CC Skywave SSB Instruction Manual
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Radio Communications in the Digital Age
Radio Communications In the Digital Age Volume 1 HF TECHNOLOGY Edition 2 First Edition: September 1996 Second Edition: October 2005 © Harris Corporation 2005 All rights reserved Library of Congress Catalog Card Number: 96-94476 Harris Corporation, RF Communications Division Radio Communications in the Digital Age Volume One: HF Technology, Edition 2 Printed in USA © 10/05 R.O. 10K B1006A All Harris RF Communications products and systems included herein are registered trademarks of the Harris Corporation. TABLE OF CONTENTS INTRODUCTION...............................................................................1 CHAPTER 1 PRINCIPLES OF RADIO COMMUNICATIONS .....................................6 CHAPTER 2 THE IONOSPHERE AND HF RADIO PROPAGATION..........................16 CHAPTER 3 ELEMENTS IN AN HF RADIO ..........................................................24 CHAPTER 4 NOISE AND INTERFERENCE............................................................36 CHAPTER 5 HF MODEMS .................................................................................40 CHAPTER 6 AUTOMATIC LINK ESTABLISHMENT (ALE) TECHNOLOGY...............48 CHAPTER 7 DIGITAL VOICE ..............................................................................55 CHAPTER 8 DATA SYSTEMS .............................................................................59 CHAPTER 9 SECURING COMMUNICATIONS.....................................................71 CHAPTER 10 FUTURE DIRECTIONS .....................................................................77 APPENDIX A STANDARDS -
Comparison of Available Methods for Predicting Medium Frequency Sky-Wave Field Strengths
NTIA-Report-80-42 Comparison of Available Methods for Predicting Medium Frequency Sky-Wave Field Strengths Margo PoKempner us, DEPARTMENT OF COMMERCE Philip M. Klutznick, Secretary Henry Geller, Assistant Secretary for Communications and Information June 1980 I j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j j TABLE OF CONTENTS Page LIST OF FIGURES iv LIST OF TABLES iv ABSTRACT 1 1. INTRODUCTION 1 2. CHRONOLOGICAL DEVELOPMENT OF MF FIELD-STRENGTH PREDICTION METHODS 2 3. DISCUSSION OF THE METHODS 4 3.1 Cairo Curves 4 3.2 The FCC Curves 7 3.3 Norton Method 10 3.4 EBU Method 11 3.5 Barghausen Method 12 3.6 Revision of EBU Method for the African LF/MF Broadcasting Conference 12 3.7 Olver Method 12 3.8 Knight Method 13 3.9 The CCIR Geneva 1974 Methods 13 3.10 Wang 1977 Method 15 3.11 The CCIR Kyoto 1978 Method 15 3.12 The Wang 1979 Method 16 4. -
Proposed Changes to the Morse Code (CW) ) RM-10784, Proficiency Requirement for Operator ) RM-10785, Access to the Amateur Radio Bands ) RM-10786, and Below 30 Mhz
Before the Federal Communications Commission Washington, DC 20554 ) In the Matter of ) RM-10781, ) RM-10782, The Amateur Radio Service: ) RM-10783, Proposed Changes to the Morse Code (CW) ) RM-10784, Proficiency Requirement for Operator ) RM-10785, Access to the Amateur Radio Bands ) RM-10786, and Below 30 MHz. ) RM-10787 ) COMMENTS TO PETITIONS FOR RULEMAKING GREETINGS: INTRODUCTION As all parties concerned are no doubt aware, the Morse code telegraphy proficiency requirement for Amateur Radio Service operators has been eliminated from the International Telecommunications Union (ITU) Radio Regulations. This change was effected on 5 July 2003 at the World Radiocommunication Conference 2003 (WRC-03), Geneva, by revising Article 25.5 §3 1 of these regulations. The revised Article 25.5 now gives the administrations of individual member nations, such as the US Federal Communications Commission (FCC or Commission), discretion to “…determine whether or not a person seeking a license to operate an amateur station shall demonstrate the ability to send and receive texts in Morse code signals.” Previously, knowledge of or demonstration of Morse code proficiency had been required by ITU regulation for amateur radio operation on all frequencies below 30 MHz. These 1 Dixon Comments frequencies include all of the amateur High Frequency (HF or shortwave) bands, and the one amateur Medium Frequency (MF or medium-wave) band. Note: For purposes of this document, references henceforth to “HF” or “High Frequency” or “shortwave” shall be deemed to include MF or Medium Frequency or medium-wave, as well. This is in fact colloquial nomenclature among amateur radio operators. The various petitions for rulemaking captioned above seek various degrees of relief from the somewhat burdensome requirement for US-licensed Amateur Radio Service operators (amateurs), presently needed to access the very popular and preferential international High Frequency amateur radio bands. -
Reception of Skywave Signals Near a Coastline
JOURNAL OF RESEARCH of the National Bureau of Standards-D. Radio Propagation Vol. 67D, No.3, May- June 1963 Reception of Skywave Signals Near a Coastline J. Bach Andersen Contribution from Laboratory of Electromagnetic Theory, The Technical University of Denmark, Copenhagen, Denmark (Recei\'ed November 5, 1962) An experimental investigation has been made on t he influence of gt'ou nd inhomoge neities on the reception of skywave sig nals, especiall y t he in fluence of the conductivity contrast ncar a coastline. This gives rise to a r apid decrease in fi eld strength ncar til(' coastline as is "'ell known from g roundwave mixed path theory. Comparison with Lheory is given. Infl uC'llce of dilhts(' reflection from t he ionosplwre is also cOIl :; idereri . 1. Introduction conditions, i. e., a s Lraight boundary lin e, n,lt <l IH1 homogeneo us sectiollS , it was co nsidered worthwhile ;,lany factors influence the radiation 01' reception to measure tbe field in tensity at a n actual reception of skywave signals in the shortw,we ra nge, a nd in site in order to find Lhe deviation s from the simple choosing a proper site for a HF-a ntenna it is impor theory. tant to evaluate the influence of the various factors. lnstead of m eftsuring t he verticlll radiation pat They include th e electrical parameters (the conduc tern aL d iIrerent distances from Lhe coastlin e, the tivity and the p ermi ttiv ity) of the groulld, hills, or fi eld intensity from a distf\nL Lran smitter was m eas clift's a nd other irregularities of the sbape of the ured simultaneo usly at two d ifr erent places. -
Portable Shortwave Receivers
Portable Shortwave Receivers ● Longwave, AM, FM and Shortwave ELITE SATELLIT ● VHF Air Band ● HD Radio Reception ● RDS Display ● Superior Sensitivity and Selectivity ● Dual Conversion Design ● Huge 5.7 Inch Backlit Display ● Drift-free Digital Phase Lock Loop ● Direct Frequency and Band Entry ● Single Sideband Synchronous Detector ● Selectable Bandwidths ● High Dynamic Range ● Dual Programmable Clocks ● Dual Event Programmable Timers ● Stereo Line Level Input ● Stereo Line Level Output ● Earphone Jack ● Separate Bass and Treble Controls ● Adjustable AGC: Fast or Slow ● Telescopic Antenna AM/FM/SW ● Battery (4xD) or Included AC Adapter ● Scan and Search ● 1700 Total Memories (500 alphanumeric) ● Deluxe Carry Bag The Elite Satellit is simply the finest full-sized portable in the world. The Elite Satellit is an elegant confluence of performance, features and capabilities. The look, feel and finish of this radio is superb. The solid, quality feel is second to none. The digitally synthesized, dual conversion shortwave tuner covers all long wave, mediums wave (AM) and shortwave frequencies. HD Radio improves audio fidelity and adds additional programming without a subscription fee. Adjacent frequency interference can be minimized or eliminated with a choice of three bandwidths [7.0, 4.0, 2.5 kHz]. The sideband selectable Synchronous AM Detector further minimizes adjacent frequency interference and reduces fading distortion of AM signals. IF Passband Tuning is yet another advanced feature that functions in AM and SSB modes to reject interference. AGC is selectable at fast or slow. High dynamic range permits the detection of weak signals in the presence of strong signals. All this coupled with great sensitivity will bring in stations from every part of the globe. -
Interpretation and Utilization of the Echo
PROCEEDINGS OF THE IEEE, VOL. 62, NO. 6, JUNE 1974 673 Sea Backscatter at HF: Interpretation and Utilization of the Echo DONALD E. BARRICK, MEMBER, IEEE, JAMES M. HEADRICK, SENIOR MEMBER, IEEE, ROBERT W. BOGLE, DOUGLASS D. CROMBIE AND Abstract-Theories and concepts for utilization of HF sea echo are compared and tested against surface-wave measurements made from San Clemente Island in the Pacific in a joint NRL/ITS/NOAA Although the heights of ocean waves are generally small experiment. The use of first-order sea echo as a reference target for in terms of these radar wavelengths, the scattered echo is calibration of HF over-the-horizon radars is established. Features of the higher order Doppler spectrum can be employed to deduce the nonetheless surprisingly large and readily interpretable in principal parameters of the wave-height directional. spectrum (i.e., terms of its Doppler features. The fact that these heights are sea state); and it is shown that significant wave height can be read small facilitates the analysis of scatter using the perturbation from the spectral records. Finally, it is shown that surface currents approximation. This theory [2] produces an equation which and current (depth) gradients can be inferred from the same Doppler 1) agrees with the scattering mechanism deduced by Crombie sea-echo records. from experimental data; 2) properly predicts the positions of I. INTRODUCTION the dominant Doppler peaks; 3) shows how the dominant echo magnitude is related to the sea wave height; and 4) per mits an explanation of some of the less dominant, more com T WENTY YEARS ago Crombie [1] observed sea echo plex features of the sea echo through retention and use of the with an HF radar, and he correctly deduced the scatter higher order terms in the perturbation analysis. -
KHF 950/990 HF Communications Transceiver PILOT’S GUIDE and DIRECTORY of HF SERVICES
KHF 950/990 HF Communications Transceiver PILOT’S GUIDE AND DIRECTORY OF HF SERVICES A Table of Contents INTRODUCTION KHF 950/990 COMMUNICATIONS TRANSCEIVER . .I SECTION I CHARACTERISTICS OF HF SSB WITH ALE . .1-1 ACRONYMS AND DEFINITIONS . .1-1 REFERENCES . .1-1 HF SSB COMMUNICATIONS . .1-1 FREQUENCY . .1-2 SKYWAVE PROPAGATION . .1-3 WHY SINGLE SIDEBAND IS IMPORTANT . .1-9 AMPLITUDE MODULATION (AM) . .1-9 SINGLE SIDEBAND OPERATION . .1-10 SINGLE SIDEBAND (SSB) . .1-10 SUPPRESSED CARRIER VS. REDUCED CARRIER . .1-10 SIMPLEX & SEMI-DUPLEX OPERATION . .1-11 AUTOMATIC LINK ESTABLISHMENT (ALE) . .1-11 FUNCTIONS OF HF RADIO AUTOMATION . .1-11 ALE ASSURES BEST COMM LINK AUTOMATICALLY . .1-12 SECTION II KHF 950/990 SYSTEM DESCRIPTION. .2-1 KCU 1051 CONTROL DISPLAY UNIT . .2-1 KFS 594 CONTROL DISPLAY UNIT . .2-3 KCU 951 CONTROL DISPLAY UNIT . .2-5 KHF 950 REMOTE UNITS . .2-6 KAC 952 POWER AMPLIFIER/ANT COUPLER .2-6 KTR 953 RECEIVER/EXITER . .2-7 ADDITIONAL KHF 950 INSTALLATION OPTIONS .2-8 SINGLE KHF 950 SYSTEM CONFIGURATION .2-9 KHF 990 REMOTE UNITS . .2-10 KAC 992 PROBE/ANTENNA COUPLER . .2-10 KTR 993 RECEIVER/EXITER . .2-11 SINGLE KHF 990 SYSTEM CONFIGURATION . .2-12 Rev. 0 Dec/96 KHF 950/990 Pilots Guide Toc-1 Table of Contents SECTION III OPERATING THE KHF 950/990 . .3-1 KHF 950/990 GENERAL OPERATING INFORMATION . .3-1 PREFLIGHT INSPECTION . .3-1 ANTENNA TUNING . .3-2 FAULT INDICATION . .3-2 TUNING FAULTS . .3-3 KHF 950/990 CONTROLS-GENERAL . .3-3 KCU 1051 CONTROL DISPLAY UNIT OPERATION . -
Shortwave-Listening
Listen to global news in the making! Monitor transmissions from Voice of America. Radio Canada, Radio Netherlands. Radio Moscow and many others. Learn how radio waves tra- vel. Get information on popular shortwave bands and licensing for a Itypes of equipment. Radio Listener's Guide by William Barden, Jr. Radio Shack A Division of Tandy Corporation First Edition First Printing-1987 Copyright01987 by William Barden Jr., Inc. Printed in the United States of America. All rights reserved. Reproduction or use, without express permission, of editorial or pictorial content, in any manner, is prohibited. No patent liability is assumed with respect to the use of the information contained herein. Library of Congress Catalog Card Number: XX-XXXXX Radio Listener's Guide T Table of Contents Section I World of the BBC, Radio Moscow, Police Calls, Aircraft Communications, and Hams Chapter 1. Radio—What Is It' Generating Radio Waves—The Radio Spectrum—Radio Equipment and Frequencies—Band Use—How Radio Waves Travel—Radio Licenses and Listening—Subbands and Channels—Radio Equipment Chapter 2. Types of Broadcasting Voice Communication—Code Transmission—Teleprinter Transmission— Facsimile Transmission—Slow-Scan Television—Fast-Scan Television — Repeaters— Portable Phones—Satellite Reception—Transmitting Power Chapter 3. Shortwave Broadcasters Frequency Assignments—The European Long-Wave Band—The AM Broadcast Band—Tropical Broadcasting-49- and 41-Meter Bands-31- and 25-Meter Bands—Above the 25-Meter Band—A Typical Listening Session—Logging Foreign Stations—Foreign Broadcast lnformation—QSL Cards Chapter 4. Other Types of Broadcasting in the Lower Frequencies Transmissions Below the AM Broadcast Band—The AM Broadcast Band— Portable Phones—Marine Transmissions—CW Transmissions—Radio Teleprinter—Single Sideband—Time and Frequency Signals—Weather Maps by Facsimile—Citizen's Band Frequencies—The Russian Woodpecker—Pirate and Clandestine Stations Chapter 5. -
Radio Communication Via Near Vertical Incidence Skywave Propagation: an Overview
Telecommun Syst DOI 10.1007/s11235-017-0287-2 Radio communication via Near Vertical Incidence Skywave propagation: an overview Ben A. Witvliet1,2 · Rosa Ma Alsina-Pagès3 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Near Vertical Incidence Skywave (NVIS) propa- 1 Introduction gation can be used for radio communication in a large area (200km radius) without any intermediate man-made infras- Recently, interest in radio communication via Near Verti- tructure. It is therefore especially suited for disaster relief cal Incidence Skywave (NVIS) propagation has revived, not communication, communication in developing regions and in the least because of its role in emergency communica- applications where independence of local infrastructure is tions in large natural disasters that took place in the last desired, such as military applications. NVIS communication decade [1–3]. The NVIS propagation mechanism enables uses frequencies between approximately 3 and 10MHz. A communication in a large area without the need of a network comprehensive overview of NVIS research is given, cover- infrastructure, satellites or repeaters. This independence of ing propagation, antennas, diversity, modulation and coding. local infrastructure is essential for disaster relief communi- Both the bigger picture and the important details are given, cations, when the infrastructure is destroyed by a large scale as well as the relation between them. natural disaster, or in remote regions where this infrastructure is lacking. In military communications, where independence Keywords Radio communication · Emergency communi- of local infrastructure is equally important, communications cations · Radio wave propagation · Ionosphere · NVIS · via NVIS propagation have always remained important next Antennas · Diversity · Modulation to troposcatter and satellite links. -
DOC-308662A1.Pdf
ELEVENTH ANNUAL REPORT FEDERAL COMMUNICATIONS COMMISSION FISCAL YEAR ENDED JUNE 30, 1945 UNITED STATES GOVERNMENT PRINTING OFFICE. WASHINGTON. 1946 For sale by the Superintendent of Documents, U. S. Government Printing Office: Washington 25, D. C. Price 20 cents COMMISSIONERS MEMBERS OF THE FEDERAL COMMUNICATIONS COMMISSION [As of January 1, 1946] CHAIRMAN PAUL A. PORTER (Term expires June 30,1949) PAUL A. WALKER EWELL K. J'ETT (Term expires June 30, 1946) (Term. expires June 30, 1950) RAY C. WAKEFIELD CHARLES R. DENNY (Term expires June 30.1947) (Term expires June 30, 1951) CLIFFORD J. DURR WILLIAM H. WILLS (Term expires JUne. 30, 1948 ~ (Term expires June 30, 1952) 11 LETTER OF TRANSMITTAL FEDERAL COMMUNICATIONS CO~IMISSION, Washingt"", 25, D.O., April 3, 194fJ. To the Oongress of the United State.: In accordance with the requirements of section 4 (k) of the Com munications Act, the Eleventh Annual Report of the Federal Com munications Commission for the fiscal year ending June 30, 1945, is submitted herewith. Respectfully, CHARLES R. DENNY, Acting Ohairman. III [ Page IV in the original document is intentionally blank J TABLE OF CONTENTS Page SUMMARy _ vii Chapter I. GENERAL_________________________________________________ 1 1. Administrative_ __ __ _ __ ___ __ 3 2. Commission membership changes_____________________ 3 3. Staff organization_ __________________________________ 3 4. PersonneL '_ _____ ____ ______ _ 8 5. Appropriatiotls_ _____ ___ __ ____ _______ __ __ 3 6,. LegislatioD_ ________________________________________ 4 7. Litigation_ _________________________________________ 4 8. Dockets_ __ __ __ ___ _______ 6 9. InternationaL ~ _________________________________ 6 10. Indepartment Radio Advisory Committee______________ 7 11. Freqnency allocation ~____ 7 II. -
Report Itu-R M.2027*
Rep. ITU-R M.2027 1 REPORT ITU-R M.2027* Engineering guidance for operators to upgrade shore based facilities to operate the Global Maritime Distress and Safety System in the A1, A2 and A3/A4 sea areas (2001) 1 Overview In order to establish a new A2, A3, or A4 sea area it is necessary to gain some knowledge of how the propagation conditions vary. A2 coverage is by groundwave, which is stable, enabling the extent of the service area to be confirmed by measurement before committing capital expenditure, which is recommended by the IMO. A3 and A4 coverage is by skywave which depends upon the condition of the ionosphere which varies with solar activity. Since this follows an 11-year cycle, the extent of the service area cannot be confirmed by performing a new measurement study, and administrations wishing to join the HF shore station network may require methods to verify feasibility and size the equipment required in order to confidently establish a project budget. The extent of the sea areas A2, A3, and A4 are specified by the IMO in Annex 3 to their resolution A.801(19), and § 3.4.1 of this Report provides charts for rapid assessment of the extent of the A2 sea area using this data, and also guidelines to enable administrations to make their own assessment of potential A3 and A4 coverage using HF prediction software in the context that each shore station is a member of a community of HF stations working together to provide the required grade of service. -
Grundig S800
FRONT PANEL DESCRIPTION (See page 12) LCD DISPLAY DESCRIPTION (See page 14) REAR PANEL DESCRIPTION (See Paee 15) 3 SPECIFICATIONS Frequency Range: 100 to 30.000 kHz (0.1 to 30 MHz). Line Audio Outputs: Stereo left and right. 87 to 108 MHz, 118 to 137 MHz. 300 mV. 4.7K Ohms for each output. AM. USB. LSB modes (0.1 to 30 MHz). AM mode only for 118 to 137 MHz. Headphone Jack: 1/8 inch (3.175mm) stereo/mono type. FM mode only for 87 to 108 MHz. DC Power Requirements: Input: 7-10 VDC 0 1 Amp. supplied from Sensitivity - SSB AC ADAPTER, external DC Power (10 dB S+N/N): Less than 0.5 uV, 0.1 to 30 MHz. Supply or 5.7 to 9.0 VDC supplied by (6) internally mounted "D" cell (1.5V) Sensitivity - AM batteries (not supplied). (10 dB S+N/N): Less than 2.0 uV. 0.1 to 30 MHz. (1000 Hz. 30% Mod): Less than 4.0 pV, 118 to 137 MHz. Current requirements (approximate) from Sensitivity - FM 9.0 VDC Supply or (20 dB S/N) (monaural): Less than 4 uV, 87 to 108 MHz. Batteries with 1/4 W average Audio Output: Mode Dependent: Frequency Stability 10 ppm, 0C to 50C 510 mA minimum with lamp off, 830 mA maximum with lamp on. Frequency Accuracy: Better than 100 Hz. c 25' C Operating Temperature: 0C to +50C Selectivity - SSB. AM: 6 kHz c -6 dB, less than 12 kHz 0 -60 dB. 4 kHz c -6 dB.