Biosensors: Nanotools of Detection- a Review Payoshnee Bhalinge*, Sourab Kumar**, Abhishek Jadhav***,Shilpi Suman****, Pavan Gujjar*****, Nitesh Perla******

Total Page:16

File Type:pdf, Size:1020Kb

Biosensors: Nanotools of Detection- a Review Payoshnee Bhalinge*, Sourab Kumar**, Abhishek Jadhav***,Shilpi Suman****, Pavan Gujjar*****, Nitesh Perla****** International J. of Healthcare and Biomedical Research, Volume: 04, Issue: 03, April 2016, 26-39 Review article: Biosensors: Nanotools of Detection- A Review Payoshnee Bhalinge*, Sourab Kumar**, Abhishek Jadhav***,Shilpi Suman****, Pavan Gujjar*****, Nitesh Perla****** *Senior Lecturer, Dept of Oral & Maxillofacial Pathology and Microbiology M.A.Rangoonwala College of Dental Science, Pune – 411001 ** Senior Lecturer (Corresponding Author) Dept of Oral & Maxillofacial Pathology and Microbiology Dr.D.Y.Patil University, School of Dentistry, Sector 7, Nerul, Navi Mumbai, Maharashtra, India, ***Senior Lecturer , Dept of Oral & Maxillofacial Pathology and Microbiology , Dr.D.Y.Patil University, School of Dentistry, Sector 7, Nerul, Navi Mumbai, Maharashtra, India, ****PG Student , Dept of Oral & Maxillofacial Pathology and Microbiology , Dr.D.Y.Patil University, School of Dentistry, Sector 7, Nerul, Navi Mumbai, Maharashtra, India, *****Senior Lecturer , Dept of Oral & Maxillofacial Pathology and Microbiology , Narsinhbhai Patel Dental College and Hospital, Visnagar, Gujrat - 384315 *****Oral Pathologist and Consultant, Lifeline Charitable Trust, Sanpada, Navi Mumbai Abstract: BIONSENSORS refer to ‘easy to use’ devices that are developed to help in the early diagnosis and treatment of disease. Early diagnosis is the key to successfully treating many diseases. Biosensors utilize the unique properties of biological and physical materials to recognize a target molecule and effect transduction of an electronic signal. The key advantages of biosensors are fast response and high sensitivity. Also, the basic advantage for point of care devices such as Biosensors would include integration of nano materials, microfluidics, automatic samplers, and transduction devices on a single chip. Biosensors are also being used as new analytical tools to study medicine. Thus this paper reviews how nano materials can be used to build Biosensors and how these Biosensors can help now and in the future to detect disease and monitor therapies. Nano technology will enable us to design sensors that are much smaller, less power hungry and more sensitive than current mico and macro sensors. (1,4) Keywords : Biosensor, diagnostic, detection, biochip Introduction: organisms for foreign substances are unparalleled. Humans have been performing bio-analysis since Using bio-receptors from biological organisms or the dawn of time, using the sensory nerve cells of receptors that have been patterned after biological the nose to detect scents or the enzymatic reactions systems, scientists have developed a new means of in the tongue to taste food. As time has progressed, chemical analysis that often has the high selectivity so has our level of understanding about the function of biological recognition systems. These bio- of living organisms in detecting trace amounts of recognition elements in combination with various bio-chemicals in complex systems. Since biological transduction methods have helped to create the organisms are some of the most efficient machines rapidly expanding fields of bio-analysis and related ever created, scientists have sought to apply and technologies known as biosensors and biochips. (2) copy their efficiency for use in man- made creations. In particular, the recognition abilities of biological 26 www.ijhbr.com ISSN: 2319-7072 International J. of Healthcare and Biomedical Research, Volume: 04, Issue: 03, April 2016, 26-39 The emergence of nanotechnology is opening new urea in micro samples of undiluted whole blood or horizons for the development of nanosensors and plasma. Miniaturization also allowed additional nanoprobes with submicron-sized dimensions that analytical tools to be added to the biosensor, such as are suitable for intracellular measurements. (3) chromatography or capillary electrophoresis. The Although it is impossible to survey this entire newest generation of biosensors includes dynamic field, this issue presents articles about miniaturized multi-analyteimmunosensor devices some of the many types of biosensors and biosensor- with high-throughput capabilities and more than based applications to give the reader a sense of 1000 individually addressable electrodes per square importance and the enormous potential of these centimeter. These instruments can detect analytes devices. (3) present in the attomole range (3,8) Definition: Basic concepts of Biosensors Various definitions and terminologies are used As demonstrated in Fig. 1, a biosensor consists of a depending on the field of application. Biosensors are bio-element and a sensor-element. The bio-element also known as immunosensors, optrodes, chemical may be an enzyme, antibody, living cells, or tissue. canaries, resonant mirrors, glucometers, biochips The sensing element may be electric current, electric and biocomputers. (4) potential, and so on. (A detailed list of different Hence Biosensor can be defined as : possible bio-elements and sensor-elements is shown An analytical device which converts a biological in Fig. 2.) Different combinations of bio-elements response into an electrical signal (Biosensors, and sensor-elements constitute several types of Elsevier Applied Science). biosensors to suit a vast pool of applications. Or simply put : The bio elements and the sensor elements can be A device that uses specific biochemical reactions coupled together in one of the four possible ways mediated by isolated enzymes, immunosystems, demonstrated in Fig. 3, i.e. a) membrane tissues, organelles, or whole cells to detect chemical entrapment, b) physical adsorption, c) matrix / compounds usually by electrical, thermal or optical porous entrapment and d) covalent bonding. (4,9-12) signals. (3,5) a) In the membrane entrapment scheme, a History of Biosensors semi-permeable membrane separates the Father of the Biosensor analyte and the bio-element; the sensor is Dr. Leland C Clark (1918-2005) (6) (Refer to attached attached to the bio-element. table) - created many of the early biosensors in the b) The physical adsorption scheme is early 1960’s (3,7)using an ‘‘enzyme electrode’’ for dependent on a combination of van der Waals measuring glucose concentration with the enzyme forces, hydrophobic forces, hydrogen bonds, Glucose Oxidase (GOD). The success of single and ionic forces to attach the biomaterial to analyte sensor was followed by development of the surface of the sensor. integrated multi-analyte sensors capable of more c) The porous entrapment scheme is based on comprehensive analyses, such as a single instrument forming a porous encapsulation matrix for glucose, lactate, and potassium detection. around the biological material that helps in Technical developments in manufacturing enabled binding it to the sensor. the development of miniaturized integrated biosensors for determination of glucose, lactate, and 27 www.ijhbr.com ISSN: 2319-7072 International J. of Healthcare and Biomedical Research, Volume: 04, Issue: 03, April 2016, 26-39 d) In the case of the covalent bonding , the as an electrode (biological element).A thin sensor surface is treated as a reactive group layer of gold on a high refractive glass to which the biological materials can bind. surface can absorb laser light, producing The typically used bio-element enzyme is a large electron waves on the gold surface. Thus, protein molecule that acts as a catalyst in chemical binding of this target analyte to a receptor on reactions but remains unchanged at the end of the the gold surface produces a measurable reaction. Fig.4 shows the working principle of signal. enzymes. An enzyme, upon reaction with a Other Biosensors are based on laser light substrate, forms a complex molecule that, under launched into the fiber and the resulting appropriate conditions, forms the desirable product evanescent field at the tip of the fiber is used molecule releasing the enzyme at the end. The to excite target molecules bound to the enzymes are extremely specific in their action Fig.5. antibody molecules. A photometric detection This extremely specific action of the enzymes is the system is used to detect the optical signal basis of biosensors. (e.g., fluorescence) originating from the COMPONENTS of a Biosensor analyte molecules or from the analyte- There are 2 basic components of a Biosensor: (2,13) bioreceptor reaction.Such laser nanosensors 1. Biological Component can be used for invivo analysis of proteins a. Analyte (blood, serum, saliva, urine, and biomarkers in individual living cells.(3,14) stools, etc) 2. Electrochemical: Bionsensors based on b. Sensitive Bioelement created by biological enzymatic catalysis of a reaction that engineering(enzyme, antibody, nucliec produces or consumes electrons (the enzymes acid, cells, tissue, etc) used for the catalysis are called redox 2. Physical Component enzymes ). The sensor substrate contains a. Detector / Transducertransforms the three electrodes -Reference electrodes, signal resulting from the interaction of the working electrode, sink electrode. analyte with the biological element into The target analyte reacts with a working other signal that can be more easily electrode, and the ions produced create a measured and quantified potential which is referred to reference (Electrochemical, Piezoelectric, Optical, electrode to give a signal. Auxillary etc) electrode / counter electrode is a part of ion b. Amplifier / Display Unit is the signal source. processors or the electronic component The broad class of electrochemical sensors responsible for the display of the results encompasses
Recommended publications
  • Detection of Dna Hybridization on a Configurable Digital Microfluidic
    DETECTION OF DNA HYBRIDIZATION ON A CONFIGURABLE DIGITAL MICROFLUIDIC BIO- CHIP USING SPR IMAGING Lidija Malic1, Teodor Veres2 and Maryam Tabrizian1 1Biomedical Engineering Department, McGill University, CANADA and 2Industrial Materials Institute, National Research Council, CANADA ABSTRACT This paper presents a configurable digital microfluidic-based surface plasmon resonance (SPR) biochip platform comprising an electrowetting-on-dielectric (EWOD) microfluidic device coupled to SPR imaging (SPRi). We demonstrate its application for dynamic on-chip simultaneous immobilization of different DNA probes in combination with multichannel label-free real-time detection of subse- quent hybridization reactions. The integrated EWOD-SPRi system would enable the development of high-throughput, rapid and ultrasensitive biomolecular detection strategies beyond DNA microarray applications. KEYWORDS: Digital microfluidics, EWOD, SPR imaging, DNA hybridization INTRODUCTION EWOD microfluidics has attracted considerable attention in the past decade and the most recent efforts are directed towards its application in biomedical research [1- 3]. While these studies demonstrate the versatility of EWOD devices, the reported applications involve homogeneous phase reactions [4] and detection methods that require labeled biomolecules [2] or sample extraction from the chip [1]. This in- creases both the time and complexity of the assay. To introduce new applications relying on label-free, real-time surface sensitive detection techniques such as SPRi, it would be advantageous to use droplet-based EWOD actuation for surface specific biomolecule immobilization. However, the need of hydrophobic properties for EWOD actuation renders immobilization of biomolecules such as DNA on the sur- face of the chip impossible [3, 4]. In this paper, we demonstrate for the first time the use of an EWOD microfluidic chip to dynamically immobilize DNA probes in a two-dimensional array, followed by SPRi detection of bioaffinity interactions.
    [Show full text]
  • Introducing the IMED Biotech Unit What Science Can Do Introduction What Science Can Do
    Introducing the IMED Biotech Unit What science can do Introduction What science can do At AstraZeneca, our purpose is to push the Our IMED Biotech Unit applies its research and Our approach to R&D development capabilities and technologies to The IMED Biotech Unit plays a critical boundaries of science to deliver life-changing accelerate the progress of our pipeline. Through role in driving AstraZeneca’s success. Working together with MedImmune, medicines. We achieve this by placing science great collaboration across our three science units, our global biologics arm and Global we are confident that we can deliver the next wave Medicines Development (GMD), our at the centre of everything we do. late-stage development organisation, of innovative medicines to transform the lives of we are ensuring we deliver an innovative patients around the world. and sustainable pipeline. Pancreatic beta cells at different Eosinophil prior to Minute pieces of circulating tumour DNA stages of regeneration apoptosis (ctDNA) in the bloodstream IMED Biotech Unit MedImmune Global Medicines Development Focuses on driving scientific advances Focuses on biologics research and Focuses on late-stage development in small molecules, oligonucleotides and development in therapeutic proteins, of our innovative pipeline, transforming other emerging platforms to push the monoclonal antibodies and other next- exciting science into valued new boundaries of medical science. generation molecules to attack a range medicines and ensuring patients of diseases. around the world can access them. It’s science that compels us to push the boundaries of what is possible. We trust in the potential of ideas and pursue them, alone and with others, until we have transformed the treatment of disease.
    [Show full text]
  • Structure and Function Of
    8/5/2019 Micro Array /DNA chip` It is collection of microscopic DNA spots attached to a solid surface usually glass, plastic or silicon biochip Each DNA spot contains • picomoles (10−12 moles) of a specific DNA sequence • known as probes or reporters . • These can be a short section of a gene • Other DNA element that are used to hybridize a cDNA The original nucleic acid arrays were macro arrays approximately 9 cm × 12 cm Micro Array /DNA chip` Micro Array /DNA chip` cRNA sample (called target) • Probe-target hybridization • Detected • Quantified • detection of fluorophore- silver-, or chemiluminescence-labeled targets Example of an approximately 40,000 probe spotted 1 8/5/2019 Micro Array /DNA chip` Micro Array/ DNA chip` Use • To determine relative abundance of nucleic acid sequences in the target. • To measure the expression levels of large numbers of genes simultaneously • detect RNA (most commonly as cDNA after reverse transcription) • To genotype multiple regions of a genome. Microarray Analysis Techniques Microarray Analysis Techniques Microarray manufacturers LIMMA • Affymetrix • A set of tools for background correction • Agilent MA plots Comparing two different arrays • To plot the data. • Two different samples • R, MATLAB, and Excel • Hybridized to the same array • For adjustments for systematic errors introduced • Differences in procedures • Dye intensity effects. 2 8/5/2019 Protein synthesis • Messenger RNA (mRNA) molecules direct Median polish Algorithm the assembly of proteins on ribosomes. The median polish is an exploratory data analy sis procedure proposed by the statistician John Tukey. • Transfer RNA (tRNA) molecules are used Data Normalization to to deliver amino acids to the ribosome • Ribosomal RNA (rRNA) then links amino acids together to form proteins.
    [Show full text]
  • Lab-On-Chip Microdevices for Capturing, Imaging and Counting White Blood Cells
    LAB-ON-CHIP MICRODEVICES FOR CAPTURING, IMAGING AND COUNTING WHITE BLOOD CELLS by Anurag Tripathi A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) in The University of Michigan 2012 Doctoral Committee: Associate Professor Nikolaos Chronis, Chair Associate Professor Katsuo Kurabayashi Assistant Professor Jianping Fu Assistant Professor Sunitha Nagrath To The Almighty And To My Family & Friends ii ACKNOWLEDGEMENTS It is my honor and absolute pleasure to acknowledge people who made this thesis possible. First and foremost, I would like to thank my advisor Dr. Nikos Chronis whose guidance and training enabled me to develop skills in microfabrication and microfluidics technology. More than the technical knowledge I gained from Dr. Chronis in the past five years, he taught me the virtues of hard work, sincerity and integrity. In the toughest of situations, his patience and understanding provided me with courage and confidence and enabled me to see through those hard times. He inculcated a strong aptitude for research in me and his ‘never give up’ principle left an indelible impression on my problem solving approach. I would be eternally grateful to Dr. Chronis for mentoring me and transforming me into a better researcher and a better human being. A big gratitude is in order for the other three members of my thesis dissertation committee, Dr. Katsuo Kurabayashi, Dr. Jianping Fu and Dr. Sunitha Nagrath. It was a privilege to have them on my committee. I thank them wholeheartedly for their valuable inputs during the Ph.D. preliminary examinations. I acknowledge the encouragement they provided to my research and would like to thank them for their support and motivation all this while.
    [Show full text]
  • The Bio Revolution: Innovations Transforming and Our Societies, Economies, Lives
    The Bio Revolution: Innovations transforming economies, societies, and our lives economies, societies, our and transforming Innovations Revolution: Bio The The Bio Revolution Innovations transforming economies, societies, and our lives May 2020 McKinsey Global Institute Since its founding in 1990, the McKinsey Global Institute (MGI) has sought to develop a deeper understanding of the evolving global economy. As the business and economics research arm of McKinsey & Company, MGI aims to help leaders in the commercial, public, and social sectors understand trends and forces shaping the global economy. MGI research combines the disciplines of economics and management, employing the analytical tools of economics with the insights of business leaders. Our “micro-to-macro” methodology examines microeconomic industry trends to better understand the broad macroeconomic forces affecting business strategy and public policy. MGI’s in-depth reports have covered more than 20 countries and 30 industries. Current research focuses on six themes: productivity and growth, natural resources, labor markets, the evolution of global financial markets, the economic impact of technology and innovation, and urbanization. Recent reports have assessed the digital economy, the impact of AI and automation on employment, physical climate risk, income inequal ity, the productivity puzzle, the economic benefits of tackling gender inequality, a new era of global competition, Chinese innovation, and digital and financial globalization. MGI is led by three McKinsey & Company senior partners: co-chairs James Manyika and Sven Smit, and director Jonathan Woetzel. Michael Chui, Susan Lund, Anu Madgavkar, Jan Mischke, Sree Ramaswamy, Jaana Remes, Jeongmin Seong, and Tilman Tacke are MGI partners, and Mekala Krishnan is an MGI senior fellow.
    [Show full text]
  • Guide to Biotechnology 2008
    guide to biotechnology 2008 research & development health bioethics innovate industrial & environmental food & agriculture biodefense Biotechnology Industry Organization 1201 Maryland Avenue, SW imagine Suite 900 Washington, DC 20024 intellectual property 202.962.9200 (phone) 202.488.6301 (fax) bio.org inform bio.org The Guide to Biotechnology is compiled by the Biotechnology Industry Organization (BIO) Editors Roxanna Guilford-Blake Debbie Strickland Contributors BIO Staff table of Contents Biotechnology: A Collection of Technologies 1 Regenerative Medicine ................................................. 36 What Is Biotechnology? .................................................. 1 Vaccines ....................................................................... 37 Cells and Biological Molecules ........................................ 1 Plant-Made Pharmaceuticals ........................................ 37 Therapeutic Development Overview .............................. 38 Biotechnology Industry Facts 2 Market Capitalization, 1994–2006 .................................. 3 Agricultural Production Applications 41 U.S. Biotech Industry Statistics: 1995–2006 ................... 3 Crop Biotechnology ...................................................... 41 U.S. Public Companies by Region, 2006 ........................ 4 Forest Biotechnology .................................................... 44 Total Financing, 1998–2007 (in billions of U.S. dollars) .... 4 Animal Biotechnology ................................................... 45 Biotech
    [Show full text]
  • Lab on a Chip Systems for Biochemical Analysis, Biology and Synthesis
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Lab on a Chip Systems for Biochemical Analysis, Biology and Synthesis Towards Simple, Scalable Microfabrication Technologies Based on COC and LTCC Miguel Berenguel Alonso Tesi Doctoral Programa de Doctorat en Qu´ımica Directors: Mar Puyol and Juli´anAlonso Chamarro Departament de Qu´ımica Facultat de Ci`encies 2017 Mem`oriapresentada per aspirar al Grau de Doctor per Miguel Berenguel Alonso Vist i plau Mar Puyol Juli´anAlonso Chamarro Professora Agregada Catedr`atic Departament de Qu´ımica Departament de Qu´ımica Bellaterra, 6 de Juny de 2017 iii The present dissertation was carried out with the following financial support: CTQ2009-12128 Nuevas plataformas microflu´ıdicaspara la miniaturizaci´on de sistemas (bio)anal´ıticos integrados e intensificaci´onde procesos de producci´onde nanomateriales. Ministerio de Ciencia e Innovaci´on,co- funded by FEDER. 2009SGR0323 Convocat`oriade suport als Grups de Recerca de Catalunya. Departament d'Universitats, Recerca i Societat de la Informaci´o,Gen- eralitat de Catalunya. FI-DGR 2012 Pre-doctoral scholarship FI-DGR granted by the Ag`enciade Gesti´od'Ajuts Universitaris i de Recerca, Generalitat de Catalunya, and co-funded by the ESF.
    [Show full text]
  • Comparison of Specificity and Sensitivity of Biochip and Real-Time Polymerase Chain Reaction for Pork in Food
    Journal of Food and Nutrition Research (ISSN 1336-8672) Vol. 58, 2019, No. 3, pp. 225–235 Comparison of specificity and sensitivity of biochip and real-time polymerase chain reaction for pork in food ZuZana DrDolová – Ľubomír belej – joZef Golian – lucia benešová – joZef Čurlej – Peter Zajác Summary Adulteration and food fraud are serious global problems. Analytical methods regarding animal species should repre- sent a comprehensive tool for identification and possible quantification of the components. The aim of the study was to confirm usability and sensitivity of the MEAT 5.0 LCD-Array Kit (version 5.0, Chipron, Berlin, Germany) for forensic analysis of food, which simultaneously detects 24 kinds of animals. We verified its reliability for identification of pork mixed with meat of other 15 animal species. Mixtures of animal species meat were tested in the raw state and after heat treatment. For comparison, real-time polymerase chain reaction innuDETECT Pork Assay (Analytic Jena, Berlin, Germany) with quantitative potential was used. A standard pork DNA curve was established and the detection limit was determined. MEAT 5.0 LCD-Array Kit was found to have a high degree of robustness, probe specificity and repeat- ability, with a detection limit down to 0.5 % (w/w) but did not allow quantification. We also used both test methods for analysis of commercial products. By these analyses, we identified the presence of pork DNA in 14 products for which this fact was not reported on the product label. Keywords meat; pork; biochip; detection; real-time polymerase chain reaction Following European Union labelling regula- the horse meat scandal uncovered in Europe in tions [1], meat products should be accurately la- 2013, when undeclared horse meat was substi- belled regarding their species content.
    [Show full text]
  • Development of an Acousto-Electric Biochemical Sensor (AEBS) for Monitoring Biological and Chemical Processes
    Development of an Acousto-Electric Biochemical Sensor (AEBS) For Monitoring Biological and Chemical Processes A Thesis Submitted to the Faculty of Drexel University by Michel M. A. Francois in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2008 © Copyright 2008 Michel M. A. François. All Rights Reserved. iii Dedications To my daughters, Michele-Olivia François and Coralie-Michele François. iv Table of Contents LIST OF TABLES ...............................................................................................................x LIST OF ILLUSTRATIONS ............................................................................................ xii ABSTRACT ................................................................................................................... xxvi 1. CHAPTER 1: Introduction – Importance of sensors in our life ...............................1 1.1 Objective ....................................................................................................................2 1.2 Example of a Basic Complex Sensor System ............................................................2 1.3 Present Methods for Identifying and Sensing ............................................................5 1.4 Need for Cost Effective, Fast and Accurate Small Portable System .........................6 1.5 Areas most in Need of Miniature Bio-Sensors ...........................................................7 1.5.1 Medical ..............................................................................................................7
    [Show full text]
  • Design of Microfluidic Biochips: Connecting Algorithms
    Report from Dagstuhl Seminar 15352 Design of Microfluidic Biochips: Connecting Algorithms and Foundations of Chip Design to Biochemistry and the Life Sciences Edited by Krishnendu Chakrabarty1, Tsung-Yi Ho2, and Robert Wille3 1 Duke University – Durham, US, [email protected] 2 National Tsing-Hua University – Hsinchu, TW, [email protected] 3 University of Bremen/DFKI, DE, and Johannes Kepler University Linz, AT, [email protected] Abstract Advances in microfluidic technologies have led to the emergence of biochip devices for auto- mating laboratory procedures in biochemistry and molecular biology. Corresponding systems are revolutionizing a diverse range of applications, e.g. air quality studies, point-of-care clinical diagnostics, drug discovery, and DNA sequencing – with an increasing market. However, this continued growth depends on advances in chip integration and design-automation tools. Thus, there is a need to deliver the same level of Computer-Aided Design (CAD) support to the biochip designer that the semiconductor industry now takes for granted. The goal of the seminar was to bring together experts in order to present and to develop new ideas and concepts for design automation algorithms and tools for microfluidic biochips. This report documents the program and the outcomes of this endeavor. Seminar August 23–26, 2015 – http://www.dagstuhl.de/15352 1998 ACM Subject Classification B.7 Integrated Circuits,J.3 Life and Medical Sciences Keywords and phrases cyber-physical integration, microfluidic biochip, computer aided design, hardware and software co-design, test, verification Digital Object Identifier 10.4230/DagRep.5.8.34 1 Executive Summary Krishnendu Chakrabarty Tsung-Yi Ho Robert Wille License Creative Commons BY 3.0 Unported license © Krishnendu Chakrabarty, Tsung-Yi Ho, and Robert Wille Advances in microfluidic technologies have led to the emergence of biochip devices for automating laboratory procedures in biochemistry and molecular biology.
    [Show full text]
  • Stem Cell Research
    ne Marro Bo w f R o e l s a e n a r r c u h o Bisen, J Bone Marrow Res 2014, 2:3 J Journal of Bone Marrow Research DOI: 10.4172/2329-8820.1000e112 ISSN: 2329-8820 Editorial Open Access Stem Cell Research - Future Challenges - The Biochips Prakash S Bisen* School of Studies in Biotechnology, Jiwaji University, Gwalior, India *Corresponding author: Prakash S Bisen, School of Studies in Biotechnology, Jiwaji University, India, Tel: +91 751 2462500; Fax: +91 751 4043850; E-mail: [email protected] Rec date: Nov 24 2014; Acc date: Nov 24 2014; Pub date: Nov 26 2014 Copyright: © 2014 Bisen PS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Stem Cell Research [5]. Global gene expression analysis has helped to identify important genes and signaling pathways in human malignant tumors. Several Much progress has been made since the first human embryonic biosensors have been used in combination with biochips. stem cells were grown in the lab in 1998. The first clinical trials testing the safety of using specialized cells grown from hESCs are just The huge amount of information coming from the stem cell beginning. Technological advances in miniaturization have found a research on genome sequence and other research genome programs niche in biology and signal the beginning of a new revolution. An cannot be utilized to the full without the availability of methods such understanding of how stem cell differentiation and specialization are as biochips which enable these genes or specific DNA sequences to be controlled is another fundamental development process that detected in biological samples.
    [Show full text]
  • Lab on a Chip Technology Definition
    Lab on a chip: state of the art Benjamin Bomastyk Lab on a chip technology Definition - Devices that integrate multiple laboratory functions on a single chip - Size of only millimeters to a few square centimeters - Handling of extremely small fluid volumes down to less than pico liters Source: http://en.wikipedia.org/wiki/Lab-on-a-chip http://www.micronit.com/ Lab on a chip technology Beneficiaries •Biotechnology •Pharmacy •Chemistry •Research Lab on a chip technology Applications „Microfluidics“ •Microfluidic dispenser •Concentration gradient generator •Electrophoretic separator •Micro bio-reactor •PCR chip for DNA amplification •Quantitative DNA sensor chip (capable of detecting single-pair mismatch) •Flow cytometer Lab-on-a-Chip •Immunoassay Lab-on-a-Chip for bacteria (e.g., E.coli, H. pylori) detection •Real-Time PCR detection chips (for detecting E. coli, cancers, etc) •Blood sample preparation Lab-on-a-Chip •Cellular analysis Lab-on-a-Chip „Microarrays“ (Biochips) DNA microarrays Protein microarrays Source: http://en.wikipedia.org/wiki/Lab-on-a-chip Lab on a chip technology Advantages -Low fluid volumes consumption (less waste, lower costs of expensive reagents) -Less sample fluid needed for the analysis -Short mixing times (short diffusion distances) -Fast heating -Better process control (faster response of the system by chemical reactions) -Suitable for high-throughput analysis -Lower fabrication costs for chips fabricated in mass production -Safer platform for chemical, radioactive or biological studies (low stored fluid volumes
    [Show full text]