Neuroforum Gesellschaft Neurowissenschaftlichen Organ Der Herausgegeben Von Herausgegeben

Total Page:16

File Type:pdf, Size:1020Kb

Neuroforum Gesellschaft Neurowissenschaftlichen Organ Der Herausgegeben Von Herausgegeben 2018 · VOLUME 24 · ISSUE 1 ISSN 0947-0875 · e-ISSN 1868-856X NEUROFORUM 2018 · VOLUME 24 · ISSUE 1 · PP. 1 · PP. · ISSUE 24 · VOLUME 2018 NEUROFORUM ORGAN DER NEUROWISSENSCHAFTLICHEN GESELLSCHAFT – 1 72 HERAUSGEGEBEN VON Neurowissenschaftliche Gesellschaft e.V. (NWG) CHEFREDAKTEUR Heiko J. Luhmann, Mainz www.degruyter.com/journals/nf Offenlegung der Inhaber und Beteiligungsverhältnisse gem. § 7a Abs. 1 Ziff. 1, Abs. 2 Ziff. 3 des Berliner Pressegesetzes: Die Gesellschafter der Walter de Gruyter GmbH sind: Cram, Gisela, Rentnerin, Berlin; Cram, Elsbeth, Pensionärin, Rosengarten- Alvesen; Cram, Dr. Georg-Martin, Unternehmens-Systemberater, Stadtbergen; Cram, Maike, Wien (Österreich); Cram, Jens, Mannheim; Cram, Ingrid, Betriebsleiterin, Tuxpan/Michoacan (Mexiko); Cram, Sabina, Mexico, DF (Mexiko); Cram, Silke, Wissenschaftlerin, Mexico DF (Mexiko); Cram, Björn, Aachen; Cram, Berit, Hamm; Cram-Gomez, Susana, Mexico DF (Mexiko); Cram-Heydrich, Walter, Mexico DF (Mexico); Cram-Heydrich, Kurt, Angestellter, Mexico DF (Mexico); Duvenbeck, Birgitta, Oberstudienrätin i.R., Bad Homburg; Gädeke, Gudula, M.A., Atemtherapeutin/Lehrerin, Tübingen; Gädeke, Martin, Einzelunterneh- mer, Ingolstadt; Lubasch, Dr. Annette, Ärztin, Berlin; Schütz, Dr. Christa, Ärztin, Mannheim; Schütz, Sonja, Berlin; Schütz, Juliane, Berlin; Schütz, Antje, Berlin; Schütz, Valentin, Mannheim; Seils, Dorothee, Apothekerin, Stuttgart; Seils, Dr. Ernst-Albert, Pensionär, Reppenstedt; Seils, Gabriele, Dozentin, Berlin; Seils, Christoph, Journalist, Berlin; Siebert, John-Walter, Pfarrer, Oberstenfeld; Tran, Renate, Mediatorin, Zürich (Schweiz). NEUROFORUM HERAUSGEGEBEN VON Neurowissenschaftliche Gesellschaft e.V. (NWG) CHEFREDAKTEUR Heiko J. Luhmann, Mainz REDAKTION Susanne Hannig, Berlin REDAKTIONSGREMIUM Mathias Bähr, Göttingen Michael Heneka, Bonn Denise Manahan-Vaughan, Bochum Niels Birbaumer, Tübingen Anton Hermann, Salzburg, Österreich Thomas Möller, Cambridge, USA Alexander Borst, Martinsried Andreas Herz, München Ulrike Müller, Heidelberg Sebastian Brandner, London, US Isabella Heuser, Berlin Thomas Münte, Lübeck Katharina Braun, Magdeburg Sigismund Huck, Wien, Österreich Roger Nitsch, Zürich, Schweiz Nils Brose, Göttingen Mark Hübener, Martinsried Christian Pape, Münster Ansgar Büschges, Köln Reinhard Jahn, Göttingen Hans-Joachim Pflüger, Berlin Thomas Deller, Frankfurt/M. Peter Jonas, Klosterneuburg, Josef Rauschecker, Washington, USA Ricarda Diem, Heidelberg Österreich Angelika Richter, Leipzig Ulrich Dirnagl, Berlin Sabine Kastner, Princeton, USA Christine R. Rose, Düsseldorf Andreas Draguhn, Heidelberg Helmut Kettenmann, Berlin Stefan Rotter, Freiburg Jens Eilers, Leipzig Frank Kirchhoff, Homburg Susanne Schoch-McGovern, Bonn Herta Flor, Mannheim Christian Klämbt, Münster Rainer Schwarting, Marburg Eckhard Friauf, Kaiserslautern Thomas Klockgether, Bonn Mikael Simons, Göttingen Giovanni Galizia, Konstanz Matthias Kneussel, Hamburg Christian Steinhäuser, Bonn Magdalena Götz, München Michael Koch, Bremen Monika Stengl, Kassel Benedikt Grothe, München Arthur Konnerth, München Christiane Thiel, Oldenburg Sonja Grün, Jülich Sigrun Korsching, Köln Stefan Treue, Göttingen Onur Güntürkün, Bochum Kerstin Krieglstein, Freiburg Petra Wahle, Bochum Eckhart Gundelfinger, Magdeburg Trese Leinders-Zufall, Homburg Bernd Weber, Bonn Ileana Hanganu-Opatz, Hamburg Wolfgang Löscher, Hannover Christian Wegener, Würzburg Andreas Heinz, Berlin Siegrid Löwel, Göttingen Florentin Wörgötter, Göttingen Charlotte Helfrich-Förster, Würzburg Albert Christian Ludolph, Ulm Moritz Helmstädter, Frankfurt/M. Hanspeter A. Mallot, Tübingen ABSTRACTED/INDEXED IN Baidu Scholar · Case · CNKI Scholar (China National Knowledge Infrastructure) · CNPIEC · EBSCO Discovery Service · Elsevier: SCOPUS · Google Scholar · J-Gate · JournalGuide · JournalTOCs · KESLI-NDSL (Korean National Discovery for Science Leaders) · Microsoft Academic · Naviga (Softweco) · Primo Central (ExLibris) · Publons · ReadCube · SCImago (SJR) · Summon (Serials Solutions/ ProQuest) · TDNet · Ulrich's Periodicals Directory/ulrichsweb · WanFang Data · WorldCat (OCLC) ISSN 0947-0875 · e-ISSN 1868-856X Alle Informationen zur Zeitschrift, wie Hinweise für Autoren, Open Access, Bezugsbedingungen und Bestellformulare, sind online zu finden unter https://www.degruyter.com/view/j/nf HERAUSGEBER Neurowissenschaftliche Gesellschaft e.V. (NWG), Kontakt: Meino Alexandra Gibson, Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Straße 10, 13092 Berlin, Tel.: +49 (0)30 9406 3336, [email protected], www.nwg-info.de CHEFREDAKTEUR Prof. Dr. Heiko J. Luhmann, Institute of Physiology, University Medical Center, Duesbergweg 6, D-55128 Mainz (Germany), Tel.: +49 (0)6131 39 26070, http://physiologie.uni-mainz.de/physio/luhmann/index.htm REDAKTION Susanne Hannig, Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Str. 10, 13092 Berlin (Germany), Tel.: +49 (0)30 9406 3336, [email protected] JOURNAL MANAGER Torsten Krüger, De Gruyter, Genthiner Straße 13, 10785 Berlin, Germany. Tel.: +49 (0)30 260 05-173, Fax: +49 (0)30 260 05-250, E-Mail: [email protected] ANZEIGENVERANTWORTLICHE top-ad Bernd Beutel, Schlossergäßchen 10, 69469 Weinheim, Tel.: +49 (0)6201 290 92-0, Fax +49 (0)6201 290 92-20 20, [email protected] © 2018 Walter de Gruyter GmbH, Berlin/Boston COVER ILLUSTRATION Basierend auf der Abb. 2 in Kristine Krug und Andrew John Parker, Die neuronalen Signale, die Wahrnehmung verändern, Seite 39–48, in dieser Ausgabe SATZ fidus Publikations-Service GmbH, Nördlingen DRUCK Franz X. Stückle Druck und Verlag e.K., Ettenheim Printed in Germany VORSTAND DER AMTSPERIODE 2017–2019 PRÄSIDENT Kognitive Neurowissenschaften Eckhard Friauf, Kaiserslautern Hanspeter A. Mallot, Tübingen VIZEPRÄSIDENT Molekulare Neurobiologie Albert Christian Ludolph, Ulm Matthias Kneussel, Hamburg GENERALSEKRETÄR Neuropharmakologie/-toxikologie Christian Steinhäuser, Bonn Angelika Richter, Leipzig SCHATZMEISTER Systemneurobiologie Ansgar Büschges, Köln Benedikt Grothe, Martinsried SEKTIONSSPRECHER Verhaltensneurowissenschaften Computational Neuroscience Christian Wegener, Würzburg Stefan Rotter, Freiburg Zelluläre Neurowissenschaften Entwicklungsneurobiologie/Neurogenetik Christine R. Rose, Düsseldorf Petra Wahle, Bochum Klinische Neurowissenschaften Ricarda Diem, Heidelberg Neuroforum 2018 | Volume 24 | Issue 1 Inhalt Laura Busse Übersichtsartikel Der Einfluss von Fortbewegung auf die sensorische Informationsverarbeitung und die zugrunde liegenden Rosanna Parlato und Birgit Liss neuronalen Schaltkreise 49 Selektive Degeneration dopaminerger Neurone beim Parkinson-Syndrom: die zunehmende Rolle von Laura Busse veränderter Kalziumhomöostase und nukleolärer The influence of locomotion on sensory processing and Funktion 1 its underlying neuronal circuits A41 Rosanna Parlato and Birgit Liss Selective degeneration of dopamine neurons in Forschungsförderung Parkinson’s disease: emerging roles of altered calcium homeostasis and nucleolar function A1 Marco Prinz, Lena Geimer-Breitenstein und Josef Priller Sonderforschungsbereich (SFB/TRR 167) NeuroMac Sabine Windmann und Grit Hein „Entwicklung, Funktion und Potenzial von myeloischen Altruismus aus Sicht der Sozialen Zellen im zentralen Nervensystem“ 61 Neurowissenschaften 15 Sabine Windmann and Grit Hein Rezension Altruism from the Perspective of the Social Neurosciences A11 Michael Madeja/Joachim Müller-Jung (Hrsg.) Hirnforschung – was kann sie wirklich 67 Siegrid Löwel, Susanne Dehmel, Kalina Makowiecki und Evgenia Kalogeraki Lebensbedingungen haben einen starken Einfluss auf Nachrichten die Plastizität des Gehirns 25 Neue NWG-Website 69 Siegrid Löwel, Susanne Dehmel, Kalina Makowiecki and Evgenia Kalogeraki Bundesministerium für Bildung und Forschung Environmental conditions strongly affect brain fördert Aufbau eines Deutsch-Chinesischen plasticity A19 Fachnetzwerkes der Neurowissenschaften 70 Kristine Krug und Andrew John Parker Neueintritte 71 Die neuronalen Signale, die Wahrnehmung verändern 39 Ausblick/Preview 71 Kristine Krug and Andrew John Parker The neural events that change perception A31 Neuroforum 2018; 24(1): 1–14 Übersichtsartikel Rosanna Parlato und Birgit Liss* Selektive Degeneration dopaminerger Neurone beim Parkinson-Syndrom: die zunehmende Rolle von veränderter Kalziumhomöostase und nukleolärer Funktion https://doi.org/10.1515/nf-2017-0006 Einleitung Zusammenfassung: Morbus Parkinson (MP) ist die zweit- häufigste neurodegenerative Erkrankung. Die klassische Mit ungefähr 300.000 betroffenen Patienten allein in MP-Motorsymptomatik wird durch einen progressiven Deutschland ist Morbus Parkinson (MP) neben Morbus Dopaminverlust im Striatum verursacht, bzw. durch den Alzheimer die zweithäufigste neurodegenerative Erkran- fortschreitenden Verlust von Dopamin-ausschüttenden kung. Die Anzahl an Erkrankungen steigt mit hohem (DA) Neuronen im Mittelhirn (insbesondere in der Subs- Alter an (www.epda.eu.com). Die charakteristischen mo- tantia nigra, SN, auch schwarze Substanz genannt). Da die torischen Symptome des MP, passenderweise auch als Ursache für den MP immer noch unklar ist, stehen derzeit „Schüttellähmung“ bezeichnet, sind eine allgemeine keine kurativen Therapien zur Verfügung. Es konnten aber Minderbeweglichkeit (Bradykinesie, Akinesie), Rigor, pos- eine Reihe von genetischen und umweltbedingten Trigger- turale Instabilität und ein Ruhetremor. Diese sogenannten faktoren identifiziert werden, die auf einen gemeinsamen, Kardinalsymptome werden durch einen progredienten
Recommended publications
  • Running Cures Blind Mice Exercise Combined with Visual Stimulation Helps to Quickly Restore Vision in Unused Eye
    NATURE | NEWS Running cures blind mice Exercise combined with visual stimulation helps to quickly restore vision in unused eye. Simon Makin 27 June 2014 Tetra Images/Corbis Mice with 'lazy eye', a partial blindness caused by visual deprivation early in life, improved faster if they were exposed to visual stimuli while running on a treadmill. Running helps mice to recover from a type of blindness caused by sensory deprivation early in life, researchers report. The study, published on 26 June in eLife1, also illuminates processes underlying the brain’s ability to rewire itself in response to experience — a phenomenon known as plasticity, which neuroscientists believe is the basis of learning. More than 50 years ago, neurophysiologists David Hubel and Torsten Wiesel cracked the 'code' used to send information from the eyes to the brain. They also showed that the visual cortex develops properly only if it receives input from both eyes early in life. If one eye is deprived of sight during this ‘critical period’, the result is amblyopia, or ‘lazy eye’, a state of near blindness. This can happen to someone born with a droopy eyelid, cataract or other defect not corrected in time. If the eye is opened in adulthood, recovery can be slow and incomplete. In 2010, neuroscientists Christopher Niell and Michael Stryker, both at the University of California, San Francisco (UCSF), showed that running more than doubled the response of mice's visual cortex neurons to visual stimulation2 (see 'Neuroscience: Through the eyes of a mouse'). Stryker says that it is probably more important, and taxing, to keep track of the environment when navigating it at speed, and that lower responsiveness at rest may have evolved to conserve energy in less-demanding situations.
    [Show full text]
  • Torsten Wiesel (1924– ) [1]
    Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Torsten Wiesel (1924– ) [1] By: Lienhard, Dina A. Keywords: vision [2] Torsten Nils Wiesel studied visual information processing and development in the US during the twentieth century. He performed multiple experiments on cats in which he sewed one of their eyes shut and monitored the response of the cat’s visual system after opening the sutured eye. For his work on visual processing, Wiesel received the Nobel Prize in Physiology or Medicine [3] in 1981 along with David Hubel and Roger Sperry. Wiesel determined the critical period during which the visual system of a mammal [4] develops and studied how impairment at that stage of development can cause permanent damage to the neural pathways of the eye, allowing later researchers and surgeons to study the treatment of congenital vision disorders. Wiesel was born on 3 June 1924 in Uppsala, Sweden, to Anna-Lisa Bentzer Wiesel and Fritz Wiesel as their fifth and youngest child. Wiesel’s mother stayed at home and raised their children. His father was the head of and chief psychiatrist at a mental institution, Beckomberga Hospital in Stockholm, Sweden, where the family lived. Wiesel described himself as lazy and playful during his childhood. He went to Whitlockska Samskolan, a coeducational private school in Stockholm, Sweden. At that time, Wiesel was interested in sports and became the president of his high school’s athletic association, which he described as his only achievement from his younger years. In 1941, at the age of seventeen, Wiesel enrolled at Karolinska Institutet (Royal Caroline Institute) in Solna, Sweden, where he pursued a medical degree and later pursued his own research.
    [Show full text]
  • Neuroplasticity in Adult Human Visual Cortex
    Neuroplasticity in adult human visual cortex Elisa Castaldi1, Claudia Lunghi2 and Maria Concetta Morrone3,4 1 Department of Neuroscience, Psychology, Pharmacology and Child health, University of Florence, Florence, Italy 2 Laboratoire des systèmes perceptifs, Département d’études cognitives, École normale supérieure, PSL University, CNRS, 75005 Paris, France 3 Department of Translational Research and New technologies in Medicine and Surgery, University of Pisa, Pisa, Italy 4 IRCCS Stella Maris, Calambrone (Pisa), Italy Abstract Between 1-5:100 people worldwide has never experienced normotypic vision due to a condition called amblyopia, and about 1:4000 suffer from inherited retinal dystrophies that progressively lead them to blindness. While a wide range of technologies and therapies are being developed to restore vision, a fundamental question still remains unanswered: would the adult visual brain retain a sufficient plastic potential to learn how to ‘see’ after a prolonged period of abnormal visual experience? In this review we summarize studies showing that the visual brain of sighted adults retains a type of developmental plasticity, called homeostatic plasticity, and this property has been recently exploited successfully for adult amblyopia recover. Next, we discuss how the brain circuits reorganizes when visual stimulation is partially restored by means of a ‘bionic eye’ in late blinds with Retinitis Pigmentosa. The primary visual cortex in these patients slowly became activated by the artificial visual stimulation, indicating that
    [Show full text]
  • Open Source Silicon Microprobes for High Throughput Neural Recording
    Open source silicon microprobes for high throughput neural recording Long Yang1,*, Kwang Lee1,*, Jomar Villagracia1 and Sotiris C. Masmanidis1 *Equal contribution Affiliations 1Department of Neurobiology and California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA. Address for correspondence Sotiris Masmanidis, 650 Charles E Young Dr. South, Los Angeles, CA 90095, USA. E-mail: [email protected] ORCID numbers: Long Yang: 0000-0001-8317-8768 Kwang Lee: 0000-0002-2689-0350 Jomar Villagracia: 0000-0002-6920-1543 Sotiris C. Masmanidis: 0000-0002-8699-3335 Abstract Objective. Microfabricated multielectrode arrays are widely used for high throughput recording of extracellular neural activity, which is transforming our understanding of brain function in health and disease. Currently there is a plethora of electrode-based tools being developed at higher education and research institutions. However, taking such tools from the initial research and development phase to widespread adoption by the neuroscience community is often hindered by several obstacles. The objective of this work is to describe the development, application, and open dissemination of silicon microprobes for recording neural activity in vivo. Approach. We propose an open source dissemination platform as an alternative to commercialization. This framework promotes recording tools that are openly and inexpensively available to the community. The silicon microprobes are designed in house, but the fabrication and assembly processes are carried out by third party companies. This enables mass production, a key requirement for large-scale dissemination. Main results. We demonstrate the operation of silicon microprobes containing up to 256 electrodes in conjunction with optical fibers for optogenetic manipulations or fiber photometry.
    [Show full text]
  • Radial Deformation Acuity in Children with Amblyopia
    Radial Deformation Acuity In Children With Amblyopia by Michael John Betts Submitted in partial fulfillment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia March 2013 © Copyright by Michael John Betts, 2013 DALHOUSIE UNIVERSITY DEPARTMENT OF CLINICAL VISION SCIENCE The undersigned hereby certify that they have read and recommend to the Faculty of Graduate Studies for acceptance a thesis entitled “Radial Deformation Acuity In Children With Amblyopia” by Michael John Betts in partial fulfillment of the requirements for the degree of Master of Science. Date March 25, 2013 Co-Supervisors: _________________________________ _________________________________ Readers: _________________________________ _________________________________ _________________________________ ii DALHOUSIE UNIVERSITY DATE: March 25, 2013 AUTHOR: Michael John Betts TITLE: Radial Deformation Acuity In Children With Amblyopia DEPARTMENT OR SCHOOL: Department of Clinical Vision Science DEGREE: MSc CONVOCATION: MAY YEAR: 2013 Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions. I understand that my thesis will be electronically available to the public. The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author’s written permission. The author attests that permission has been obtained for the use of any copyrighted material appearing in the thesis (other than the brief excerpts requiring only proper acknowledgement in scholarly writing), and that all such use is clearly acknowledged. _______________________________ Signature of Author iii Dedication Page I dedicate this paper to my incredible wife Anna.
    [Show full text]
  • UC Irvine ICTS Publications
    UC Irvine ICTS Publications Title Harnessing neuroplasticity for clinical applications. Permalink https://escholarship.org/uc/item/8zc3z9zk Journal Brain : a journal of neurology, 134(Pt 6) ISSN 1460-2156 Authors Cramer, Steven C Sur, Mriganka Dobkin, Bruce H et al. Publication Date 2011-06-10 Peer reviewed eScholarship.org Powered by the California Digital Library University of California doi:10.1093/brain/awr039 Brain 2011: 134; 1591–1609 | 1591 BRAIN A JOURNAL OF NEUROLOGY REVIEW ARTICLE Harnessing neuroplasticity for clinical applications Steven C. Cramer,1 Mriganka Sur,2 Bruce H. Dobkin,3 Charles O’Brien,4 Terence D. Sanger,5 John Q. Trojanowski,4 Judith M. Rumsey,6 Ramona Hicks,7 Judy Cameron,8 Daofen Chen,7 Wen G. Chen,9 Leonardo G. Cohen,7 Christopher deCharms,10 Charles J. Duffy,11 12 13 14 6 15 Guinevere F. Eden, Eberhard E. Fetz, Rosemarie Filart, Michelle Freund, Steven J. Grant, Downloaded from Suzanne Haber,11 Peter W. Kalivas,16 Bryan Kolb,17 Arthur F. Kramer,18 Minda Lynch,15 Helen S. Mayberg,19 Patrick S. McQuillen,20 Ralph Nitkin,21 Alvaro Pascual-Leone,22 Patricia Reuter-Lorenz,23 Nicholas Schiff,24 Anu Sharma,25 Lana Shekim,26 Michael Stryker,20 Edith V. Sullivan27 and Sophia Vinogradov20 http://brain.oxfordjournals.org/ 1 Departments of Neurology and Anatomy & Neurobiology, University of California, Irvine, CA 92967, USA 2 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3 Department of Neurology, University of California Los Angeles, CA 90095, USA 4 Departments
    [Show full text]
  • Agenda Final STP V2
    Structural Plasticity in the Mammalian Brain Sunday March 21 3:00 pm Check-in 6:00 pm Reception 7:00 pm Dinner 8:00 pm Introduction and Welcome: Tobias Bonhoeffer 8:05 pm Session 1: Keynote Address Dmitri Chklovskii, Janelia Farm Research Campus/HHMI Does neuronal structure matter? 1 Structural Plasticity in the Mammalian Brain Monday March 22 7:30 am Breakfast 9:00 am Session 2: Development Chair: Yi Zuo 9:00 am Hollis Cline, The Scripps Research Institute Combined in vivo time-lapse imaging and serial EM construction reveals the relation between branch dynamics and synapse dynamics in vivo 9:30 am Jeff W. Lichtman, Harvard University Connectivity gradients in the developing neuromuscular system 10:00 am Barbara Chapman, University of California, Davis The role of neuronal activity in the development of connections in the visual system 10:30 am Break and Group Photo 11:00 am Session 3: Imaging functional plasticity Chair: Josh Trachtenberg 11:00 am David Fitzpatrick, Duke University Medical Center Experience-guided construction of cortical circuits: Visual motion and the development of direction selectivity 11:30 am Michael P. Stryker, University of California, San Francisco Plasticity in layer 2/3 of developing visual cortex 12:00 pm Axel Nimmerjahn, Stanford University Functional signaling and structural plasticity of glial networks 12:30 pm Lunch 1:00 pm Tour (optional) 2:15 pm Session 4: Structural plasticity and motor learning Chair: David Linden 2:15 pm Wenbiao Gan, New York University Stably-maintained dendritic spines support
    [Show full text]
  • Using Big Science to Answer Big Questions
    2012 ANNUAL REPORT Using big science to answer big questions. 551 N 34th Street, Seattle, Washington 98103 alleninstitute.org | brain-map.org Back cover Front cover Our Team Founders Marc Tessier-Lavigne, Ph.D. David Tank, Ph.D. The Rockefeller University Princeton University Paul G. Allen David Van Essen, Ph.D. Giulio Tononi, M.D., Ph.D. Jody Allen Washington University University of Wisconsin, Madison Doris Tsao, Ph.D. California Institute of Technology Leadership Additional Scientific Advisors Christopher Walsh, M.D., Ph.D. Allan Jones, Ph.D. Harvard Medical School Chief Executive Officer Larry Abbott, Ph.D. Columbia University Chinh Dang Chief Technology Officer Yang Dan, Ph.D. Past Scientific Advisors University of California, Berkeley Christof Koch, Ph.D. Gregor Eichele, Ph.D. Chief Scientific Officer Michael Elowitz, Ph.D. Max Planck Institute for California Institute of Technology Biophysical Chemistry David Poston Chief Operating Officer Adrienne Fairhall, Ph.D. Eberhard Fetz, Ph.D. University of Washington University of Washington Anne Claude Gavin, Ph.D. Joshua Huang, Ph.D. Board of Directors European Molecular Cold Spring Harbor Laboratory Biology Laboratory Jody Allen Edward Jones, M.D., Ph.D. President and Board Chair, Richard Gibbs, Ph.D. University of California, Davis Allen Institute for Brain Science Baylor College of Medicine What makes us President and CEO, Vulcan Inc. Alexandra Joyner, Ph.D. Patrick Hof, M.D. New York University Nathaniel T. Brown Mount Sinai School of Medicine School of Medicine Senior Vice President, Finance and Financial Strategy, The Seattle Times Arnold Kriegstein, M.D., Ph.D. Sacha Nelson, M.D., Ph.D.
    [Show full text]
  • Neurons in the Mouse Deep Superior Colliculus Encode Orientation/Direction Through Suppression and Extract Selective Visual Features
    bioRxiv preprint doi: https://doi.org/10.1101/092981; this version posted December 9, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Neurons in the mouse deep superior colliculus encode orientation/direction through suppression and extract selective visual features Abbreviated title: Visual responses in the deep superior colliculus Authors: Shinya Ito1, David A. Feldheim2, Alan M. Litke1 1Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064 2Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064 Corresponding author: Shinya Ito, Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, Santa Cruz, California 95064, [email protected] Number of pages: 43 Number of figures: 8 Number of tables: 1 Number of multimedia: 0 Number of 3D models: 0 Number of words for Abstract: 249 Number of words for Introduction: 635 Number of words for Discussion: 1499 Conflict of Interest: The authors declare no competing financial interests. Acknowledgements: This work was supported by the Brain Research Seed Funding provided by UCSC and from the National Institutes of Health Grant NEI R21EYO26758 to D. A. F. and A. M. L. We thank Michael Stryker for training on the electrophysiology experiments and his very helpful comments on the manuscript, Sotiris Masmanidis for providing us with the silicon probes, Forest Martinez- McKinney and Serguei Kachiguin for their technical contributions to the silicon probe system, Jeremiah Tsyporin for taking an image of neural tissues and the training of mice, Jena Yamada, Anahit Hovhannisyan, Corinne Beier, and Sydney Weiser, for their helpful comments on the manuscript.
    [Show full text]
  • Monocular Deprivation Affects Visual Cortex Plasticity Through Cpkcγ-Modulated Glur1 Phosphorylation in Mice
    Visual Neuroscience Monocular Deprivation Affects Visual Cortex Plasticity Through cPKCγ-Modulated GluR1 Phosphorylation in Mice Yunxia Zhang,1 Tao Fu,2 Song Han,1 Yichao Ding,2 Jing Wang,2 Jiayin Zheng,1 and Junfa Li1 1Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China 2Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China Correspondence: Tao Fu, Beijing PURPOSE. To determine how visual cortex plasticity changes after monocular deprivation Tongren Eye Center, Capital Medical (MD) in mice and whether conventional protein kinase C gamma (cPKCγ ) plays a role University, Beijing 100730, China; in visual cortex plasticity. [email protected]. Junfa Li, Department of METHODS. cPKCγ membrane translocation levels were quantified by using immunoblot- Neurobiology, School of Basic ting to explore the effects of MD on cPKCγ activation. Electrophysiology was used to Medical Sciences, Capital Medical record field excitatory postsynaptic potential (fEPSP) amplitude with the goal of observ- University, Beijing 100069, China; ing changes in visual cortex plasticity after MD. Immunoblotting was also used to deter- [email protected]. mine the phosphorylation levels of GluR1 at Ser831. Light transmission was analyzed Received: September 6, 2019 using electroretinography to examine the effects of MD and cPKCγ on mouse retinal Accepted: February 22, 2020 function. Published: April 28, 2020 RESULTS. Membrane translocation levels of cPKCγ significantly increased in the contralat- Citation: Zhang Y, Fu T, Han S, et al. eral visual cortex of MD mice compared to wild-type (WT) mice (P < 0.001). In the Monocular deprivation affects visual contralateral visual cortex, long-term potentiation (LTP) and the phosphorylation levels cortex plasticity through of GluR1 at Ser 831 were increased in cPKCγ +/+ mice after MD.
    [Show full text]
  • Michael Paul Stryker
    BK-SFN-NEUROSCIENCE_V11-200147-Stryker.indd 372 6/19/20 2:19 PM Michael Paul Stryker BORN: Savannah, Georgia June 16, 1947 EDUCATION: Deep Springs College, Deep Springs, CA (1964–1966) University of Michigan, Ann Arbor, MI, BA (1968) Massachusetts Institute of Technology, Cambridge, MA, PhD (1975) Harvard Medical School, Boston, MA, Postdoctoral (1975–1978) APPOINTMENTS: Assistant Professor of Physiology, University of California, San Francisco (1978–1983) Associate Professor of Physiology, UCSF (1983–1987) Professor of Physiology, UCSF (1987–present) Visiting Professor of Human Anatomy, University of Oxford, England (1987–1988) Co-Director, Neuroscience Graduate Program, UCSF (1988–1994) Chairman, Department of Physiology, UCSF (1994–2005) Director, Markey Program in Biological Sciences, UCSF (1994–1996) William Francis Ganong Endowed Chair of Physiology, UCSF (1995–present) HONORS AND AWARDS (SELECTED): W. Alden Spencer Award, Columbia University (1990) Cattedra Galileiana (Galileo Galilei Chair) Scuola Normale Superiore, Italy (1993) Fellow of the American Association for the Advancement of Science (1999) Fellow of the American Academy of Arts and Sciences (2002) Member of the U.S. National Academy of Sciences (2009) Pepose Vision Sciences Award, Brandeis University (2012) RPB Stein Innovator Award, Research to Prevent Blindness (2016) Krieg Cortical Kudos Discoverer Award from the Cajal Club (2018) Disney Award for Amblyopia Research, Research to Prevent Blindness (2020) Michael Stryker’s laboratory demonstrated the role of spontaneous neural activity as distinguished from visual experience in the prenatal and postnatal development of the central visual system. He and his students created influential and biologically realistic theoretical mathematical models of cortical development. He pioneered the use of the ferret for studies of the central visual system and used this species to delineate the role of neural activity in the development of orientation selectivity and cortical columns.
    [Show full text]
  • My Recollections of Hubel and Wiesel and a Brief Review of Functional Circuitry in the Visual Pathway
    J Physiol 587.12 (2009) pp 2783–2790 2783 TOPICAL REVIEW My recollections of Hubel and Wiesel and a brief review of functional circuitry in the visual pathway Jose-Manuel Alonso Department of Biological Sciences, State University of New York, State College of Optometry, New York, NY 10036, USA The first paper of Hubel and Wiesel in The Journal of Physiology in 1959 marked the beginning of an exciting chapter in the history of visual neuroscience. Through a collaboration that lasted 25 years, Hubel and Wiesel described the main response properties of visual cortical neurons, the functional architecture of visual cortex and the role of visual experience in shaping cortical architecture. The work of Hubel and Wiesel transformed the field not only through scientific discovery but also by touching the life and scientific careers of many students. Here, I describe my personal experience as a postdoctoral student with Torsten Wiesel and how this experience influenced my own work. (Received 28 January 2009; accepted after revision 24 February 2009) Corresponding author J.-M. Alonso: Department of Biological Sciences, State University of New York, State College of Optometry, 33 West 42nd Street, New York, NY 10036, USA. Email: [email protected] I read the first papers of Hubel and Wiesel when I was questions as much as I could but I was not very successful. an undergraduate student at the University of Santiago de Fortunately, soon after finishing my oral presentation at Compostela, in Spain. At that time, the laboratory of my the meeting, I learned from my friend Javier Cudeiro (I advisor, Carlos Acuna,˜ was recording from single neurons will always be grateful for this) that Torsten was now taking in visual cortex and I was assigned to read a selection of time to meet students.
    [Show full text]