Cellular Mechanisms of Visual Cortical Plasticity: a Game of Cat and Mouse
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Running Cures Blind Mice Exercise Combined with Visual Stimulation Helps to Quickly Restore Vision in Unused Eye
NATURE | NEWS Running cures blind mice Exercise combined with visual stimulation helps to quickly restore vision in unused eye. Simon Makin 27 June 2014 Tetra Images/Corbis Mice with 'lazy eye', a partial blindness caused by visual deprivation early in life, improved faster if they were exposed to visual stimuli while running on a treadmill. Running helps mice to recover from a type of blindness caused by sensory deprivation early in life, researchers report. The study, published on 26 June in eLife1, also illuminates processes underlying the brain’s ability to rewire itself in response to experience — a phenomenon known as plasticity, which neuroscientists believe is the basis of learning. More than 50 years ago, neurophysiologists David Hubel and Torsten Wiesel cracked the 'code' used to send information from the eyes to the brain. They also showed that the visual cortex develops properly only if it receives input from both eyes early in life. If one eye is deprived of sight during this ‘critical period’, the result is amblyopia, or ‘lazy eye’, a state of near blindness. This can happen to someone born with a droopy eyelid, cataract or other defect not corrected in time. If the eye is opened in adulthood, recovery can be slow and incomplete. In 2010, neuroscientists Christopher Niell and Michael Stryker, both at the University of California, San Francisco (UCSF), showed that running more than doubled the response of mice's visual cortex neurons to visual stimulation2 (see 'Neuroscience: Through the eyes of a mouse'). Stryker says that it is probably more important, and taxing, to keep track of the environment when navigating it at speed, and that lower responsiveness at rest may have evolved to conserve energy in less-demanding situations. -
Torsten Wiesel (1924– ) [1]
Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Torsten Wiesel (1924– ) [1] By: Lienhard, Dina A. Keywords: vision [2] Torsten Nils Wiesel studied visual information processing and development in the US during the twentieth century. He performed multiple experiments on cats in which he sewed one of their eyes shut and monitored the response of the cat’s visual system after opening the sutured eye. For his work on visual processing, Wiesel received the Nobel Prize in Physiology or Medicine [3] in 1981 along with David Hubel and Roger Sperry. Wiesel determined the critical period during which the visual system of a mammal [4] develops and studied how impairment at that stage of development can cause permanent damage to the neural pathways of the eye, allowing later researchers and surgeons to study the treatment of congenital vision disorders. Wiesel was born on 3 June 1924 in Uppsala, Sweden, to Anna-Lisa Bentzer Wiesel and Fritz Wiesel as their fifth and youngest child. Wiesel’s mother stayed at home and raised their children. His father was the head of and chief psychiatrist at a mental institution, Beckomberga Hospital in Stockholm, Sweden, where the family lived. Wiesel described himself as lazy and playful during his childhood. He went to Whitlockska Samskolan, a coeducational private school in Stockholm, Sweden. At that time, Wiesel was interested in sports and became the president of his high school’s athletic association, which he described as his only achievement from his younger years. In 1941, at the age of seventeen, Wiesel enrolled at Karolinska Institutet (Royal Caroline Institute) in Solna, Sweden, where he pursued a medical degree and later pursued his own research. -
Developmental Plasticity of the Glutamate Synapse: Roles of Low Frequency Stimulation, Hebbian Induction and the Nmda Receptor
DEVELOPMENTAL PLASTICITY OF THE GLUTAMATE SYNAPSE: ROLES OF LOW FREQUENCY STIMULATION, HEBBIAN INDUCTION AND THE NMDA RECEPTOR Akademisk avhandling som för avläggande av medicine doktorsexamen vid Sahlgrenska akademin vid Göteborgs universitet kommer att offentligen försvaras i hörsal 2119, Hus 2, Hälsovetarbacken Göteborg, fredagen den 12 februari 2010 kl 09.00 av Joakim Strandberg Fakultetsopponent: Professor Martin Garwicz Institutionen för experimentell medicinsk vetenskap Lunds universitet Avhandlingen baseras på följande delarbeten: I. Strandberg J., Wasling P. and Gustafsson B. Modulation of low frequency induced synaptic depression in the developing CA3-CA1 hippocampal synapses by NMDA and metabotropic glutamate receptor activation. Journal of Neurophysiology (2009) 101:2252-2262 II. Strandberg J. and Gustafsson B. Lasting activity-induced depression of previously non-stimulated CA3-CA1 synapses in the developing hippocampus; critical and complex role of NMDA receptors. In manuscript III. Strandberg J. and Gustafsson B. Hebbian activity does not stabilize synaptic transmission at CA3-CA1 synapses in the developing hippocampus. In manuscript Göteborg 2010 DEVELOPMENTAL PLASTICITY OF THE GLUTAMATE SYNAPSE: ROLES OF LOW FREQUENCY STIMULATION, HEBBIAN INDUCTION AND THE NMDA RECEPTOR Joakim Strandberg Department of Physiology, Institute of Neuroscience and Physiology, Univeristy of Gothenburg, Sweden, 2010 Abstract The glutamate synapse is by far the most common synapse in the brain and acts via postsynaptic AMPA, NMDA and mGlu receptors. During brain development there is a continuous production of these synapses where those partaking in activity resulting in neuronal activity are subsequently selected to establish an appropriate functional pattern of synaptic connectivity while those that do not are elimimated. Activity dependent synaptic plasticities, such as Hebbian induced long-term potentiation (LTP) and low frequency (1 Hz) induced long-term depression (LTD) have been considered to be of critical importance for this selection. -
Specific Involvement of Postsynaptic Glun2b- Containing NMDA
Specific involvement of postsynaptic GluN2B- containing NMDA receptors in the developmental elimination of corticospinal synapses Takae Ohnoa, Hitoshi Maedaa, Naoyuki Murabea, Tsutomu Kamiyamaa, Noboru Yoshiokaa, Masayoshi Mishinab, and Masaki Sakuraia,1 aDepartment of Physiology, School of Medicine, Teikyo University, Tokyo 173-8605, Japan; and bDepartment of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-8655, Japan Edited* by Masao Ito, RIKEN Brain Science Institute, Wako, Japan, and approved July 19, 2010 (received for review July 15, 2009) The GluN2B (GluRε2/NR2B) and GluN2A (GluRε1/NR2A) NMDA re- spinal gray matter at 7 d in vitro (DIV) but the synapses on the ceptor (NMDAR) subtypes have been differentially implicated in ventral side were subsequently eliminated through a process that activity-dependent synaptic plasticity. However, little is known was blocked by an NMDAR antagonist (22, 23). This type of about the respective contributions made by these two subtypes synapse elimination was also seen in vivo in the rat and followed to developmental plasticity, in part because studies of GluN2B KO a time course similar to that seen in vitro (24), and similar − − − − [Grin2b / (2b / )] mice are hampered by early neonatal mortality. elimination of synapses from ventral areas of the SpC during We previously used in vitro slice cocultures of rodent cerebral development has also been observed in cats (reviewed in ref. 25). cortex (Cx) and spinal cord (SpC) to show that corticospinal (CS) Those findings, together with the observation that the major synapses, once present throughout the SpC, are eliminated from NMDAR subunit mediating CS excitatory postsynaptic currents the ventral side during development in an NMDAR-dependent (EPSCs) appears to shift from 2B to 2A early during development manner. -
Universal Transition from Unstructured to Structured Neural Maps
Universal transition from unstructured to structured PNAS PLUS neural maps Marvin Weiganda,b,1, Fabio Sartoria,b,c, and Hermann Cuntza,b,d,1 aErnst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt/Main D-60528, Germany; bFrankfurt Institute for Advanced Studies, Frankfurt/Main D-60438, Germany; cMax Planck Institute for Brain Research, Frankfurt/Main D-60438, Germany; and dFaculty of Biological Sciences, Goethe University, Frankfurt/Main D-60438, Germany Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved April 5, 2017 (received for review September 28, 2016) Neurons sharing similar features are often selectively connected contradictory to experimental observations (24, 25). Structured with a higher probability and should be located in close vicinity to maps in the visual cortex have been described in primates, carni- save wiring. Selective connectivity has, therefore, been proposed vores, and ungulates but are reported to be absent in rodents, to be the cause for spatial organization in cortical maps. In- which instead exhibit unstructured, seemingly random arrange- terestingly, orientation preference (OP) maps in the visual cortex ments commonly referred to as salt-and-pepper configurations are found in carnivores, ungulates, and primates but are not found (26–28). Phase transitions between an unstructured and a struc- in rodents, indicating fundamental differences in selective connec- tured map have been described in a variety of models as a function tivity that seem unexpected for closely related species. Here, we of various model parameters (12, 13). Still, the biological correlate investigate this finding by using multidimensional scaling to of the phase transition and therefore, the reason for the existence of predict the locations of neurons based on minimizing wiring costs structured and unstructured neural maps in closely related species for any given connectivity. -
Synaptogenesis and Development of Pyramidal Neuron Dendritic Morphology in the Chimpanzee Neocortex Resembles Humans
Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans Serena Bianchia,1,2, Cheryl D. Stimpsona,1, Tetyana Dukaa, Michael D. Larsenb, William G. M. Janssenc, Zachary Collinsa, Amy L. Bauernfeinda, Steven J. Schapirod, Wallace B. Bazed, Mark J. McArthurd, William D. Hopkinse,f, Derek E. Wildmang, Leonard Lipovichg, Christopher W. Kuzawah, Bob Jacobsi, Patrick R. Hofc,j, and Chet C. Sherwooda,2 aDepartment of Anthropology, The George Washington University, Washington, DC 20052; bDepartment of Statistics and Biostatistics Center, The George Washington University, Rockville, MD 20852; cFishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; dDepartment of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602; eNeuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302; fDivision of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322; gCenter for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201; hDepartment of Anthropology, Northwestern University, Evanston, IL 60208; iDepartment of Psychology, Colorado College, Colorado Springs, CO 80903; and jNew York Consortium in Evolutionary Primatology, New York, NY 10024 Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved April 18, 2013 (received for review February 13, 2013) Neocortical development in humans is characterized by an ex- humans only ∼25% of adult mass is achieved at birth (8). Con- tended period of synaptic proliferation that peaks in mid-child- comitantly, the postnatal refinement of cortical microstructure in hood, with subsequent pruning through early adulthood, as well humans progresses along a more protracted schedule relative to as relatively delayed maturation of neuronal arborization in the macaques. -
Multiple Periods of Functional Ocular Dominance Plasticity in Mouse Visual Cortex
ARTICLES Multiple periods of functional ocular dominance plasticity in mouse visual cortex Yoshiaki Tagawa1,2,3, Patrick O Kanold1,3, Marta Majdan1 & Carla J Shatz1 The precise period when experience shapes neural circuits in the mouse visual system is unknown. We used Arc induction to monitor the functional pattern of ipsilateral eye representation in cortex during normal development and after visual deprivation. After monocular deprivation during the critical period, Arc induction reflects ocular dominance (OD) shifts within the binocular zone. Arc induction also reports faithfully expected OD shifts in cat. Shifts towards the open eye and weakening of the deprived eye were seen in layer 4 after the critical period ends and also before it begins. These shifts include an unexpected spatial expansion of Arc induction into the monocular zone. However, this plasticity is not present in adult layer 6. Thus, functionally assessed OD can be altered in cortex by ocular imbalances substantially earlier and far later than expected. http://www.nature.com/natureneuroscience Sensory experience can modify structural and functional connectiv- been studied extensively. Here, a functional technique based on in situ ity in cortex1,2. Many previous studies of highly binocular animals hybridization for the immediate early gene Arc16 is used to investigate have led to the current consensus that visual experience is required for pathways representing the ipsilateral eye in developing and adult mouse maintenance of precise connections in the developing visual cortex and visual cortex and after visual deprivation. We find multiple periods of that competition-based mechanisms underlie ocular dominance (OD) susceptibility to visual deprivation in mouse visual cortex. -
Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex
The Journal of Neuroscience, September 26, 2007 • 27(39):10391–10403 • 10391 Behavioral/Systems/Cognitive Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex Daniel L. Adams, Lawrence C. Sincich, and Jonathan C. Horton Beckman Vision Center, Program in Neuroscience, University of California, San Francisco, San Francisco, California 94143-0730 The occipital lobes were obtained after death from six adult subjects with monocular visual loss. Flat-mounts were processed for cytochrome oxidase (CO) to reveal metabolic activity in the primary (V1) and secondary (V2) visual cortices. Mean V1 surface area was 2643 mm 2 (range, 1986–3477 mm 2). Ocular dominance columns were present in all cases, having a mean width of 863 m. There were 78–126 column pairs along the V1 perimeter. Human column patterns were highly variable, but in at least one person they resembled a scaled-up version of macaque columns. CO patches in the upper layers were centered on ocular dominance columns in layer 4C, with one exception. In this individual, the columns in a local area resembled those present in the squirrel monkey, and no evidence was found for column/patch alignment. In every subject, the blind spot of the contralateral eye was conspicuous as an oval region without ocular dominancecolumns.Itprovidedapreciselandmarkfordelineatingthecentral15°ofthevisualfield.Ameanof53.1%ofstriatecortexwas devoted to the representation of the central 15°. This fraction was less than the proportion of striate cortex allocated to the representation of the central 15° in the macaque. Within the central 15°, each eye occupied an equal territory. Beyond this eccentricity, the contralateral eye predominated, occupying 63% of the cortex. -
Open Source Silicon Microprobes for High Throughput Neural Recording
Open source silicon microprobes for high throughput neural recording Long Yang1,*, Kwang Lee1,*, Jomar Villagracia1 and Sotiris C. Masmanidis1 *Equal contribution Affiliations 1Department of Neurobiology and California Nanosystems Institute, University of California, Los Angeles, CA 90095, USA. Address for correspondence Sotiris Masmanidis, 650 Charles E Young Dr. South, Los Angeles, CA 90095, USA. E-mail: [email protected] ORCID numbers: Long Yang: 0000-0001-8317-8768 Kwang Lee: 0000-0002-2689-0350 Jomar Villagracia: 0000-0002-6920-1543 Sotiris C. Masmanidis: 0000-0002-8699-3335 Abstract Objective. Microfabricated multielectrode arrays are widely used for high throughput recording of extracellular neural activity, which is transforming our understanding of brain function in health and disease. Currently there is a plethora of electrode-based tools being developed at higher education and research institutions. However, taking such tools from the initial research and development phase to widespread adoption by the neuroscience community is often hindered by several obstacles. The objective of this work is to describe the development, application, and open dissemination of silicon microprobes for recording neural activity in vivo. Approach. We propose an open source dissemination platform as an alternative to commercialization. This framework promotes recording tools that are openly and inexpensively available to the community. The silicon microprobes are designed in house, but the fabrication and assembly processes are carried out by third party companies. This enables mass production, a key requirement for large-scale dissemination. Main results. We demonstrate the operation of silicon microprobes containing up to 256 electrodes in conjunction with optical fibers for optogenetic manipulations or fiber photometry. -
Organization of Ocular Dominance and Orientation Columns in the Striate Cortex of Neonatal Macaque Monkeys
Visual Neuroscience (1995), 12, 589-603. Printed in the USA. Copyright © 1995 Cambridge University Press 0952-5238/95 $11.00 + .10 Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys GARY BLASDEL,1'2 KLAUS OBERMAYER,3-4 AND LYNNE KIORPES5 'Department of Physiology, University of Calgary, Calgary Alberta, Canada T2N-1N4 2Department of Neurobiology, Harvard Medical School, Boston 3The Salk Institute, La Jolla "The Rockefeller University, New York 'Center for Neural Science, New York University, New York (RECEIVED May 13, 1994; ACCEPTED November 30, 1994) Abstract Previous work has shown that small, stimulus-dependent changes in light absorption can be used to monitor cortical activity, and to provide detailed maps of ocular dominance and optimal stimulus orientation in the striate cortex of adult macaque monkeys (Blasdel & Salama, 1986; Ts'o et al., 1990). We now extend this approach to infant animals, in which we find many of the organizational features described previously in adults, including patch-like linear zones, singularities, and fractures (Blasdel, 19926), in animals as young as 3| weeks of age. Indeed, the similarities between infant and adult patterns are more compelling than expected. Patterns of ocular dominance and orientation, for example, show many of the correlations described previously in adults, including a tendency for orientation specificity to decrease in the centers of ocular dominance columns, and for iso-orientation contours to cross the borders of ocular dominance columns at angles of 90 deg. In spite of these similarities, there are differences, one of which entails the strength of ocular dominance signals, which appear weaker in the younger animals and which increase steadily with age. -
1.32 Neural Computation Theories of Learning
1.32 Neural Computation Theories of Learningq Samat Moldakarimov and Terrence J Sejnowski, University of California – San Diego, La Jolla, CA, United States; and Salk Institute for Biological Studies, La Jolla, CA, United States Ó 2017 Elsevier Ltd. All rights reserved. 1.32.1 Introduction 579 1.32.2 Hebbian Learning 580 1.32.3 Unsupervised Learning 581 1.32.4 Supervised Learning 581 1.32.5 Reinforcement Learning 583 1.32.6 Spike Timing–Dependent Plasticity 584 1.32.7 Plasticity of Intrinsic Excitability 586 1.32.8 Homeostatic Plasticity 586 1.32.9 Complexity of Learning 587 1.32.10 Conclusions 588 References 588 1.32.1 Introduction The anatomical discoveries in the 19th century and the physiological studies in the 20th century showed that the brain was made of networks of neurons connected together through synapses (Kandel et al., 2012). These discoveries led to a theory that learning could be the consequence of changes in the strengths of the synapses (Hebb, 1949). The Hebb’s rule for synaptic plasticity states that: When an axon of cell A is near enough to excite cell B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A’sefficiency, as one of the cells firing B, is increased. Hebb (1949). This postulate was experimentally confirmed in the hippocampus, where high-frequency stimulation (HFS) of a presynaptic neuron causes long-term potentiation (LTP) in the synapses connecting it to the postsynaptic neurons (Bliss and Lomo, 1973). LTP takes place only if the postsynaptic cell is also active and sufficiently depolarized (Kelso et al., 1986). -
An Adult-Like Pattern of Ocular Dominance Columns in Striate Cortex of Newborn Monkeys Prior to Visual Experience
The Journal of Neuroscience, March 1, 1996, 76(5):1791-1807 An Adult-Like Pattern of Ocular Dominance Columns in Striate Cortex of Newborn Monkeys prior to Visual Experience Jonathan C. Horton and Davina I?. Hocking Beckman Vision Center, University of California, San Francisco, California 94 143-0730 In macaque monkeys, the geniculocottical afferents serving nized into the characteristic mosaic present in adults. In the each eye segregate in layer WC of striate cortex during early life upper layers, a mature pattern of CO patches (also known as into a pattern of alternating inputs called ocular dominance blobs or puffs) was visible, aligned with the ocular dominance columns. It has been disputed whether visual experience is columns in layer IVc. Every other row of patches in layers 11,111 necessary for the formation of ocular dominance columns. To was labeled by [3H]proline. In V2, a distinct system of alternat- settle this issue, fetal monkeys were delivered prematurely by ing thick-pale-thin-pale CO stripes was present. These findings Caesarean section at embryonic day 157 (El 57) 8 d before the indicate that stimulation of the retina by light is not necessary end of normal gestation. To avoid light exposure, the Caesar- for the development of columnar systems in the visual cortex. ean section and all subsequent feedings and procedures were Ocular dominance columns, patches, and V2 stripes all are well done in absolute darkness, using infrared night-vision goggles. formed before visual experience. Even the thalamic input to the Tritiated proline was injected into the right eye 1 d after delivery patches in the upper layers of striate cortex is segregated by (El58).