Ionospheric Responses to the June 2015 Geomagnetic Storm from Ground and LEO GNSS Observations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Analysis of Geomagnetic Storms in South Atlantic Magnetic Anomaly (SAMA)
Analysis of geomagnetic storms in South Atlantic Magnetic Anomaly (SAMA) Júlia Maria Soja Sampaio, Elder Yokoyama, Luciana Figueiredo Prado Copyright 2019, SBGf - Sociedade Brasileira de Geofísica Moreover, Dst and AE indices may vary according to the This paper was prepared for presentation during the 16th International Congress of the geomagnetic field geometry, such as polar to intermediate Brazilian Geophysical Society held in Rio de Janeiro, Brazil, 19-22 August 2019. latitudinal field variations. In this framework, fluctuations Contents of this paper were reviewed by the Technical Committee of the 16th in the geomagnetic field can occur under the influence of International Congress of the Brazilian Geophysical Society and do not necessarily represent any position of the SBGf, its officers or members. Electronic reproduction or the South Atlantic Magnetic Anomaly (SAMA). The SAMA storage of any part of this paper for commercial purposes without the written consent is a region of minimum geomagnetic field intensity values of the Brazilian Geophysical Society is prohibited. ____________________________________________________________________ at the Earth’s surface (Figure 1), and its dipole intensity is decreasing along the past 1000 years (Terra-Nova et. al., Abstract 2017). Geomagnetic storm is a major disturbance of Earth’s In this study we will compare the behavior of the types of magnetosphere resulted from the interaction of solar wind geomagnetic storms basis on AE and Dst indices. and the Earth’s magnetic field. This disturbance depends of the Earth magnetic field geometry, and varies in terms of intensity from the Poles to the Equator. This disturbance is quantified through geomagnetic indices, such as the Dst and the AE indices. -
On Magnetic Storms and Substorms
ILWS WORKSHOP 2006, GOA, FEBRUARY 19-24, 2006 On magnetic storms and substorms G. S. Lakhina, S. Alex, S. Mukherjee and G. Vichare Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai-410218, India Abstract. Magnetospheric substorms and storms are indicators of geomagnetic activity. Whereas the geomagnetic index AE (auroral electrojet) is used to study substorms, it is common to characterize the magnetic storms by the Dst (disturbance storm time) index of geomagnetic activity. This talk discusses briefly the storm-substorms relationship, and highlights some of the characteristics of intense magnetic storms, including the events of 29-31 October and 20-21 November 2003. The adverse effects of these intense geomagnetic storms on telecommunication, navigation, and on spacecraft functioning will be discussed. Index Terms. Geomagnetic activity, geomagnetic storms, space weather, substorms. _____________________________________________________________________________________________________ 1. Introduction latitude magnetic fields are significantly depressed over a Magnetospheric storms and substorms are indicators of time span of one to a few hours followed by its recovery geomagnetic activity. Where as the magnetic storms are which may extend over several days (Rostoker, 1997). driven directly by solar drivers like Coronal mass ejections, solar flares, fast streams etc., the substorms, in simplest terms, are the disturbances occurring within the magnetosphere that are ultimately caused by the solar wind. The magnetic storms are characterized by the Dst (disturbance storm time) index of geomagnetic activity. The substorms, on the other hand, are characterized by geomagnetic AE (auroral electrojet) index. Magnetic reconnection plays an important role in energy transfer from solar wind to the magnetosphere. Magnetic reconnection is very effective when the interplanetary magnetic field is directed southwards leading to strong plasma injection from the tail towards the inner magnetosphere causing intense auroras at high-latitude nightside regions. -
Progress in Space Weather Modeling in an Operational Environment
J. Space Weather Space Clim. 3 (2013) A17 DOI: 10.1051/swsc/2013037 Ó I. Tsagouri et al., Published by EDP Sciences 2013 RESEARCH ARTICLE OPEN ACCESS Progress in space weather modeling in an operational environment Ioanna Tsagouri1,*, Anna Belehaki1, Nicolas Bergeot2,3, Consuelo Cid4,Ve´ronique Delouille2,3, Tatiana Egorova5, Norbert Jakowski6, Ivan Kutiev7, Andrei Mikhailov8, Marlon Nu´n˜ez9, Marco Pietrella10, Alexander Potapov11, Rami Qahwaji12, Yurdanur Tulunay13, Peter Velinov7, and Ari Viljanen14 1 National Observatory of Athens, P. Penteli, Greece *Corresponding author: e-mail: [email protected] 2 Solar-Terrestrial Centre of Excellence, Brussels, Belgium 3 Royal Observatory of Belgium, Brussels, Belgium 4 Universidad de Alcala´, Alcala´ de Henares, Spain 5 Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center (PMOD/WRC), Davos, Switzerland 6 German Aerospace Center, Institute of Communications and Navigation, Neustrelitz, Germany 7 Bulgarian Academy of Sciences, Sofia, Bulgaria 8 Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation (IZMIRAN), Troitsk, Moscow Region, Russia 9 Universidad de Ma´laga, Ma´laga, Spain 10 Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy 11 Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia 12 University of Bradford, Bradford, UK 13 Middle East Technical University, Ankara, Turkey 14 Finnish Meteorological Institute, Helsinki, Finland Received 19 June 2012 / Accepted 10 March 2013 ABSTRACT This paper aims at providing an overview of latest advances in space weather modeling in an operational environment in Europe, including both the introduction of new models and improvements to existing codes and algorithms that address the broad range of space weather’s prediction requirements from the Sun to the Earth. -
Planetary Magnetospheres
CLBE001-ESS2E November 9, 2006 17:4 100-C 25-C 50-C 75-C C+M 50-C+M C+Y 50-C+Y M+Y 50-M+Y 100-M 25-M 50-M 75-M 100-Y 25-Y 50-Y 75-Y 100-K 25-K 25-19-19 50-K 50-40-40 75-K 75-64-64 Planetary Magnetospheres Margaret Galland Kivelson University of California Los Angeles, California Fran Bagenal University of Colorado, Boulder Boulder, Colorado CHAPTER 28 1. What is a Magnetosphere? 5. Dynamics 2. Types of Magnetospheres 6. Interaction with Moons 3. Planetary Magnetic Fields 7. Conclusions 4. Magnetospheric Plasmas 1. What is a Magnetosphere? planet’s magnetic field. Moreover, unmagnetized planets in the flowing solar wind carve out cavities whose properties The term magnetosphere was coined by T. Gold in 1959 are sufficiently similar to those of true magnetospheres to al- to describe the region above the ionosphere in which the low us to include them in this discussion. Moons embedded magnetic field of the Earth controls the motions of charged in the flowing plasma of a planetary magnetosphere create particles. The magnetic field traps low-energy plasma and interaction regions resembling those that surround unmag- forms the Van Allen belts, torus-shaped regions in which netized planets. If a moon is sufficiently strongly magne- high-energy ions and electrons (tens of keV and higher) tized, it may carve out a true magnetosphere completely drift around the Earth. The control of charged particles by contained within the magnetosphere of the planet. -
An Opposite Response of the Low-Latitude Ionosphere at Asian
Originally published as: Xiong, C., Lühr, H., Yamazaki, Y. (2019): An Opposite Response of the Low‐Latitude Ionosphere at Asian and American Sectors During Storm Recovery Phases: Drivers From Below or Above. - Journal of Geophysical Research, 124, 7, pp. 6266—6280. DOI: http://doi.org/10.1029/2019JA026917 RESEARCH ARTICLE An Opposite Response of the Low‐Latitude Ionosphere at 10.1029/2019JA026917 Asian and American Sectors During Storm Recovery Key Points: • The dayside low‐latitude ionosphere Phases: Drivers From Below or Above – on 9 11 September 2017 exhibits Chao Xiong1 , Hermann Lühr1 , and Yosuke Yamazaki1 prominent positive/negative responses at the Asian/American 1GFZ German Research Centre for Geosciences, Potsdam, Germany sectors • The global distribution of thermospheric O/N2 ratio measured by GUVI cannot well explain such Abstract In this study, we focus on the recovery phase of a geomagnetic storm that happened on 6–11 longitudinal opposite response of September 2017. The ground‐based total electron content data, as well as the F region in situ electron ionosphere density, measured by the Swarm satellites show an interesting feature, revealing at low and equatorial • We suggest lower atmospheric forcing the main contributor to the latitudes on the dayside ionosphere prominent positive and negative responses at the Asian and American longitudinal opposite response of longitudinal sectors, respectively. The global distribution of thermospheric O/N2 ratio measured by global – ionosphere on 9 11 September 2017 ultraviolet imager on board the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics satellite cannot well explain such longitudinally opposite response of the ionosphere. Comparison between the equatorial electrojet variations from stations at Huancayo in Peru and Davao in the Philippines suggests that Correspondence to: the longitudinally opposite ionospheric response should be closely associated with the interplay of E C. -