Estudios De I+D+I

Total Page:16

File Type:pdf, Size:1020Kb

Estudios De I+D+I ESTUDIOS DE I+D+I Número 43 Sistema de agentes portables incrustados para entornos naturales seguros (SAPIENS) Autor: Catalá Mallofré, Andreu. Filiación: Contacto: Convocatoria: 2006 Para citar este documento: CATALÁ , MALLOFRÉ, Andreu (2006). “Sistema de agentes portables incrustados para entornos naturales seguros (SAPIENS)”. Madrid, IMSERSO, Estudios I+D+I, nº 43. [Fecha de publicación: 01/08/2007]. <http://www.imsersomayores.csic.es/documentos/documentos/imserso-estudiosidi- 43.pdf> 1 Portal Mayores | http://www.imsersomayores.csic.es Resumen Diseño de un sistema de agentes portables, autónomos, sin mantenimiento e inteligentes, que cooperan entre si y pueden adaptarse a cualquier tipo de usuario. Con la intención de mejorar la autonomía y el acceso a la información de colectivos con déficits y limitaciones concretas en las actividades de la vida diaria. El ámbito de trabajo del proyecto y la metodología se sitúan en la ingeniería de sistemas, la ingeniería electrónica y la telemática. En una primera fase del desarrollo se trabajará con elementos hardware con capacidad de almacenamiento de información, capacidad de transmitirla sin cable y con autonomía energética para en una fase posterior, introducir también capacidad de sensorización y procesado. 2 Portal Mayores | http://www.imsersomayores.csic.es INFORME FINAL SAPIENS (Sistema de Agentes Portables Incrustados para Entornos Naturales Seguros) (IMSERSO 106/05) COORDINADOR PROYECTO: Andreu Català Mallofré Proyecto SAPIENS 1. INFORME GENERAL..........................................................................................................................1 1.1. EL PROYECTO SAPIENS. ..................................................................................................................1 1.1.1 Introducción...............................................................................................................................1 1.1.2 Consideraciones.........................................................................................................................3 1.1.2.1 Lector RFID ....................................................................................................................................... 4 1.1.2.2 Procesador .......................................................................................................................................... 5 1.1.2.3 Text-to-Speech ................................................................................................................................... 6 1.1.2.4 Base de Datos..................................................................................................................................... 7 1.1.2.5 Interfaz con el usuario ........................................................................................................................ 8 1.1.3 Conclusiones..............................................................................................................................9 1.2. ESTADO DE LA TECNOLOGÍA Y FUTURO EN RFID.............................................................................10 1.2.1 Introducción.............................................................................................................................10 1.2.2 Análisis de las tecnologías.......................................................................................................11 1.2.2.1 Frecuencia de operación................................................................................................................... 12 1.2.2.2 La etiqueta........................................................................................................................................ 13 1.2.2.3 Estándares. ....................................................................................................................................... 16 1.2.2.3.1 Introducción. ............................................................................................................................ 16 1.2.2.3.2 EPC (Electronic Product Code) Global Clase I Gen2 ............................................................. 19 1.2.3 Mercado...................................................................................................................................22 1.2.4 Conclusiones y perspectivas de futuro.....................................................................................24 2. INFORME TÉCNICO. ........................................................................................................................25 2.1. MICROPROCESADOR ........................................................................................................................25 2.2. PLATAFORMA ..................................................................................................................................29 2.3. SISTEMA OPERATIVO.......................................................................................................................31 2.4. HERRAMIENTAS DE DESARROLLO ....................................................................................................32 2.5 DESARROLLO....................................................................................................................................33 2.5.1 Herramientas de desarrollo.....................................................................................................33 2.5.2 Lenguajes de programación.....................................................................................................33 2.5.3 Rendimiento .............................................................................................................................34 2.5.4 Portabilidad.............................................................................................................................35 2.5.5 Transaccionalidad ...................................................................................................................35 2.5.6 Seguridad.................................................................................................................................36 2.5.7 Escalabilidad ...........................................................................................................................37 2.5.8 Coste ........................................................................................................................................37 2.5.9 Conclusión ...............................................................................................................................38 2.6. RADIO FRECUENCY IDENTIFICATION...............................................................................................39 2.6.1 Los Aspectos físicos .................................................................................................................39 2.6.1.1 Conceptos previos ............................................................................................................................ 39 2.6.1.2 Tipos de comunicaciones ................................................................................................................. 40 2.6.1.3 El factor antena................................................................................................................................. 40 2.6.1.4 Polarización...................................................................................................................................... 42 2.6.1.5 Efectos sobre la comunicación RFID ............................................................................................... 43 2.6.1.6 Materiales......................................................................................................................................... 43 2.6.2 Interfaz aérea...........................................................................................................................47 2.6.2.1 Modo de comunicación .................................................................................................................... 47 2.6.2.2 Modulaciones digitales..................................................................................................................... 48 2.6.2.3 Acoplamiento ................................................................................................................................... 49 2.6.2.4. Almacenamiento de información y capacidad de procesamiento .................................................... 50 2.6.2.5 La antena: tamaños y formas............................................................................................................ 51 Proyecto SAPIENS 2.6.2.6 El circuito integrado o chip .............................................................................................................. 53 2.6.3 EPC UHF Clase I Gen2: el estándar.......................................................................................54 2.6.3.1 Interoperabilidad .............................................................................................................................. 54 2.6.3.2 Gen2 y la ISO................................................................................................................................... 54 2.6.3.3 Puntos clave...................................................................................................................................... 55 2.6.3.4 Protocolo multiprotocolo.................................................................................................................. 55 2.6.3.5 Mejoras
Recommended publications
  • THE DEVELOPMENT of ACCENTED ENGLISH SYNTHETIC VOICES By
    THE DEVELOPMENT OF ACCENTED ENGLISH SYNTHETIC VOICES by PROMISE TSHEPISO MALATJI DISSERTATION Submitted in fulfilment of the requirements for the degree of MASTER OF SCIENCE in COMPUTER SCIENCE in the FACULTY OF SCIENCE AND AGRICULTURE (School of Mathematical and Computer Sciences) at the UNIVERSITY OF LIMPOPO SUPERVISOR: Mr MJD Manamela CO-SUPERVISOR: Dr TI Modipa 2019 DEDICATION In memory of my grandparents, Cecilia Khumalo and Alfred Mashele, who always believed in me! ii DECLARATION I declare that THE DEVELOPMENT OF ACCENTED ENGLISH SYNTHETIC VOICES is my own work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references and that this work has not been submitted before for any other degree at any other institution. ______________________ ___________ Signature Date iii ACKNOWLEDGEMENTS I want to recognise the following people for their individual contributions to this dissertation: • My brother, Mr B.I. Khumalo and the whole family for the unconditional love, support and understanding. • A distinct thank you to both my supervisors, Mr M.J.D. Manamela and Dr T.I. Modipa, for their guidance, motivation, and support. • The Telkom Centre of Excellence for Speech Technology for providing the resources and support to make this study a success. • My colleagues in Department of Computer Science, Messrs V.R. Baloyi and L.M. Kola, for always motivating me. • A special thank you to Mr T.J. Sefara for taking his time to participate in the study. • The six Computer Science undergraduate students who sacrificed their precious time to participate in data collection.
    [Show full text]
  • Estudios De I+D+I
    ESTUDIOS DE I+D+I Número 51 Proyecto SIRAU. Servicio de gestión de información remota para las actividades de la vida diaria adaptable a usuario Autor/es: Catalá Mallofré, Andreu Filiación: Universidad Politécnica de Cataluña Contacto: Fecha: 2006 Para citar este documento: CATALÁ MALLOFRÉ, Andreu (Convocatoria 2006). “Proyecto SIRAU. Servicio de gestión de información remota para las actividades de la vida diaria adaptable a usuario”. Madrid. Estudios de I+D+I, nº 51. [Fecha de publicación: 03/05/2010]. <http://www.imsersomayores.csic.es/documentos/documentos/imserso-estudiosidi-51.pdf> Una iniciativa del IMSERSO y del CSIC © 2003 Portal Mayores http://www.imsersomayores.csic.es Resumen Este proyecto se enmarca dentro de una de las líneas de investigación del Centro de Estudios Tecnológicos para Personas con Dependencia (CETDP – UPC) de la Universidad Politécnica de Cataluña que se dedica a desarrollar soluciones tecnológicas para mejorar la calidad de vida de las personas con discapacidad. Se pretende aprovechar el gran avance que representan las nuevas tecnologías de identificación con radiofrecuencia (RFID), para su aplicación como sistema de apoyo a personas con déficit de distinta índole. En principio estaba pensado para personas con discapacidad visual, pero su uso es fácilmente extensible a personas con problemas de comprensión y memoria, o cualquier tipo de déficit cognitivo. La idea consiste en ofrecer la posibilidad de reconocer electrónicamente los objetos de la vida diaria, y que un sistema pueda presentar la información asociada mediante un canal verbal. Consta de un terminal portátil equipado con un trasmisor de corto alcance. Cuando el usuario acerca este terminal a un objeto o viceversa, lo identifica y ofrece información complementaria mediante un mensaje oral.
    [Show full text]
  • Voice Synthesizer Application Android
    Voice synthesizer application android Continue The Download Now link sends you to the Windows Store, where you can continue the download process. You need to have an active Microsoft account to download the app. This download may not be available in some countries. Results 1 - 10 of 603 Prev 1 2 3 4 5 Next See also: Speech Synthesis Receming Device is an artificial production of human speech. The computer system used for this purpose is called a speech computer or speech synthesizer, and can be implemented in software or hardware. The text-to-speech system (TTS) converts the usual text of language into speech; other systems display symbolic linguistic representations, such as phonetic transcriptions in speech. Synthesized speech can be created by concatenating fragments of recorded speech that are stored in the database. Systems vary in size of stored speech blocks; The system that stores phones or diphones provides the greatest range of outputs, but may not have clarity. For specific domain use, storing whole words or suggestions allows for high-quality output. In addition, the synthesizer may include a vocal tract model and other characteristics of the human voice to create a fully synthetic voice output. The quality of the speech synthesizer is judged by its similarity to the human voice and its ability to be understood clearly. The clear text to speech program allows people with visual impairments or reading disabilities to listen to written words on their home computer. Many computer operating systems have included speech synthesizers since the early 1990s. A review of the typical TTS Automatic Announcement System synthetic voice announces the arriving train to Sweden.
    [Show full text]
  • Towards Expressive Speech Synthesis in English on a Robotic Platform
    PAGE 130 Towards Expressive Speech Synthesis in English on a Robotic Platform Sigrid Roehling, Bruce MacDonald, Catherine Watson Department of Electrical and Computer Engineering University of Auckland, New Zealand s.roehling, b.macdonald, [email protected] Abstract Affect influences speech, not only in the words we choose, but in the way we say them. This pa- per reviews the research on vocal correlates in the expression of affect and examines the ability of currently available major text-to-speech (TTS) systems to synthesize expressive speech for an emotional robot guide. Speech features discussed include pitch, duration, loudness, spectral structure, and voice quality. TTS systems are examined as to their ability to control the fea- tures needed for synthesizing expressive speech: pitch, duration, loudness, and voice quality. The OpenMARY system is recommended since it provides the highest amount of control over speech production as well as the ability to work with a sophisticated intonation model. Open- MARY is being actively developed, is supported on our current Linux platform, and provides timing information for talking heads such as our current robot face. 1. Introduction explicitly stated otherwise the research is concerned with the English language. Affect influences speech, not only in the words we choose, but in the way we say them. These vocal nonverbal cues are important in human speech as they communicate 2.1. Pitch information about the speaker’s state or attitude more effi- ciently than the verbal content (Eide, Aaron, Bakis, Hamza, Pitch contour seems to be one of the clearest indica- Picheny, and Pitrelli 2004).
    [Show full text]
  • Virtual Storytelling: Emotions for the Narrator
    Virtual Storytelling: Emotions for the narrator Master's thesis, August 2007 H.A. Buurman Committee Faculty of Human Media Interaction, dr. M. Theune Department of Electrical Engineering, dr. ir. H.J.A. op den Akker Mathematics & Computer Science, dr. R.J.F. Ordelman University of Twente ii iii Preface During my time here as a student in the Computer Science department, the ¯eld of language appealed to me more than all the other ¯elds available. For my internship, I worked on an as- signment involving speech recognition, so when a graduation project concerning speech generation became available I applied for it. This seemed like a nice complementation of my experience with speech recognition. Though the project took me in previously unknown ¯elds of psychol- ogy, linguistics, and (unfortunately) statistics, I feel a lot more at home working with- and on Text-to-Speech applications. Along the way, lots of people supported me, motivated me and helped me by participating in experiments. I would like to thank these people, starting with MariÄetTheune, who kept providing me with constructive feedback and never stopped motivating me. Also I would like to thank the rest of my graduation committee: Rieks op den Akker and Roeland Ordelman, who despite their busy schedule found time now and then to provide alternative insights and support. My family also deserves my gratitude for their continued motivation and interest. Lastly I would like to thank all the people who helped me with the experiments. Without you, this would have been a lot more di±cult. Herbert Buurman iv Samenvatting De ontwikkeling van het virtueel vertellen van verhalen staat nooit stil.
    [Show full text]
  • Gnuspeech Tract Manual 0.9
    Gnuspeech TRAcT Manual 0.9 TRAcT: the Gnuspeech Tube Resonance Access Tool: a means of investigating and understanding the basic Gnuspeech vocal tract model David R. Hill, University of Calgary TRAcT and the \tube" model to which it allows access was originally known as \Synthesizer" and developed by Leonard Manzara on the NeXT computer. The name has been changed because \Synthesiser" might be taken to imply it synthesises speech, which it doesn't. It is a \low-level" sound synthesiser that models the human vocal tract, requiring the \high-level" synthesiser control inherent in Gnuspeech/Monet to speak. TRAcT provides direct interactive access to the human vocal tract model parameters and shapes as a means of exploring its sound generation capabilities, as needed for speech database creation. i (GnuSpeech TRAcT Manual Version 0.9) David R. Hill, PEng, FBCS ([email protected] or drh@firethorne.com) © 2004, 2015 David R. Hill. All rights reserved. This document is publicly available under the terms of a Free Software Foundation \Free Doc- umentation Licence" See see http://www.gnu.org/copyleft/fdl.html for the licence terms. This page and the acknowledgements section are the invariant sections. ii SUMMARY The \Tube Resonance Model" (TRM, or \tube", or \waveguide", or transmission-line) forms the acoustic basis of the Gnupeech articulatory text-to-speech system and provides a linguistics research tool. It emulates the human vocal apparatus and allows \postures" to be imposed on vocal tract model, and energy to be injected representing voicing, whispering, sibilant noises and \breathy" noise. The \Distinctive Region Model" (DRM) control system that allows simple specification of the postures, and accessed by TRAcT 1is based on research by CGM Fant and his colleagues at the Stockholm Royal Institute of Technology Speech Technology Laboratory (Fant & Pauli 1974), by Ren´eCarr´eand his colleagues at T´el´ecomParis (Carr´e,Chennoukh & Mrayati 1992), and further developed by our original research team at Trillium Sound Research and the U of Calgary).
    [Show full text]
  • Generating the Voice of the Interactive Virtual Assistant Adriana Stan and Beáta Lőrincz
    Chapter Generating the Voice of the Interactive Virtual Assistant Adriana Stan and Beáta Lőrincz Abstract This chapter introduces an overview of the current approaches for generating spoken content using text-to-speech synthesis (TTS) systems, and thus the voice of an Interactive Virtual Assistant (IVA). The overview builds upon the issues which make spoken content generation a non-trivial task, and introduces the two main components of a TTS system: text processing and acoustic modelling. It then focuses on providing the reader with the minimally required scientific details of the terminology and methods involved in speech synthesis, yet with sufficient knowl- edge so as to be able to make the initial decisions regarding the choice of technology for the vocal identity of the IVA. The speech synthesis methodologies’ description begins with the basic, easy to run, low-requirement rule-based synthesis, and ends up within the state-of-the-art deep learning landscape. To bring this extremely complex and extensive research field closer to commercial deployment, an exten- sive indexing of the readily and freely available resources and tools required to build a TTS system is provided. Quality evaluation methods and open research problems are, as well, highlighted at end of the chapter. Keywords: text-to-speech synthesis, text processing, deep learning, interactive virtual assistant 1. Introduction Generating the voice of an interactive virtual assistant (IVA) is performed by the so called text-to-speech synthesis (TTS) systems. A TTS system takes raw text as input and converts it into an acoustic signal or waveform, through a series of intermediate steps.
    [Show full text]
  • Wikispeech – Enabling Open Source Text-To-Speech for Wikipedia
    9th ISCA Speech Synthesis Workshop September 13 – 15, 2016 Sunnyvale, CA, USA • • WikiSpeech – enabling open source text-to-speech for Wikipedia John Andersson1, Sebastian Berlin1, André Costa1, Harald Berthelsen2, Hanna Lindgren2, Nikolaj Lindberg2, Jonas Beskow3, Jens Edlund3, and Joakim Gustafson3 1Wikimedia Sverige, 2 STTS, 3 KTH {John.andersson, andre.costa, sebastian.berlin}@wikimedia.se, {harald, hanna, nikolaj}@stts.se, {beskow, edlund, jocke}@speech.kth.se Abstract The project will benefit both researchers and companies. For researchers, it delivers unique possibilities. Access to large We present WikiSpeech, an ambitious joint project aiming to amounts of data is one of the main conditions for modern speech (1) make open source text-to-speech available through technology and Wikispeech will generate data on all levels, Wikimedia Foundation’s server architecture; (2) utilize the from recorded narrations, through user data, to user-generated large and active Wikipedia user base to achieve continuously judgements, transcriptions and labels. The project not only improving text-to-speech; (3) improve existing and develop supports, but may be at the forefront of new methods in user- new crowdsourcing methods for text-to-speech; and (4) develop centered iterative research and development, crowdsourcing new and adapt current evaluation methods so that they are well and online evaluation. For companies, the material generated by suited for the particular use case of reading Wikipedia articles volunteers to improve the text-to-speech will be free to reuse out loud while at the same time capable of harnessing the huge and integrate in products/services. user base made available by Wikipedia. At its inauguration, the Particularly interesting for the accessibility aspect of speech project is backed by The Swedish Post and Telecom Authority technology is the fact that the project deals with reading of and headed by Wikimedia Sverige, STTS and KTH, but in the longer connected texts on a wide range of topics.
    [Show full text]
  • Gnuspeech Monet Manual 0.9
    Gnuspeech Monet Manual 0.9 Gnuspeech: the speech synthesis database creation, modification, and articulatory synthesis software suite David R. Hill, University of Calgary Based on work over more than three decades by the author, Leonard Manzara, Craig Schock, Ian Witten, Wiktor Jassem, Steve Nygard, Dalmazio Brisinda, Marcelo Matuda, and many talented undergraduate students (See \Thanks to those who have helped" http://www.gnu.org/software/gnuspeech, accessed 2015-07-24). Thanks also to Richard Stallman and the Gnuisances, Karl Berry and Brandon Invergo at the Free Software Foundation for their enlightened support. i Copyright © 2002, 20012, 2015 David R. Hill This manual is for Gnuspeech version 0.9, 23 August 2015 Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is available at: http://www.gnu.org/licenses/fdl-1.3.en.html|the Free Software Foundation site (accessed 2015-08-15) ii Summary Monet1 comprises three main divisions serving distinct functions: (1) a Speech Server that translates ordinary text into spoken output, via a specialised phonetic script with automatically added rhythm and intonation information; (2) a speech synthesis database editor and manager with a Graphical User Interface (GUI); and (3) a GUI front end to the Speech Server that is intended to allow databases to be tested as they are developed, but also allows the speech synthesis to be evaluated, including the effects of intonation, and can provide carefully managed test utterances for subjective testing.
    [Show full text]
  • Low-Level Articulatory Synthesis: a Working Text-To- Speech Solution and a Linguistic Tool1
    Canadian Journal of Linguistics/Revue canadienne de linguistique, 62(3): 1–40, 2017 This article has been published in a revised form in the Canadian Journal of Linguistics http://doi: 10.1017/cnj.2017.15. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © Canadian Linguistic Association/Association canadienne de linguistique 2017 Low-level articulatory synthesis: A working text-to- speech solution and a linguistic tool1 David R. Hill*, Craig R. Taube-Schock†, and Leonard Manzara* *University of Calgary, Dept. of Computer Science †Waikato University, Dept. of Computer Science Abstract A complete text-to-speech system has been created by the authors, based on a tube resonance mod- el of the vocal tract and a development of Carré’s “Distinctive Region Model”, which is in turn based on the formant-sensitivity findings of Fant and Pauli (1974), to control the tube. In order to achieve this goal, significant long-term linguistic research has been involved, including rhythm and intona- tion studies, as well as the development of low-level articulatory data and rules to drive the model, together with the necessary tools, parsers, dictionaries and so on. The tools and the current system are available under a General Public License, and are described here, with further references in the paper, including samples of the speech produced, and figures illustrating the system description. Keywords: articulatory text-to-speech synthesis, rhythm, intonation, history, research tool 1 Numerous people have contributed support, research, and technical assistance. Individuals directly in- volved in the synthesizer work are listed at http://www.gnu.org/software/gnuspeech.
    [Show full text]
  • Multilingual Voice Creation Toolkit for the MARY TTS Platform
    Multilingual Voice Creation Toolkit for the MARY TTS Platform Sathish Pammi, Marcela Charfuelan, Marc Schroder¨ Language Technology Laboratory, DFKI GmbH Stuhlsatzenhausweg 3, D-66123 Saarbrucken,¨ Germany and Alt-Moabit 91c, D-10559, Berlin, Germany fsathish.pammi, marcela.charfuelan, [email protected] Abstract This paper describes an open source voice creation toolkit that supports the creation of unit selection and HMM-based voices, for the MARY (Modular Architecture for Research on speech Synthesis) TTS platform. We aim to provide the tools and generic reusable run- time system modules so that people interested in supporting a new language and creating new voices for MARY TTS can do so. The toolkit has been successfully applied to the creation of British English, Turkish, Telugu and Mandarin Chinese language components and voices. These languages are now supported by MARY TTS as well as German and US English. The toolkit can be easily employed to create voices in the languages already supported by MARY TTS. The voice creation toolkit is mainly intended to be used by research groups on speech technology throughout the world, notably those who do not have their own pre-existing technology yet. We try to provide them with a reusable technology that lowers the entrance barrier for them, making it easier to get started. The toolkit is developed in Java and includes intuitive Graphical User Interface (GUI) for most of the common tasks in the creation of a synthetic voice. 1. Introduction 2. Open source voice creation toolkits The task of building synthetic voices requires not only a big Among the open source voice creation toolkits available amount of steps but also patience and care, as advised by nowadays by far the most used system is Festival.
    [Show full text]
  • Artificial Intelligence for Open Source Dialogue Based Natural Language Processing System
    International Journal of Scientific & Engineering Research Volume 9, Issue 6, June-2018 1338 ISSN 2229-5518 Artificial Intelligence for Open Source Dialogue Based Natural Language Processing System Shakti Phartiyal Abstract— This paper is an overview of 'Artificial Intelligence and Natural Language Processing' technologies along with 'Speech to Text' and vice versa to build a dialogue-based system.The objective of this paper is to idealize the implementation of Artificial Intelligence along with or in the form of Natural Language Processing to develop fully functional Dialogue Systems – which will be elaborated in the next paper of the series – to make the virtual world more user friendly. This paper discusses some techniques that can be used or implemented to realize such systems. The paper also considers the techniques required in the Dialogue Based Natural Language Processing System and describes each technique briefly. The objective of this paper is to efficiently bring around the concepts of Dialogue Based Systems to the general public using pre-defined libraries developed by some institutions and organizations (e.g. ALICE AIML, CMU Sphinx etc.) for the tasks such as Natural Language Processing and Speech Recognition. Index Terms— Artificial intelligence, AIML, CMU Sphinx, Dialogue based system, Natural language processing,Natural language processing, Speech synthesis —————————— —————————— 1 INTRODUCTION magine you reach home after a tiring day in office and tell The central approach of AI is to simulate human logic and I your "computer" that you would like to hear some soft mu- intelligence in an electronic system. Today AI is an essential sic. The computer begins playing tracks off your music library.
    [Show full text]