 2 in the µνSSM. − This R-parity violating model solves the µ problem reproducing simultaneously neu- trino data, only with the addition of right-handed neutrinos. In the framework of the µνSSM, light left muon-sneutrino and wino masses can be naturally obtained driven by neutrino physics. This produces an increase of the dominant chargino-sneutrino loop contribution to muon g 2, solving the gap between the theoretical computation − and the experimental data. To analyze the parameter space, we sample the µνSSM using a likelihood data-driven method, paying special attention to reproduce the cur- rent experimental data on neutrino and Higgs physics, as well as flavor observables such as B and µ decays. We then apply the constraints from LHC searches for events with multi-leptons + MET on the viable regions found. They can probe these regions through chargino-chargino, chargino-neutralino and neutralino-neutralino pair pro- duction.
    [Show full text]
  • A Practical Guide to the ISIS Neutron and Muon Source
    A Practical Guide to the ISIS Neutron and Muon Source A Practical Guide to the ISIS Neutron and Muon Source 1 Contents Introduction 3 Production of neutrons and muons — in general 9 Production of neutrons and muons — at ISIS 15 Operating the machine 33 Neutron and muon techniques 41 Timeline 48 Initial concept and content: David Findlay ISIS editing and production team: John Thomason, Sara Fletcher, Rosie de Laune, Emma Cooper Design and Print: UKRI Creative Services 2 A Practical Guide to the ISIS Neutron and Muon Source WelcomeLate on the evening of 16 December 1984, a small group of people crammed into the ISIS control room to see history in the making – the generation of the first neutrons by the nascent particle accelerator. Back then, ISIS was a prototype, one of the first spallation sources built to generate neutrons for research. The machine included just three experimental instruments, although there were always ambitious plans for more! In 1987 three muon instruments expanded the range of tools available to the global scientific community. Since then we have built over 30 new instruments, not to mention a whole new target station! ISIS has grown in size and in strength to support a dynamic international user community of over 3,000 scientists, and over 15,000 papers have been published across a wide range of scientific disciplines. Spallation sources are widely established, a complementary tool to reactor based facilities and photon sources, forming a vital part of the global scientific infrastructure. This was made possible by the engineers, scientists and technicians who design, build and operate the machine.
    [Show full text]
  • The PYTHIA Event Generator: Past, Present and Future∗
    LU TP 19-31 MCnet-19-16 July 2019 The PYTHIA Event Generator: Past, Present and Future∗ Torbj¨ornSj¨ostrand Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University, S¨olvegatan 14A, SE-223 62 Lund, Sweden Abstract The evolution of the widely-used Pythia particle physics event generator is outlined, from the early days to the current status and plans. The key decisions and the development of the major physics components are put in arXiv:1907.09874v1 [hep-ph] 23 Jul 2019 context. ∗submitted to 50 Years of Computer Physics Communications: a special issue focused on computational science software 1 Introduction The Pythia event generator is one of the most commonly used pieces of software in particle physics and related areas, either on its own or \under the hood" of a multitude of other programs. The program is designed to simulate the physics processes that can occur in collisions between high-energy particles, e.g. at the LHC collider at CERN. Monte Carlo methods are used to represent the quantum mechanical variability that can give rise to wildly different multiparticle final states under fixed simple initial conditions. A combi- nation of perturbative results and models for semihard and soft physics | many of them developed in the Pythia context | are combined to trace the evolution towards complex final states. The program roots stretch back over forty years to the Jetset program, with which it later was fused. Twelve manuals for the two programs have been published in Computer Physics Communications (CPC), Table 1, together collecting over 20 000 citations in the Inspire database.
    [Show full text]
  • Study of Nuclear Properties with Muonic Atoms
    EPJ manuscript No. (will be inserted by the editor) Study of nuclear properties with muonic atoms A. Knecht1a, A. Skawran1;2b, and S. M. Vogiatzi1;2c 1 Paul Scherrer Institut, Villigen, Switzerland 2 Institut f¨urTeilchen- und Astrophysik, ETH Z¨urich, Switzerland Received: date / Revised version: date Abstract. Muons are a fascinating probe to study nuclear properties. Muonic atoms can easily be formed by stopping negative muons inside a material. The muon is subsequently captured by the nucleus and, due to its much higher mass compared to the electron, orbits the nucleus at very small distances. During this atomic capture process the muon emits characteristic X-rays during its cascade down to the ground state. The energies of these X-rays reveal the muonic energy level scheme, from which properties like the nuclear charge radius or its quadrupole moment can be extracted. While almost all stable elements have been examined using muons, probing highly radioactive atoms has so far not been possible. The muX experiment has developed a technique based on transfer reaction inside a high pressure hydrogen/deuterium gas cell to examine targets available only in microgram quantities. PACS. 14.60. Ef Muons { 36.10.Dr Positronium, muonium, muonic atoms and molecules { 32.30.Rj X-ray spectra { 21.10.-k General and average properties of nuclei 1 Introduction Muons are fascinating particles with experiments being conducted in the context of particle, nuclear and atomic physics [1]. Additionally, also applied research is possible by measuring the spin precession and dynamics of muons inside materials through the µSR technique [2] thus probing the internal magnetic fields of the sample under study.
    [Show full text]
  • Feynman Diagrams (Pdf)
    PRIMARY SCHOOL anti-muon (+1) or anti-electron (+1) or electron (-1) anti-tau (+1) photon (0) muon (-1) anti-electron (+1) or electron (-1) or tau (-1) Dr Maria Pavlidou, Prof Cristina Lazzeroni HIGH SCHOOL anti-muon (……...) or anti-electron (……..) or electron (…….) anti-tau (……...) ………...…... (…...) muon (…….) anti-electron (……...) or electron (…….) or tau (……..) Dr Maria Pavlidou, Prof Cristina Lazzeroni PRIMARY SCHOOL anti-up (-2/3) or anti-down (+1/3) or anti-strange (+1/3) or anti-beauty (+1/3) or anti-top (-2/3) or charm quark (+2/3) anti-charm (-2/3) gluon (0) up (+2/3) or down (-1/3) anti-charm quark (-2/3) or strange (-1/3) or beauty (-1/3) or top (+2/3) or charm (+2/3) Dr Maria Pavlidou, Prof Cristina Lazzeroni HIGH SCHOOL anti-up (……….) or anti-down (……...) or anti-strange (……...) or anti-beauty (……...) or anti-top (……...) or charm quark (……...) anti-charm (……...) ………...…... (…...) up (……...) or down (……...) or anti-charm quark (……..) strange (……...) or beauty (……...) or top (……...) or charm (……...) Dr Maria Pavlidou, Prof Cristina Lazzeroni PRIMARY SCHOOL anti-up (-2/3) or anti-charm (-2/3) muon (-1) W minus (-1) down (-1/3) muon neutrino (0) or strange (-1/3) or beauty (-1/3) Dr Maria Pavlidou, Prof Cristina Lazzeroni HIGH SCHOOL anti-up (……...) or anti-charm (……...) muon (……...) ………...…... (…...) down (……...) muon neutrino (……...) or strange (……...) or beauty (……...) Dr Maria Pavlidou, Prof Cristina Lazzeroni PRIMARY SCHOOL electron neutrino (0) or muon neutrino (0) or tau neutrino (0) tau (-1) Z (0) electron anti-neutrino (0) anti-tau (+1) or muon anti-neutrino (0) or tau anti-neutrino (0) Dr Maria Pavlidou, Prof Cristina Lazzeroni HIGH SCHOOL electron neutrino (……...) or muon neutrino (……...) or tau neutrino (……...) tau (……...) ………….
    [Show full text]
  • The Nuclear Physics of Muon Capture
    Physics Reports 354 (2001) 243–409 The nuclear physics of muon capture D.F. Measday ∗ University of British Columbia, 6224 Agricultural Rd., Vancouver, BC, Canada V6T 1Z1 Received December 2000; editor: G:E: Brown Contents 4.8. Charged particles 330 4.9. Fission 335 1. Introduction 245 5. -ray studies 343 1.1. Prologue 245 5.1. Introduction 343 1.2. General introduction 245 5.2. Silicon-28 350 1.3. Previous reviews 247 5.3. Lithium, beryllium and boron 360 2. Fundamental concepts 248 5.4. Carbon, nitrogen and oxygen 363 2.1. Properties of the muon and neutrino 248 5.5. Fluorine and neon 372 2.2. Weak interactions 253 5.6. Sodium, magnesium, aluminium, 372 3. Muonic atom 264 phosphorus 3.1. Atomic capture 264 5.7. Sulphur, chlorine, and potassium 377 3.2. Muonic cascade 269 5.8. Calcium 379 3.3. Hyperÿne transition 275 5.9. Heavy elements 383 4. Muon capture in nuclei 281 6. Other topics 387 4.1. Hydrogen 282 6.1. Radiative muon capture 387 4.2. Deuterium and tritium 284 6.2. Summary of g determinations 391 4.3. Helium-3 290 P 6.3. The (; e±) reaction 393 4.4. Helium-4 294 7. Summary 395 4.5. Total capture rate 294 Acknowledgements 396 4.6. General features in nuclei 300 References 397 4.7. Neutron production 311 ∗ Tel.: +1-604-822-5098; fax: +1-604-822-5098. E-mail address: [email protected] (D.F. Measday). 0370-1573/01/$ - see front matter c 2001 Published by Elsevier Science B.V.
    [Show full text]
  • The Rest Masses of the Electron and Muon and of the Stable Mesons And
    The rest masses of the electron and muon and of the stable mesons and baryons E.L. Koschmieder Center for Statistical Mechanics The University of Texas at Austin, Austin TX 78712, USA e-mail: [email protected] The rest masses of the electron, the muon and of the stable mesons and baryons can be explained, within 1% accuracy, with the standing wave model, which uses only photons, neutrinos, charge and the weak nuclear force. We do not need hypothetical particles for the explanation of the masses of the electron, muon, mesons and baryons. We have determined the rest masses of the electron-, muon- and tau neutrinos and found that the mass of the electron neutrino is equal to the fine structure constant times the mass of the muon neutrino. Key words: Neutrino masses, electron mass, muon mass, meson masses, baryon masses. PACS numbers: 14.40.-n; 14.60.-z; 14.60.Pq. Introduction The so-called “Standard Model” of the elementary particles has, until now, not come up with a precise theoretical determination of the masses of either the mesons and baryons or of the leptons, which means that neither the mass of the fundamental electron nor the mass of the fundamental proton have been explained. The quarks, which have been introduced by Gell-Mann [1] forty years ago, are said to explain the mesons and baryons. But the standard model does not explain neither the mass, nor the charge, nor the spin of the particles, the three fundamental time-independent properties of arXiv:physics/0602037v4 [physics.gen-ph] 30 Jul 2007 the particles.
    [Show full text]