Ecological Features and Processes of Lakes and Wetlands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecotone Properties and Influences on Fish Distributions Along Habitat Gradients of Complex Aquatic Systems
ECOTONE PROPERTIES AND INFLUENCES ON FISH DISTRIBUTIONS ALONG HABITAT GRADIENTS OF COMPLEX AQUATIC SYSTEMS A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Nuanchan Singkran May 2007 © 2007 Nuanchan Singkran ECOTONE PROPERTIES AND INFLUENCES ON FISH DISTRIBUTIONS ALONG HABITAT GRADIENTS OF COMPLEX AQUATIC SYSTEMS Nuanchan Singkran, Ph. D. Cornell University 2007 Ecotone properties (formation and function) were studied in complex aquatic systems in New York State. Ecotone formations were detected on two embayment- stream gradients associated with Lake Ontario during June–August 2002, using abrupt changes in habitat variables and fish species compositions. The study was repeated at a finer scale along the second gradient during June–August 2004. Abrupt changes in the habitat variables (water depth, current velocity, substrates, and covers) and peak species turnover rate showed strong congruence at the same location on one gradient. The repeated study on the second gradient in the summer of 2004 confirmed the same ecotone orientation as that detected in the summer of 2002 and revealed the ecotone width covering the lentic-lotic transitions. The ecotone on the second gradient acted as a hard barrier for most of the fish species. Ecotone properties were determined along the Hudson River estuary gradient during 1974–2001 using the same methods employed in the freshwater system. The Hudson ecotones showed both changes in location and structural formation over time. Influences of tide, freshwater flow, salinity, dissolved oxygen, and water temperature tended to govern ecotone properties. One ecotone detected in the lower-middle gradient portion appeared to be the optimal zone for fish assemblages, but the other ecotones acted as barriers for most fish species. -
Pond and Lake Ecosystems a Pond Or Lake Ecosystem Includes Biotic
Pond and Lake Ecosystems A pond or lake ecosystem includes biotic (living) plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions. Pond and lake ecosystems are a prime example of lentic ecosystems. Lentic refers to stationary or relatively still water, from the Latin lentus, which means sluggish. A typical lake has distinct zones of biological communities linked to the physical structure of the lake. (Figure below) The littoral zone is the near shore area where sunlight penetrates all the way to the sediment and allows aquatic plants (macrophytes) to grow. Light levels of about 1% or less of surface values usually define this depth. The 1% light level also defines the euphotic zone of the lake, which is the layer from the surface down to the depth where light levels become too low for photosynthesizers. In most lakes, the sunlit euphotic zone occurs within the epilimnion. However, in unusually transparent lakes, photosynthesis may occur well below the thermocline into the perennially cold hypolimnion. For example, in western Lake Superior near Duluth, MN, summertime algal photosynthesis and growth can persist to depths of at least 25 meters, while the mixed layer, or epilimnion, only extends down to about 10 meters. Ultra-oligotrophic Lake Tahoe, CA/NV, is so transparent that algal growth historically extended to over 100 meters, though its mixed layer only extends to about 10 meters in summer. Unfortunately, inadequate management of the Lake Tahoe basin since about 1960 has led to a significant loss of transparency due to increased algal growth and increased sediment inputs from stream and shoreline erosion. -
Estimates of Hypolimnetic Oxygen Deficits in Ponds
Aquacullure and Fisheries Management 1989, 20, 167-172 Estimates of hypolimnetic oxygen deficits in ponds W. Y. B. CHANG Center for Great Lakes and Aquatic Sciences, University of Michigan, Ann Arbor, Michigan, USA Abstract. Shallow tropical integrated culture ponds in the Pearl River Delta. China, have been found to stratify almost daily, with high organic loadings and dense algal growth. The dissolved oxygen (DO) concentration is super-saturated in the epilimnion and is under 2 mg/l in the hypolimnion (>lm). The compensation depth corresponds to twice the Secchi disk depth ranging from 50 to 80cm. As a result, little or no net oxygen is produced in the hypolimnion (> 1 m). The low DO concentration in the hypolimnion causes organic materials, such as unused organic wastes and senescent algae cells, to be incompletely oxidized, since the rate of oxygen consumption by oxidable matter in water is dependent on the dissolved oxygen concentration in water. This material becomes the source of hypolimnetic oxygen deficits (HOD) which can drive whole pond DO to a dangerously low level, should sudden destratification occur. An improved estimate of hypolimnetic oxygen deficits is introduced in this article, and the advantages of this method are discussed. Introduction Oxygen is an important parameter in fish culture, and adequate levels of dissolved oxygen (DO) are essential for maintaining optimum fish growth. Inadequate dissolved oxygen and poor water quality are frequently found in ponds receiving organic wastes and can lead to many serious problems for fish culture in ponds. Problems of low dissolved oxygen are particularly prevalent in ponds during the night and early morning when there are high densities of fish and large additions of organic wastes and feeds (Schroeder 1974; Boyd 1982; Chang 1986). -
Ecosystem Services Generated by Fish Populations
AR-211 Ecological Economics 29 (1999) 253 –268 ANALYSIS Ecosystem services generated by fish populations Cecilia M. Holmlund *, Monica Hammer Natural Resources Management, Department of Systems Ecology, Stockholm University, S-106 91, Stockholm, Sweden Abstract In this paper, we review the role of fish populations in generating ecosystem services based on documented ecological functions and human demands of fish. The ongoing overexploitation of global fish resources concerns our societies, not only in terms of decreasing fish populations important for consumption and recreational activities. Rather, a number of ecosystem services generated by fish populations are also at risk, with consequences for biodiversity, ecosystem functioning, and ultimately human welfare. Examples are provided from marine and freshwater ecosystems, in various parts of the world, and include all life-stages of fish. Ecosystem services are here defined as fundamental services for maintaining ecosystem functioning and resilience, or demand-derived services based on human values. To secure the generation of ecosystem services from fish populations, management approaches need to address the fact that fish are embedded in ecosystems and that substitutions for declining populations and habitat losses, such as fish stocking and nature reserves, rarely replace losses of all services. © 1999 Elsevier Science B.V. All rights reserved. Keywords: Ecosystem services; Fish populations; Fisheries management; Biodiversity 1. Introduction 15 000 are marine and nearly 10 000 are freshwa ter (Nelson, 1994). Global capture fisheries har Fish constitute one of the major protein sources vested 101 million tonnes of fish including 27 for humans around the world. There are to date million tonnes of bycatch in 1995, and 11 million some 25 000 different known fish species of which tonnes were produced in aquaculture the same year (FAO, 1997). -
Florida Lakes and Ponds Guidebook
Florida Lakes and Ponds Guidebook Florida has thousands of lakes and ponds that provide opportunities for recreation and valuable habitat for a wide diversity of plants and animals. However, over the years, many citizens of Florida have observed a decline in the health of their lakes and ponds. By choosing to read this guide you are taking the first step towards protecting your lake or pond. This manual is a starting point for concerned citizens who wish to learn about lake ecology and ways they can protect the future of their lake or pond. Photography provided courtesy of Pinellas County Communications Department u The first two chapters will help you understand the basic concepts of watersheds and the ecology of lakes and ponds. It covers the importance of a watershed approach to lake and pond protection and the ecology and cycles within a lake system. The following chapters address the main causes of reduced water quality and outline ways that you, as a concerned citizen, can adopt a proactive role in preventing further degradation to our waterbodies. The last section provides guidance for people who wish to go one step further and begin or join a lake association, apply for a grant or obtain additional education publications. Words in italics are defined in the glossary in the back of the book. By taking action today, we can protect our lakes and ponds for tomorrow. 1 Table of Contents Introduction Chapter 1: Understanding Watersheds 1.1 Watershed Information Chapter 2: Lake Basics 2.1 The Hydrologic Cycle 2.2 Thermal Stratification -
Indirect Consequences of Hypolimnetic Hypoxia on Zooplankton Growth in a Large Eutrophic Lake
Vol. 16: 217–227, 2012 AQUATIC BIOLOGY Published September 5 doi: 10.3354/ab00442 Aquat Biol Indirect consequences of hypolimnetic hypoxia on zooplankton growth in a large eutrophic lake Daisuke Goto1,8,*, Kara Lindelof2,3, David L. Fanslow4, Stuart A. Ludsin4,5, Steven A. Pothoven4, James J. Roberts2,6, Henry A. Vanderploeg4, Alan E. Wilson2,7, Tomas O. Höök1,2 1Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, USA 2Cooperative Institute for Limnology and Ecosystems Research, University of Michigan, Ann Arbor, Michigan 48108, USA 3Department of Environmental Sciences, University of Toledo, Toledo, Ohio 43606, USA 4Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric Administration, Ann Arbor, Michigan 48108, USA 5Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio 43212, USA 6Colorado State University, Department of Fish, Wildlife and Conservation Biology, Fort Collins, Colorado 80523, USA 7Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, Alabama 36849, USA 8School of Biological Sciences, University of Nebraska Lincoln, Lincoln, Nebraska 68588, USA ABSTRACT: Diel vertical migration (DVM) of some zooplankters in eutrophic lakes is often com- pressed during peak hypoxia. To better understand the indirect consequences of seasonal hypolimnetic hypoxia, we integrated laboratory-based experimental and field-based observa- tional approaches to quantify how compressed DVM can affect growth of a cladoceran, Daphnia mendotae, in central Lake Erie, North America. To evaluate hypoxia tolerance of D. mendotae, we conducted a survivorship experiment with varying dissolved oxygen concentrations, which −1 demonstrated high sensitivity of D. mendotae to hypoxia (≤2 mg O2 l ), supporting the field obser- vations of their behavioral avoidance of the hypoxic hypolimnion. -
NETLAKE Toolbox for the Analysis of High-Frequency Data from Lakes
NETLAKE NETLAKE toolbox for the analysis of high-frequency data from lakes Working Group 2: Data analysis and modelling tools October 2016 Suggested citation for the complete set of factsheets: Obrador, B., Jones, I.D. and Jennings, E. (Eds.) NETLAKE toolbox for the analysis of high-frequency data from lakes. Technical report. NETLAKE COST Action ES1201. 60 pp. http://eprints.dkit.ie/id/eprint/530 Editors: Biel Obrador. Department of Ecology, University of Barcelona. Av. Diagonal 645, Barcelona, Spain. [email protected] Ian Jones. Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, United Kingdom. [email protected] Eleanor Jennings. Centre for Freshwater and Environmental Studies, Department of Applied Science, Dundalk Institute of Technology, Dublin Road, Dundalk, Ireland. [email protected] Author affiliations: Rosana Aguilera. Catalan Institute of Water Research, Girona, Spain. Louise Bruce. Aquatic Ecodynamics Research Group, University of Western Australia, Perth, Australia. Jesper Christensen. Institute of Bioscience, Aarhus University, Roskilde, Denmark. Raoul-Marie Couture. Norwegian Institute for Water Research, Norway. Elvira de Eyto. Burrishoole research station, Marine Institute, Ireland. Marieke Frassl. Department of Lake Research, Helmholtz Centre for Environmental Research, UFZ, Magdeburg, Germany. Mark Honti. Budapest University of Technology and Economics, Hungary. Ian Jones. Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, United Kingdom. Rafael Marcé. Catalan Institute of Water Research, Girona, Spain. Biel Obrador. Department of Ecology, University of Barcelona, Barcelona, Spain. Dario Omanović. Ruđer Bošković Institute, Zagreb, Croatia. Ilia Ostrovsky. Israel Oceanographic & Limnological Research, Kinneret Limnological Laboratory, P.O.B. 447, Migdal 14950, Israel. Don Pierson. Lake Erken field station, Uppsala University, Sweden. -
Effects of Beaver Dams on Benthic Macroinvertebrates
Effects ofbeaver dams onbenthic macroinvertebrates Andreas Johansson Degree project inbiology, Master ofscience (2years), 2014 Examensarbete ibiologi 45 hp tillmasterexamen, 2014 Biology Education Centre, Uppsala University, and Department ofAquatic Sciences and Assessment, SLU Supervisor: Frauke Ecke External opponent: Peter Halvarsson ABSTRACT In the 1870's the beaver (Castor fiber), population in Sweden had been exterminated. The beaver was reintroduced to Sweden from the Norwegian population between 1922 and 1939. Today the population has recovered and it is estimated that the population of C. fiber in all of Europe today ranges around 639,000 individuals. The main aim with this study was to investigate if there was any difference in species diversity between sites located upstream and downstream of beaver ponds. I found no significant difference in species diversity between these sites and the geographical location of the streams did not affect the species diversity. This means that in future studies it is possible to consider all streams to be replicates despite of geographical location. The pond age and size did on the other hand affect the species diversity. Young ponds had a significantly higher diversity compared to medium-aged ponds. Small ponds had a significantly higher diversity compared to medium-sized and large ponds. The upstream and downstream reaches did not differ in terms of CPOM amount but some water chemistry variables did differ between them. For the functional feeding groups I only found a difference between the sites for predators, which were more abundant downstream of the ponds. SAMMANFATTNING Under 1870-talet utrotades den svenska populationen av bäver (Castor fiber). -
Top-Down Trophic Cascades in Three Meromictic Lakes Tanner J
Top-down Trophic Cascades in Three Meromictic Lakes Tanner J. Kraft, Caitlin T. Newman, Michael A. Smith, Bill J. Spohr Ecology 3807, Itasca Biological Station, University of Minnesota Abstract Projections of tropic cascades from a top-down model suggest that biotic characteristics of a lake can be predicted by the presence of planktivorous fish. From the same perspective, the presence of planktivorous fish can theoretically be predicted based off of the sampled biotic factors. Under such theory, the presence of planktivorous fish contributes to low zooplankton abundances, increased zooplankton predator-avoidance techniques, and subsequent growth increases of algae. Lakes without planktivorous fish would theoretically experience zooplankton population booms and subsequent decreased algae growth. These assumptions were used to describe the tropic interactions of Arco, Deming, and Josephine Lakes; three relatively similar meromictic lakes differing primarily from their absence or presence of planktivorous fish. Due to the presence of several other physical, chemical, and environmental factors that were not sampled, these assumptions did not adequately predict the relative abundances of zooplankton and algae in a lake based solely on the fish status. However, the theory did successfully predict the depth preferences of zooplankton based on the presence or absence of fish. Introduction Trophic cascades play a major role in the ecological composition of lakes. One trophic cascade model predicts that the presence or absence of piscivorous fishes will affect the presence of planktivorous fishes, zooplankton size and abundance, algal biomass, and 1 subsequent water clarity (Fig. 1) (Carpenter et al., 1987). The trophic nature of lakes also affects animal behavior, such as the distribution patterns of zooplankton as a predator avoidance technique (Loose and Dawidowicz, 1994). -
Phosphorus Relese from Oxic
PHOSPHORUS RELEASE FROM SEDIMENTS IN SHAWANO LAKE, WISCONSIN by DARRIN HOVERSON A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN NATURAL RESOURCES (WATER RESOURCES) COLLEGE OF NATURAL RESOURCES UNIVERSITY OF WISCONSIN STEVENS POINT, WISCONSIN FEBRUARY 2008 ABSTRACT The release of phosphorus (P) from lake sediments to the water column is important to lake water quality. Previous research on sediment P release has largely been in deeper, stratified lakes where hypolimnetic anoxia can lead to very high sediment P release rates. Recent studies suggest that sediment P release may also be important in large shallow lakes. Sediment P release in shallow lakes is poorly understood, and it is important that lake managers have a better understanding of how it influences lake nutrient budgets. This research developed a P budget for Shawano Lake, a large shallow lake in north central Wisconsin, and used the sediment P release to explain the difference between measured loads and summer P increases in the lake. Laboratory derived P release rates from intact sediment cores taken from littoral areas of Shawano Lake exhibit mean P release rates that are high under anoxic conditions (1.25 mg m-2 d-1) and lower, although still significant, under oxic conditions (0.25 mg m-2 d-1). When compared to the other components of the summer P budget, internal sediment P load accounted for 71% (46% to 81% range) of the summer P budget. This P release could be explained with an oxic P release rate of 0.31 mg m-2 d-1 (0.10 to 0.49 mg m-2 d-1 range). -
Carbon Metabolism and Nutrient Balance in a Hypereutrophic Semi-Intensive fishpond
Knowl. Manag. Aquat. Ecosyst. 2019, 420, 49 Knowledge & © M. Rutegwa et al., Published by EDP Sciences 2019 Management of Aquatic https://doi.org/10.1051/kmae/2019043 Ecosystems Journal fully supported by Agence www.kmae-journal.org française pour la biodiversité RESEARCH PAPER Carbon metabolism and nutrient balance in a hypereutrophic semi-intensive fishpond Marcellin Rutegwa1,*, Jan Potužák1,2, Josef Hejzlar3 and Bořek Drozd1 1 Institute of Aquaculture and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic 2 Institute of Botany of the Czech Academy of Sciences, Department of Vegetation Ecology, 602 00 Brno, Czech Republic 3 Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 370 05 České Budějovice, Czech Republic Received 3 June 2019 / Accepted 29 October 2019 Abstract – Eutrophication and nutrient pollution is a serious problem in many fish aquaculture ponds, whose causes are often not well documented. The efficiency of using inputs for fish production in a hypereutrophic fishpond (Dehtář), was evaluated using organic carbon (OC), nitrogen (N) and phosphorus (P) balances and measurement of ecosystem metabolism rates in 2015. Primary production and feeds were the main inputs of OC and contributed 82% and 13% to the total OC input, respectively. Feeds and manure were the major inputs of nutrients and contributed 73% and 86% of the total inputs of N and P, respectively. Ecosystem respiration, accumulation in water and accumulation in sediment were the main fates of OC, N and P, respectively. -
Outline for Capitol Lake Faunal Analysis
FINAL REPORT Implications of Capitol Lake Management for Fish and Wildlife Prepared by: The Washington Department of Fish and Wildlife Marc P. Hayes Timothy Quinn Tiffany L. Hicks Prepared for: Capital Lake Adaptive Management Program Steering Committee 11 September 2008 Table of Contents Executive Summary ................................................................................................................ iii 1 Introduction ................................................................................................................... 1 1.1 Historical Background and Physical Setting of Capitol Lake ................................... 1 1.2 Prior Faunal Surveys and Research ...................................................................... 7 1.3 Objectives .................................................................................................................. 7 2 Methods ......................................................................................................................... 8 2.1 Species Assessment ................................................................................................... 8 2.2 Ecosystem Assessment ............................................................................................. 9 3 Results and Discussion ............................................................................................... 10 3.1 Species Present and Their Response .......................................................................... 10 3.1.1 Vertebrates ...........................................................................................................