Objective 3: Phosphorus Release from Stormwater Ponds

Total Page:16

File Type:pdf, Size:1020Kb

Objective 3: Phosphorus Release from Stormwater Ponds 1 Stormwater Research Summary Banner 2 Objective 3: Phosphorus Release from Stormwater Ponds 3 Authors: Vinicius Taguchi, Tyler Olsen, Ben Janke, Heinz G. Stefan, Jacques Finlay, John S. 4 Gulliver 5 6 Background 7 There is growing concern that aging stormwater ponds may become net sources of phosphorus (P) to 8 receiving waters during high flow events. Decades of research in lentic ecosystems have demonstrated 9 potential for sustained release of P previously deposited in sediments (i.e. internal loading) in lakes and 10 wetlands. This body of work demonstrates that P is a major contributor to eutrophication that is difficult 11 to effectively manage (Gächter and Wehrli 1998, Søndergaard et al. 2007, Song and Burgin 2017). 12 Stormwater ponds often have high external P loading, and other characteristics that may increase the 13 likelihood of internal loading, such as low availability of metals that immobilize P. However, such ponds 14 have received comparatively little research attention. Objective 3 research examined controls on P 15 cycling in stormwater ponds toward predictive understanding of P retention behavior. Our 16 investigations focused on the examination of pond P using a data synthesis combined with detailed 17 characterization of sedimentary P release in five ponds (Obj. 3a), and annual P mass balance 18 measurements in three ponds coupled with analyses of factors associated with P retention or release 19 within these ponds (Obj. 3b). 20 21 Data Synthesis 22 To investigate the prevalence of excess P in stormwater ponds, we examined data previously collected 23 by the Riley Purgatory Bluff Creek Watershed District (RPBCWD) in Minnesota. Between 2010 and 2013, 24 RPBCWD surveyed 98 ponds and observed high total phosphorus (TP) concentrations (i.e. >0.5mg/L) in a 25 number of them (RPBCWD 2014). Surface grab samples were collected from the downstream third of 26 each pond between July and September. Some ponds were added during the study, so that ponds were 27 samples between 3 to 18 times (median of 5 samples), except for two that had single samples. We 28 compared RPCWD pond TP to characteristic stormwater runoff from the Twin Cities Metro Area (TCMA) 29 and the U.S. The expectation was that TP concentration in stormwater ponds would be less than the 30 typical inflow TP concentration due to loss of P from the water column from settling of particulates and 31 assuming other non-runoff sources of P loading (e.g., from local inputs of leaf litter, or grass clippings,) is 32 negligible by comparison in most ponds; however, the presence of internal loading from recycling of 33 sediment P within the ponds could cause elevated pond TP. TCMA stormwater runoff was characterized 34 using stormwater monitoring data (19 sites, 2362 storm events, n=2505 TP samples) from several TCMA 35 watershed management agencies (Janke et al. 2017). These data were fit to a log-normal distribution 36 (Van Buren et al. 1997), and the upper 95% confidence interval of expected values (centered about the 37 mean rather than the median as in the case of a percentile), which represents the maximum value for 38 approximately 97.5% of the distribution, was then calculated to be 0.38 mg/L. Thus, 97.5% of the inflow 39 data are estimated to be below 0.38 mg/L. For comparison, the process was repeated with a national 40 stormwater runoff characterization dataset (104 municipalities, 8602 storm events, n=7407 TP samples) 41 from the US EPA NPDES Stormwater Quality Database (Pitt et al. 2008), yielding a 95% CI of 0.42 mg/L 42 TP. We compared sampling data from RPBCWD against the Twin Cities Metro 95% CI threshold value of 43 0.38 mg/L in Figure 1, which shows box plots for each of the 39 ponds with median TP concentration 44 above the 95% CI and condenses the remaining 59 ponds into a single box plot. 1 45 46 Our analysis shows that 39% of the 98 ponds sampled had median TP concentrations greater than the 47 95% CI (Figure 2). For each dataset, measurements below reported limits of detection were 48 approximated as equal to half the detection limit (Kayhanian et al. 2002). We hypothesized that these -3 49 ponds have high internal P loading from the sediments, released as orthophosphorus (ortho-P or PO4 ), 50 and are therefore more likely to experience high P concentrations. We address this hypothesis through 51 the laboratory column studies and field measurements described below. 52 53 Figure 1. Box plot of RPBCWD TP grab sample data. The 59 ponds with a median below 0.38 mg/L (95% CI for TCMA 54 runoff data compiled in Janke et al. 2017) are combined into the far-right box plot. 55 56 57 Figure 2. Distribution of total phosphorus concentrations from the RPBCWD pond (grab sample) data presented in 58 Figure 1, with median epilimnion grab sample values from the five intensively studied ponds (A-E) from this study 59 also shown. 60 61 Sediment Core Methods 2 62 To address our hypothesis that P release from the sediments drives high P concentrations in stormwater 63 ponds, we sought to identify and better understand the mechanisms controlling P release from 64 stormwater pond sediments. We collected intact sediment cores and overlying water, using core tubes 65 with an approximately 7 cm outer diameter and approximately 1.5 m in height, from each of 5 66 stormwater ponds (Figure 3, Table 1). These ponds covered a range of characteristics (Table 1), including 67 water column P concentrations (Fig. 2). Six cores were collected from pond A, and five from ponds B-E. 68 69 Table 1. Characteristics of the five studied ponds. All ponds were included in the core study; ponds C, D, and E were 70 studied in the monitoring task. TIA = Total Impervious Area; n/a = not available. Grab Sample TP (n = 10 - 20 71 samples; hypolimnion and water column samples excluded) and influent event mean concentration (EMC) of 72 stormwater TP (n = 20 – 22 samples; snowmelt excluded) come from the monitoring task of the study for ponds C, 73 D, and E (see SI). Grab sample values for ponds A and B come from previous studies (Pond A: Noah Czech, City of St. 74 Cloud; Pond B: RPBCWD 2014). Water Drainage Max Median Grab Influent TP Site ID Site Name Area Area Depth Age Land Use TIA Sample TP EMC ha ha m yr % mg/L mg/L Residential/ A St. Cloud 52 0.21 22.1 1.2 18 60 0.57 n/a School B Minnetonka 849_w 0.66 2.8 1.7 >50 Residential 30 2.70 n/a C William Street Pond 0.23 15.4 1.5 >30 Residential 19 0.36 0.38 Parking Lot, D Church Pond 0.04 1.8 0.8 ~20 >75 0.24 0.12 Residential E Alameda Pond 1.05 115.3 1.8 >30 Residential 20 0.22 0.30 75 76 77 78 Figure 3. Stormwater pond field sites. Pond A is located in St. Cloud, MN, Pond B in Minnetonka, MN, and Ponds C, 79 D, and E in Roseville, MN. 80 81 3 82 Each core was incubated at the St. Anthony Falls Laboratory with 30-40 cm of sediment with 83 approximately one meter of overlying pond water in clear PVC tubes (Figure 4). Cores were incubated 84 under oxygenated and anoxic conditions, during which ortho-P and total phosphorus (TP), dissolved 85 oxygen (DO), temperature, and pH were monitored. Initially, the cores were drained and the overlying 86 water column was filtered through a 1.2 μm glass fiber filter to remove suspended particulates. The 87 filtered water was then added back to the respective core with care taken to avoid sediment 88 resuspension. The water columns were subsequently bubbled with air to simulate the mixing and 89 aeration that takes place in spring. Afterward, air bubbling was halted and cores were left unmixed for 90 one month, the first week of which was used to calculate an overall sediment P flux rate from the 91 measured water column P concentrations. This was done by fitting a linear regression through the P 92 concentration time series data and dividing the slope (P mass per time) by sediment surface area of the 93 cores. Discrete sampling events occurred every one to seven days, depending on the observed rate of 94 change, and are identified by points in Figure 5. Samples were taken from the center of the water 95 column during the mixed oxic phase and from both the center of the water column and 8 cm above the 96 sediment surface during the unmixed anoxic phase. DO, temperature, and pH readings were taken from 97 the center of the water column during the mixed oxic phase and in 15-cm increments, beginning 3 cm 98 above the sediment surface during the unmixed anoxic phase. In order to minimize variables and isolate 99 the sediment P flux for measurement, core incubations were not provided with particulate P additions 100 as would occur in-situ via atmospheric deposition and stormwater runoff. At the conclusion of the 101 month-long unmixed monitoring period for each core, a sequential chemical extraction of the sediments 102 was completed to illustrate differences in P speciation and identify how P was bound in the sediments 103 (Engstrom 2010). This information on P speciation and related P sediment binding characteristics in 104 important to understand mechanisms that control P release and internal loading across ponds with 105 varied P load and morphology.
Recommended publications
  • Pond and Lake Ecosystems a Pond Or Lake Ecosystem Includes Biotic
    Pond and Lake Ecosystems A pond or lake ecosystem includes biotic (living) plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions. Pond and lake ecosystems are a prime example of lentic ecosystems. Lentic refers to stationary or relatively still water, from the Latin lentus, which means sluggish. A typical lake has distinct zones of biological communities linked to the physical structure of the lake. (Figure below) The littoral zone is the near shore area where sunlight penetrates all the way to the sediment and allows aquatic plants (macrophytes) to grow. Light levels of about 1% or less of surface values usually define this depth. The 1% light level also defines the euphotic zone of the lake, which is the layer from the surface down to the depth where light levels become too low for photosynthesizers. In most lakes, the sunlit euphotic zone occurs within the epilimnion. However, in unusually transparent lakes, photosynthesis may occur well below the thermocline into the perennially cold hypolimnion. For example, in western Lake Superior near Duluth, MN, summertime algal photosynthesis and growth can persist to depths of at least 25 meters, while the mixed layer, or epilimnion, only extends down to about 10 meters. Ultra-oligotrophic Lake Tahoe, CA/NV, is so transparent that algal growth historically extended to over 100 meters, though its mixed layer only extends to about 10 meters in summer. Unfortunately, inadequate management of the Lake Tahoe basin since about 1960 has led to a significant loss of transparency due to increased algal growth and increased sediment inputs from stream and shoreline erosion.
    [Show full text]
  • Estimates of Hypolimnetic Oxygen Deficits in Ponds
    Aquacullure and Fisheries Management 1989, 20, 167-172 Estimates of hypolimnetic oxygen deficits in ponds W. Y. B. CHANG Center for Great Lakes and Aquatic Sciences, University of Michigan, Ann Arbor, Michigan, USA Abstract. Shallow tropical integrated culture ponds in the Pearl River Delta. China, have been found to stratify almost daily, with high organic loadings and dense algal growth. The dissolved oxygen (DO) concentration is super-saturated in the epilimnion and is under 2 mg/l in the hypolimnion (>lm). The compensation depth corresponds to twice the Secchi disk depth ranging from 50 to 80cm. As a result, little or no net oxygen is produced in the hypolimnion (> 1 m). The low DO concentration in the hypolimnion causes organic materials, such as unused organic wastes and senescent algae cells, to be incompletely oxidized, since the rate of oxygen consumption by oxidable matter in water is dependent on the dissolved oxygen concentration in water. This material becomes the source of hypolimnetic oxygen deficits (HOD) which can drive whole pond DO to a dangerously low level, should sudden destratification occur. An improved estimate of hypolimnetic oxygen deficits is introduced in this article, and the advantages of this method are discussed. Introduction Oxygen is an important parameter in fish culture, and adequate levels of dissolved oxygen (DO) are essential for maintaining optimum fish growth. Inadequate dissolved oxygen and poor water quality are frequently found in ponds receiving organic wastes and can lead to many serious problems for fish culture in ponds. Problems of low dissolved oxygen are particularly prevalent in ponds during the night and early morning when there are high densities of fish and large additions of organic wastes and feeds (Schroeder 1974; Boyd 1982; Chang 1986).
    [Show full text]
  • Indirect Consequences of Hypolimnetic Hypoxia on Zooplankton Growth in a Large Eutrophic Lake
    Vol. 16: 217–227, 2012 AQUATIC BIOLOGY Published September 5 doi: 10.3354/ab00442 Aquat Biol Indirect consequences of hypolimnetic hypoxia on zooplankton growth in a large eutrophic lake Daisuke Goto1,8,*, Kara Lindelof2,3, David L. Fanslow4, Stuart A. Ludsin4,5, Steven A. Pothoven4, James J. Roberts2,6, Henry A. Vanderploeg4, Alan E. Wilson2,7, Tomas O. Höök1,2 1Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, USA 2Cooperative Institute for Limnology and Ecosystems Research, University of Michigan, Ann Arbor, Michigan 48108, USA 3Department of Environmental Sciences, University of Toledo, Toledo, Ohio 43606, USA 4Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric Administration, Ann Arbor, Michigan 48108, USA 5Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio 43212, USA 6Colorado State University, Department of Fish, Wildlife and Conservation Biology, Fort Collins, Colorado 80523, USA 7Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, Alabama 36849, USA 8School of Biological Sciences, University of Nebraska Lincoln, Lincoln, Nebraska 68588, USA ABSTRACT: Diel vertical migration (DVM) of some zooplankters in eutrophic lakes is often com- pressed during peak hypoxia. To better understand the indirect consequences of seasonal hypolimnetic hypoxia, we integrated laboratory-based experimental and field-based observa- tional approaches to quantify how compressed DVM can affect growth of a cladoceran, Daphnia mendotae, in central Lake Erie, North America. To evaluate hypoxia tolerance of D. mendotae, we conducted a survivorship experiment with varying dissolved oxygen concentrations, which −1 demonstrated high sensitivity of D. mendotae to hypoxia (≤2 mg O2 l ), supporting the field obser- vations of their behavioral avoidance of the hypoxic hypolimnion.
    [Show full text]
  • Top-Down Trophic Cascades in Three Meromictic Lakes Tanner J
    Top-down Trophic Cascades in Three Meromictic Lakes Tanner J. Kraft, Caitlin T. Newman, Michael A. Smith, Bill J. Spohr Ecology 3807, Itasca Biological Station, University of Minnesota Abstract Projections of tropic cascades from a top-down model suggest that biotic characteristics of a lake can be predicted by the presence of planktivorous fish. From the same perspective, the presence of planktivorous fish can theoretically be predicted based off of the sampled biotic factors. Under such theory, the presence of planktivorous fish contributes to low zooplankton abundances, increased zooplankton predator-avoidance techniques, and subsequent growth increases of algae. Lakes without planktivorous fish would theoretically experience zooplankton population booms and subsequent decreased algae growth. These assumptions were used to describe the tropic interactions of Arco, Deming, and Josephine Lakes; three relatively similar meromictic lakes differing primarily from their absence or presence of planktivorous fish. Due to the presence of several other physical, chemical, and environmental factors that were not sampled, these assumptions did not adequately predict the relative abundances of zooplankton and algae in a lake based solely on the fish status. However, the theory did successfully predict the depth preferences of zooplankton based on the presence or absence of fish. Introduction Trophic cascades play a major role in the ecological composition of lakes. One trophic cascade model predicts that the presence or absence of piscivorous fishes will affect the presence of planktivorous fishes, zooplankton size and abundance, algal biomass, and 1 subsequent water clarity (Fig. 1) (Carpenter et al., 1987). The trophic nature of lakes also affects animal behavior, such as the distribution patterns of zooplankton as a predator avoidance technique (Loose and Dawidowicz, 1994).
    [Show full text]
  • Phosphorus Relese from Oxic
    PHOSPHORUS RELEASE FROM SEDIMENTS IN SHAWANO LAKE, WISCONSIN by DARRIN HOVERSON A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN NATURAL RESOURCES (WATER RESOURCES) COLLEGE OF NATURAL RESOURCES UNIVERSITY OF WISCONSIN STEVENS POINT, WISCONSIN FEBRUARY 2008 ABSTRACT The release of phosphorus (P) from lake sediments to the water column is important to lake water quality. Previous research on sediment P release has largely been in deeper, stratified lakes where hypolimnetic anoxia can lead to very high sediment P release rates. Recent studies suggest that sediment P release may also be important in large shallow lakes. Sediment P release in shallow lakes is poorly understood, and it is important that lake managers have a better understanding of how it influences lake nutrient budgets. This research developed a P budget for Shawano Lake, a large shallow lake in north central Wisconsin, and used the sediment P release to explain the difference between measured loads and summer P increases in the lake. Laboratory derived P release rates from intact sediment cores taken from littoral areas of Shawano Lake exhibit mean P release rates that are high under anoxic conditions (1.25 mg m-2 d-1) and lower, although still significant, under oxic conditions (0.25 mg m-2 d-1). When compared to the other components of the summer P budget, internal sediment P load accounted for 71% (46% to 81% range) of the summer P budget. This P release could be explained with an oxic P release rate of 0.31 mg m-2 d-1 (0.10 to 0.49 mg m-2 d-1 range).
    [Show full text]
  • Ecological Features and Processes of Lakes and Wetlands
    Ecological features and processes of lakes and wetlands Lakes are complex ecosystems defined by all system components affecting surface and ground water gains and losses. This includes the atmosphere, precipitation, geomorphology, soils, plants, and animals within the entire watershed, including the uplands, tributaries, wetlands, and other lakes. Management from a whole watershed perspective is necessary to protect and maintain healthy lake systems. This concept is important for managing the Great Lakes as well as small inland lakes, even those without tributary streams. A good example of the need to manage from a whole watershed perspective is the significant ecological changes that have occurred in the Great Lakes. The Great Lakes are vast in size, and it is hard to imagine that building a small farm or home, digging a channel for shipping, fishing, or building a small dam could affect the entire system. However, the accumulation of numerous human development activities throughout the entire Great Lakes watershed resulted in significant changes to one of the largest freshwater lake systems in the world. The historic organic contamination problems, nutrient problems, and dramatic fisheries changes in our Great Lakes are examples of how cumulative factors within a watershed affect a lake. Habitat refers to an area that provides the necessary resources and conditions for an organism to survive. Because organisms often require different habitat components during various life stages (reproduction, maturation, migration), habitat for a particular species may encompass several cover types, plant communities, or water-depth zones during the organism's life cycle. Moreover, most species of fish and wildlife are part of a complex web of interactions that result in successful feeding, reproduction, and predator avoidance.
    [Show full text]
  • Metalimnetic Oxygen Minimum in Green Lake, Wisconsin
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2020 Metalimnetic Oxygen Minimum in Green Lake, Wisconsin Mahta Naziri Saeed Michigan Technological University, [email protected] Copyright 2020 Mahta Naziri Saeed Recommended Citation Naziri Saeed, Mahta, "Metalimnetic Oxygen Minimum in Green Lake, Wisconsin", Open Access Master's Thesis, Michigan Technological University, 2020. https://doi.org/10.37099/mtu.dc.etdr/1154 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Environmental Engineering Commons METALIMNETIC OXYGEN MINIMUM IN GREEN LAKE, WISCONSIN By Mahta Naziri Saeed A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Environmental Engineering MICHIGAN TECHNOLOGICAL UNIVERSITY 2020 © 2020 Mahta Naziri Saeed This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Environmental Engineering. Department of Civil and Environmental Engineering Thesis Advisor: Cory McDonald Committee Member: Pengfei Xue Committee Member: Dale Robertson Department Chair: Audra Morse Table of Contents List of figures .......................................................................................................................v List of tables ....................................................................................................................... ix Acknowledgements ..............................................................................................................x
    [Show full text]
  • Dissolved Inorganic Carbon
    Lakes: Primary Production, Budgets and Cycling Biogeochemical Systems -- OCN 401 27 September 2012 Reading: Schlesinger Chapter 7 Outline 1. Temperature / density relationship • Seasonal cycle of lake stratification 2. Carbon and nutrient cycling • Dissolved inorganic carbon speciation • Methods of measuring primary production • Nutrients and productivity / nutrient cycling • Carbon budgets • Nutrient budgets • Nitrogen fixation 3. Lake classification 4. Alkalinity and acid rain effects 1 Temperature / Density Relationship • Water is densest at 4°C • Both ice and warmer water are less dense • Important implication: ice floats! • If less-dense water is overlain by denser water, lake overturn occurs • If denser water is overlain by less-dense water, Heavier stable stratification occurs Berner & Berner (1996) Temperature Structure of a Typical Temperate Lake in Summer • Epilimnion: warm surface waters • Metalimnion: zone of rapid temperature change (thermocline) • Hypolimnion: cooler, deep waters • Many tropical lakes are permanently stratified • Temperate lakes show seasonal break-down of temperature stratification 2 Seasonal Cycle of Lake Stratification Early spring (after ice melt): www.gvsu.edu Late spring: 3 Summer: • Dead organic matter sinks from the epilimnion to the hypolimnion • The decay of this organic matter leads to O2 depletion of the hypolimnion Early autumn: 4 Autumn: Winter: 5 Berner & Berner (1996) Temperature profiles over the year for a typical temperate lake Dashed line represents maximum density at 4 C Dissolved Inorganic
    [Show full text]
  • Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 1996
    Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 1996 U.S. GEOLOGICAL SURVEY Open-File Report 97-123 Prepared in cooperation with the State of Wisconsin and local agencies WATER-QUALITY AND LAKE-STAGE DATA FOR WISCONSIN LAKES, WATER YEAR 1996 By Wisconsin District Lake-Studies Team U.S. GEOLOGICAL SURVEY Open-File Report 97-123 A report by the Wisconsin District Lake-Studies Team- J.F. Elder (team leader), H.S. Garn, G.L Goddard, S.B. Marsh, D.L Olson, D.M. Robertson, and W.J. Rose Prepared in cooperation with THE STATE OF WISCONSIN AND OTHER AGENCIES Madison, Wisconsin 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Earth Science Information Center 6417 Normandy Lane Open-File Reports Section Madison, Wl 53719 Box25286, MS 517 Denver Federal Center Denver, CO 80225 CONTENTS Introduction........................................................................ 1 Methods of data collection ............................................................ 4 Explanation of physical and chemical characteristics of lakes................................. 7 Water temperature and thermal stratification........................................ 7 Specific conductance.......................................................... 8 Water clarity................................................................. 9 pH ......................................................................
    [Show full text]
  • Lake Stratification and Mixing
    Lake Stratification and Mixing Many of our Illinois lakes and reservoirs are deep force strong enough to resist the wind's mixing forces enough to stratify, or form "layers" of water with (it only takes a difference of a few degrees Fahrenheit different temperatures. Such thermal stratification to prevent mixing). The lake now stratifies into three occurs because of the large differences in density layers of water—a situation termed summer (weight) between warm and cold waters. Density stratification. The upper layer is a warm (lighter), depends on temperature: water is most dense (heaviest) well-mixed zone called the epilimnion. Below this is a at about 39EF, and less dense (lighter) at temperatures transitional zone where temperatures rapidly change warmer and colder than 39EF. called the metalimnion. The thermocline is a horizontal plane within the metalimnion through the The Stratification Process point of greatest water temperature change. The metalimnion is very resistant to wind mixing. Beneath In the fall, chilly air temperatures cool the lake's the metalimnion and extending to the lake bottom is surface. As the surface water cools, it becomes more the colder (heavier), usually dark, and relatively dense and sinks to the bottom. Eventually the entire undisturbed hypolimnion. lake reaches about 39EF (4EC). As the surface water cools even more, it becomes less dense and "floats" on The most important actions causing lake mixing are top of the denser 39EF water, forming ice at 32EF wind, inflowing water, and outflowing water. While (0EC). The lake water below the ice remains near wind influences the surface waters of all lakes, its 39EF.
    [Show full text]
  • Calculation of the Indiana Trophic State Index (ITSI) for Lakes
    USE OF THE INDIANA TROPHIC STATE INDEX (ITSI) TO GUIDE LAKE MANAGEMENT LAKE AND RIVER ENHANCEMENT (LARE) PROGRAM INDIANA DEPARTMENT OF NATURAL RESOURCES DIVISION OF FISH AND WILDLIFE Eutrophication is a natural process of lake aging, the rate of which can be adversely increased by human activities. Physical, chemical, and biological data gathered on each lake are combined into a standardized multi-metric index known today as the Indiana Trophic State Index (ITSI), a modified version of the BonHomme Index developed for Indiana in 1972. Samples are taken at both the surface (epilimnion) and bottom of the lake (hypolimnion) to identify the effects of stratification on water chemistry. Eutrophy points are assigned to each parameter and totaled to create a final ITSI score ranging from 0 to 75 (Appendix 1). Lower scores indicate lower levels and effects of nutrients on factors related to lake management and use, including water clarity, nutrients available for plant growth and blue green algae dominance. Over more than three decades, the ITSI score has been calculated regularly during July-August at the deepest point in over 600 boat-accessible public lakes and reservoirs, generally on a five-year rotating basis. Since 1989 the sampling and analytical efforts for this program have been conducted for IDEM by the staff and students of the Indiana University School of Public and Environmental Affairs (IU-SPEA). Values are reported every two years in the Indiana Integrated Water Monitoring and Assessment Report (www.in.gov/idem/4679.htm) and are available on a more frequent basis from LARE and IDEM lake program staff.
    [Show full text]
  • Minnesota Lake Water Quality Assessment Report: Developing Nutrient Criteria
    MINNESOTA LAKE WATER QUALITY ASSESSMENT REPORT: DEVELOPING NUTRIENT CRITERIA Third Edition September 2005 wq-lar3-01 MINNESOTA LAKE WATER QUALITY ASSESSMENT REPORT: DEVELOPING NUTRIENT CRITERIA Third Edition Written and prepared by: Steven A. Heiskary Water Assessment & Environmental information Section Environmental Analysis & Outcomes Division and C. Bruce Wilson Watershed Section Regional Division MINNESOTA POLLUTION CONTROL AGENCY September 2005 Acknowledgments This report is based in large part on the previous MLWQA reports from 1988 and 1990. Contributors and reviewers to the 1988 report are noted at the bottom of this page. The following persons contributed to the current edition. Report sections: Mark Ebbers – MDNR, Division of Fisheries Trout and Salmon consultant: Stream Trout Lakes report section Reviewers: Dr. Candice Bauer – USEPA Region V, Nutrient Criteria Development coordinator Tim Cross – MDNR Fisheries Research Biologist (report section on fisheries) Doug Hall – MPCA, Environmental Analysis and Outcomes Division Frank Kohlasch – MPCA, Environmental Analysis and Outcomes Division Dr. David Maschwitz – MPCA, Environmental Analysis and Outcomes Division Word Processing – Jan Eckart ----------------------------------------------- Contributors to the 1988 edition: MPCA – Pat Bailey, Mark Tomasek, & Jerry Winslow Manuscript review of 1988 edition: MPCA – Carolyn Dindorf, Marvin Hora, Gaylen Reetz, Curtis Sparks & Dr. Ed Swain MDNR – Jack Skrypek, Ron Payer, Dave Pederson & Steve Prestin University of Minnesota – Dr. Robert
    [Show full text]