The State of Linux Power Management 2006

Total Page:16

File Type:pdf, Size:1020Kb

The State of Linux Power Management 2006 The State of Linux Power Management 2006 Patrick Mochel Intel Corporation [email protected] Abstract The total power consumption of a computer that we work with in this paper is measured simply by the power consumption of each of Power Management, as it relates to Operat- its components. (The amount of additional ing Systems, is the process of regulating the power needed to compensate for inefficiencies amount of power consumed by a computer. It is of power supplies and dissipation is not cov- a feature that is available in every type of com- ered.) In a computer in which the power con- puter that Linux runs, though the expectations sumption of each device remains constant over and the implementations of power management time, then total power consumption can be vary greatly depending the makeup of the plat- measured like this: form and the type of software running on it. This paper provides an analysis of power man- agement and how it relates to the Linux kernel. Cp = D1p + D2p + D3p + ... It provides a complete (though not comprehen- sive) survey of power management features, the policy to control those features, and user con- However, hardware features cause the amount straints of the policy. of power consumed by a device to fluctuate over time. So, the amount of power consumed by a device over a set amount of time (e.g. one hour) can be measured as the sum of power 1 Power Management Introduction consumed by the device at each interval (e.g. one millisecond) during that time. So, the equa- tion becomes a bit more involved for each de- Power management is the effort to minimize vice: the amount of power used over time, as mea- sured in watts (or fraction thereof). Technically, a watt is defined as one joule of D1p = (D1p0 + D1p1 + D1p2 ... D1pn) / n energy per second, but it is often used in refer- ence to the amount of power consumed in one hour of time. For example, the statement “This The rates of power consumption for a device computer has a 300W power supply” refers to are expressed in watts/hour, so the amount of the maximum amount of power consumed over power consumed per interval must be divided the course of an hour. [watt] by the number of intervals sampled. 152 • The State of Linux Power Management 2006 2 Device Power Management 2.2 Frequency modulation Each device in a computer has the potential to The frequency is a function of the voltage com- perform a certain of work over time: ing into the device and a set of multipliers (among other things). In some cases, the mul- Work = w0 + w1 + w2 + ... + wn tipliers can be adjusted to simply affect the speed of the device, though that doesn’t offer If the power consumption of a device is con- great savings in power because the device is stant, then it consumes the same amount of still drawing the same amount of current from power at each interval, regardless of whether the power source. But, by adjusting the volt- or not it is actually performing its potential age, the actual power draw changes, allowing maximum amount of work possible. Hardware for better power savings. power management features provide the abil- Technically speaking, the device will have a ity to adjust the amount of power that a de- range of frequencies that it can operate at vice consumes based on the amount of work for each voltage supplied. By adjusting the that the device needs to perform. The concept voltage, what is really being adjusted is the is based the basic observation that devices are min/max range of frequencies, given the multi- often underutilized—the amount of work de- pliers available. Within each voltage level, the manded from them may be less than the sup- multipliers can then be adjusted to achieve the ply that their potential offers. That general ob- desired frequency [Pentium M]. servation provides two more specific theories about work load and power consumption. The caveat of changing voltage levels as op- posed simply changing frequency levels is that • A device may operate at a slower rate or the voltage may also effect the multipliers that experience longer periods of idleness in are used to determine the bus speed between order to perform the work demanded of it. that device and another device (e.g. between the Please see Section 2.1. CPU and RAM). There is a higher latency in- volved in changing voltages because those val- • Part or all of a device may be disabled if ues must be changed and synchronized in lock- there is no work for it to do. Please see step. section 2.5. By being able to operate at different frequen- 2.1 Operable States cies at the same voltage level, and often the same frequency at different voltage levels, the power consumed can be minimized, but still Approaches to reduce power consumption of allow for low-latency transitions between fre- a device, yet all the device to continuously quencies. perform work are commonly implemented by CPUs, which have a near-constant demand for their resources. They accomplish this by doing 2.3 Linux support for frequency modula- one or both of the following: tion • Frequency modulation. Many modern CPUs support frequency modu- lation, and the Linux cpufreq subsystem has de- • Low-power idle states. veloped intelligent support for predicting and 2006 Linux Symposium, Volume Two • 153 Architecture CPUs device, but ensures that it will automatically x86/x86-64 Generic ACPI transition out of the low-power state when it re- AMD PowerNow ceives a request for work. This feature is most Intel SpeedStep Transmeta Crusoe famously implemented by x86 CPUs and speci- NatSemi Geode / Cyrix MediaGX fied by ACPI as the Processor C states: C0, C1, VIA Longhaul C2 . Cn [ACPI]. ARM Integrator SA1100 SA1110 Low-power CPU idle states are designed for PowerPC Various G3s & G3s use during the idle thread. How they imple- Sparc64 UltraSPARC IIe & III SuperH SH-3, SH-4 mented, and how they are used, is dependent on the platform. C1 on x86 CPUs may entered Table 1: Architectures Supported by cpufreq by simply executing the ’hlt’ instruction. Us- ing any low-power states beyond that requires very specific manipulation of the hardware. adjusting CPU load. cpufreq has support for ACPI provides an abstract interface for doing many CPUs across several architectures, as this on supported platforms, which is imple- seen in Table 1. Support for a specific CPU mented in the ACPI idle thread [ACPI Docs], requires a driver that understands the model- though other platforms must do it manually specific interface for determining and entering [DPM WP]. the supported states [cpufreq]. Other devices that experience continuous de- Each C state has a tradeoff between the power mand for resources could benefit from being it consumes and the latency for returning to C0. able to modulate their frequency depending on Depending on the demand for the CPU (as mea- the amount of demand. In particular, mem- sured by the amount of time spent idle), a lower ory and I/O buses are both large consumers or higher C state may entered, since a lightly- of power that could frequently experience un- loaded system can safely endure slightly higher der utilization of their resources. However, no latencies. known hardware features (let along Linux sup- port) exist for these items. This is not surpris- Low-power idle states are starting to be im- ing, as their software control would most likely plemented by other devices that are under fre- involve platform-specific commands and coor- quent demand, but also experiences frequent dination that is currently performed only by the periods of idleness. In particular, some PCI firmware (and beyond the knowledge and inter- Express chipsets have implemented low-power est of the kernel). idle states for its device links (connections be- tween the PCIe controller and downstream de- 2.4 Low-power idle states vices). These states are called L States, and may be used in two cases: when the down- stream device is active but idle (called Active A period of idleness is a small, sometimes State Power Management); or when the down- fixed, amount of time that a device is not be- stream device is in a low-power state (called ing used. Some devices may be able to trans- Link Power States). This feature is not yet parently enter a special low-power state during supported by Linux. More information can be this period. This state effectively disables the found in the References [PCIe PM]. 154 • The State of Linux Power Management 2006 2.5 Inoperable States A range was specified to allow hardware de- signers the ability to choose alternative imple- mentations in which more components of the Devices that are not needed for long periods of device lost power as a deeper power state was time may be put into an inoperable power state entered. This would allow a lower transition la- in which power to some or all of the device is tency from the low-power state to the D0 state removed. These states are typically used for pe- because an entire device reset would not be nec- ripheral devices that experience long periods of essary. However, few hardware designers have idleness or are known to be unneeded for a sig- found that tradeoff worthwhile as very devices nificant period of time (in a magnitude of sec- support D1 and D2. onds and higher). There are two basic classes of inoperable power states: where part of the de- An exception are graphics controllers, which vice is inoperable, and where the entire device are the biggest users of the intermediate power is inoperable.
Recommended publications
  • Shorten Device Boot Time for Automotive IVI and Navigation Systems
    Shorten Device Boot Time for Automotive IVI and Navigation Systems Jim Huang ( 黃敬群 ) <[email protected]> Dr. Shi-wu Lo <[email protected]> May 28, 2013 / Automotive Linux Summit (Spring) Rights to copy © Copyright 2013 0xlab http://0xlab.org/ [email protected] Attribution – ShareAlike 3.0 Corrections, suggestions, contributions and translations You are free are welcome! to copy, distribute, display, and perform the work to make derivative works Latest update: May 28, 2013 to make commercial use of the work Under the following conditions Attribution. You must give the original author credit. Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one. For any reuse or distribution, you must make clear to others the license terms of this work. Any of these conditions can be waived if you get permission from the copyright holder. Your fair use and other rights are in no way affected by the above. License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode Goal of This Presentation • Propose a practical approach of the mixture of ARM hibernation (suspend to disk) and Linux user-space checkpointing – to shorten device boot time • An intrusive technique for Android/Linux – minimal init script and root file system changes are required • Boot time is one of the key factors for Automotive IVI – mentioned by “Linux Powered Clusters” and “Silver Bullet of Virtualization (Pitfalls, Challenges and Concerns) Continued” at ALS 2013 – highlighted by “Boot Time Optimizations” at ALS 2012 About this presentation • joint development efforts of the following entities – 0xlab team - http://0xlab.org/ – OSLab, National Chung Cheng University of Taiwan, led by Dr.
    [Show full text]
  • Approaches in Green Computing
    Special Issue - 2015 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 NSRCL-2015 Conference Proceedings Approaches in Green Computing Reena Thomas Fedrina J Manjaly 3 rd BCA, Department of Computer Science 3 rd BCA , Department of Computer Science Carmel College Carmel College Mala, Thrissur Mala, Thrissur Abstract— In a 2008 article San Murugesan defined green computing as "the study and practice of designing, manufacturing, using, and disposing of computers, servers, and associated subsystems — such as monitors, printers, storage devices, and networking and communications systems — efficiently and effectively with minimal or no impact on the environment."Murugesan lays out four paths along which he believes the environmental effects of computing should be addressed:Green use, green disposal, green design, and green manufacturing. Green computing can also develop solutions that offer benefits by "aligning all IT processes and practices with the core principles of sustainability, which are to reduce, reuse, and recycle; and finding innovative ways to use IT in business processes to deliver sustainability benefits across the Figure 1: Green Computing Migration Framework enterprise and beyond". I. INTRODUCTION II. APPROACHES In 1992, the U.S. Environmental Protection Agency A. Product longevity launched Energy Star, a voluntary labeling program that is Gartner maintains that the PC manufacturing process designed to promote and recognize energy-efficiency in accounts for 70% of the natural resources used in the life monitors, climate control equipment, and other cycle of a PC. More recently, Fujitsu released a Life Cycle technologies. This resulted in the widespread adoption of Assessment (LCA) of a desktop that show that sleep mode among consumer electronics.
    [Show full text]
  • Low-Power Computing
    LOW-POWER COMPUTING Safa Alsalman a, Raihan ur Rasool b, Rizwan Mian c a King Faisal University, Alhsa, Saudi Arabia b Victoria University, Melbourne, Australia c Data++, Toronto, Canada Corresponding email: [email protected] Abstract With the abundance of mobile electronics, demand for Low-Power Computing is pressing more than ever. Achieving a reduction in power consumption requires gigantic efforts from electrical and electronic engineers, computer scientists and software developers. During the past decade, various techniques and methodologies for designing low-power solutions have been proposed. These methods are aimed at small mobile devices as well as large datacenters. There are techniques that consider design paradigms and techniques including run-time issues. This paper summarizes the main approaches adopted by the IT community to promote Low-power computing. Keywords: Computing, Energy-efficient, Low power, Power-efficiency. Introduction In the past two decades, technology has evolved rapidly affecting every aspect of our daily lives. The fact that we study, work, communicate and entertain ourselves using all different types of devices and gadgets is an evidence that technology is a revolutionary event in the human history. The technology is here to stay but with big responsibilities comes bigger challenges. As digital devices shrink in size and become more portable, power consumption and energy efficiency become a critical issue. On one end, circuits designed for portable devices must target increasing battery life. On the other end, the more complex high-end circuits available at data centers have to consider power costs, cooling requirements, and reliability issues. Low-power computing is the field dedicated to the design and manufacturing of low-power consumption circuits, programming power-aware software and applying techniques for power-efficiency [1][2].
    [Show full text]
  • Ernesto Sanchez, Giovanni Squillero, and Alberto Tonda Industrial
    Ernesto Sanchez, Giovanni Squillero, and Alberto Tonda Industrial Applications of Evolutionary Algorithms Intelligent Systems Reference Library, Volume 34 Editors-in-Chief Prof. Janusz Kacprzyk Prof. Lakhmi C. Jain Systems Research Institute University of South Australia Polish Academy of Sciences Adelaide ul. Newelska 6 Mawson Lakes Campus 01-447 Warsaw South Australia 5095 Poland Australia E-mail: [email protected] E-mail: [email protected] Further volumes of this series can be found on our homepage: springer.com Vol. 10. Andreas Tolk and Lakhmi C. Jain Vol. 23. Dawn E. Holmes and Lakhmi C. Jain (Eds.) Intelligence-Based Systems Engineering, 2011 Data Mining: Foundations and Intelligent Paradigms, 2011 ISBN 978-3-642-17930-3 ISBN 978-3-642-23165-0 Vol. 11. Samuli Niiranen and Andre Ribeiro (Eds.) Vol. 24. Dawn E. Holmes and Lakhmi C. Jain (Eds.) Information Processing and Biological Systems, 2011 Data Mining: Foundations and Intelligent Paradigms, 2011 ISBN 978-3-642-19620-1 ISBN 978-3-642-23240-4 Vol. 12. Florin Gorunescu Vol. 25. Dawn E. Holmes and Lakhmi C. Jain (Eds.) Data Mining, 2011 Data Mining: Foundations and Intelligent Paradigms, 2011 ISBN 978-3-642-19720-8 ISBN 978-3-642-23150-6 Vol. 13. Witold Pedrycz and Shyi-Ming Chen (Eds.) Granular Computing and Intelligent Systems, 2011 Vol. 26. Tauseef Gulrez and Aboul Ella Hassanien (Eds.) ISBN 978-3-642-19819-9 Advances in Robotics and Virtual Reality, 2011 ISBN 978-3-642-23362-3 Vol. 14. George A. Anastassiou and Oktay Duman Towards Intelligent Modeling: Statistical Approximation Vol. 27. Cristina Urdiales Theory, 2011 Collaborative Assistive Robot for Mobility Enhancement ISBN 978-3-642-19825-0 (CARMEN), 2011 ISBN 978-3-642-24901-3 Vol.
    [Show full text]
  • Energy Efficient Scheduling of Parallel Tasks on Multiprocessor Computers
    J Supercomput (2012) 60:223–247 DOI 10.1007/s11227-010-0416-0 Energy efficient scheduling of parallel tasks on multiprocessor computers Keqin Li Published online: 12 March 2010 © Springer Science+Business Media, LLC 2010 Abstract In this paper, scheduling parallel tasks on multiprocessor computers with dynamically variable voltage and speed are addressed as combinatorial optimiza- tion problems. Two problems are defined, namely, minimizing schedule length with energy consumption constraint and minimizing energy consumption with schedule length constraint. The first problem has applications in general multiprocessor and multicore processor computing systems where energy consumption is an important concern and in mobile computers where energy conservation is a main concern. The second problem has applications in real-time multiprocessing systems and environ- ments where timing constraint is a major requirement. Our scheduling problems are defined such that the energy-delay product is optimized by fixing one factor and minimizing the other. It is noticed that power-aware scheduling of parallel tasks has rarely been discussed before. Our investigation in this paper makes some initial at- tempt to energy-efficient scheduling of parallel tasks on multiprocessor computers with dynamic voltage and speed. Our scheduling problems contain three nontriv- ial subproblems, namely, system partitioning, task scheduling, and power supply- ing. Each subproblem should be solved efficiently, so that heuristic algorithms with overall good performance can be developed. The above decomposition of our op- timization problems into three subproblems makes design and analysis of heuristic algorithms tractable. A unique feature of our work is to compare the performance of our algorithms with optimal solutions analytically and validate our results experimen- tally, not to compare the performance of heuristic algorithms among themselves only experimentally.
    [Show full text]
  • Seminar HPC Trends Winter Term 2017/2018 New Operating System Concepts for High Performance Computing
    Seminar HPC Trends Winter Term 2017/2018 New Operating System Concepts for High Performance Computing Fabian Dreer Ludwig-Maximilians Universit¨atM¨unchen [email protected] January 2018 Abstract 1 The Impact of System Noise When using a traditional operating system kernel When running large-scale applications on clusters, in high performance computing applications, the the noise generated by the operating system can cache and interrupt system are under heavy load by greatly impact the overall performance. In order to e.g. system services for housekeeping tasks which is minimize overhead, new concepts for HPC OSs are also referred to as noise. The performance of the needed as a response to increasing complexity while application is notably reduced by this noise. still considering existing API compatibility. Even small delays from cache misses or interrupts can affect the overall performance of a large scale In this paper we study the design concepts of het- application. So called jitter even influences collec- erogeneous kernels using the example of mOS and tive communication regarding the synchronization, the approach of library operating systems by ex- which can either absorb or propagate the noise. ploring the architecture of Exokernel. We sum- Even though asynchronous communication has a marize architectural decisions, present a similar much higher probability to absorb the noise, it is project in each case, Interface for Heterogeneous not completely unaffected. Collective operations Kernels and Unikernels respectively, and show suffer the most from propagation of jitter especially benchmark results where possible. when implemented linearly. But it is hard to anal- yse noise and its propagation for collective oper- ations even for simple algorithms.
    [Show full text]
  • The Linux Device File-System
    The Linux Device File-System Richard Gooch EMC Corporation [email protected] Abstract 1 Introduction All Unix systems provide access to hardware via de- vice drivers. These drivers need to provide entry points for user-space applications and system tools to access the hardware. Following the \everything is a file” philosophy of Unix, these entry points are ex- posed in the file name-space, and are called \device The Device File-System (devfs) provides a power- special files” or \device nodes". ful new device management mechanism for Linux. Unlike other existing and proposed device manage- This paper discusses how these device nodes are cre- ment schemes, it is powerful, flexible, scalable and ated and managed in conventional Unix systems and efficient. the limitations this scheme imposes. An alternative mechanism is then presented. It is an alternative to conventional disc-based char- acter and block special devices. Kernel device drivers can register devices by name rather than de- vice numbers, and these device entries will appear in the file-system automatically. 1.1 Device numbers Devfs provides an immediate benefit to system ad- ministrators, as it implements a device naming scheme which is more convenient for large systems Conventional Unix systems have the concept of a (providing a topology-based name-space) and small \device number". Each instance of a driver and systems (via a device-class based name-space) alike. hardware component is assigned a unique device number. Within the kernel, this device number is Device driver authors can benefit from devfs by used to refer to the hardware and driver instance.
    [Show full text]
  • Comptia Fc0-Gr1 Exam Questions & Answers
    COMPTIA FC0-GR1 EXAM QUESTIONS & ANSWERS Number : FC0-GR1 Passing Score : 800 Time Limit : 120 min File Version : 31.4 http://www.gratisexam.com/ COMPTIA FC0-GR1 EXAM QUESTIONS & ANSWERS Exam Name: CompTIA Strata Green IT Exam Visualexams QUESTION 1 A small business currently has a server room with a large cooling system that is appropriate for its size. The location of the server room is the top level of a building. The server room is filled with incandescent lighting that needs to continuously stay on for security purposes. Which of the following would be the MOST cost-effective way for the company to reduce the server rooms energy footprint? A. Replace all incandescent lighting with energy saving neon lighting. B. Set an auto-shutoff policy for all the lights in the room to reduce energy consumption after hours. C. Replace all incandescent lighting with energy saving fluorescent lighting. D. Consolidate server systems into a lower number of racks, centralizing airflow and cooling in the room. Correct Answer: C Section: (none) Explanation Explanation/Reference: QUESTION 2 Which of the following methods effectively removes data from a hard drive prior to disposal? (Select TWO). A. Use the remove hardware OS feature B. Formatting the hard drive C. Physical destruction D. Degauss the drive E. Overwriting data with 1s and 0s by utilizing software Correct Answer: CE Section: (none) Explanation Explanation/Reference: QUESTION 3 Which of the following terms is used when printing data on both the front and the back of paper? A. Scaling B. Copying C. Duplex D. Simplex Correct Answer: C Section: (none) Explanation Explanation/Reference: QUESTION 4 A user reports that their cell phone battery is dead and cannot hold a charge.
    [Show full text]
  • Cielo Computational Environment Usage Model
    Cielo Computational Environment Usage Model With Mappings to ACE Requirements for the General Availability User Environment Capabilities Release Version 1.1 Version 1.0: Bob Tomlinson, John Cerutti, Robert A. Ballance (Eds.) Version 1.1: Manuel Vigil, Jeffrey Johnson, Karen Haskell, Robert A. Ballance (Eds.) Prepared by the Alliance for Computing at Extreme Scale (ACES), a partnership of Los Alamos National Laboratory and Sandia National Laboratories. Approved for public release, unlimited dissemination LA-UR-12-24015 July 2012 Los Alamos National Laboratory Sandia National Laboratories Disclaimer Unless otherwise indicated, this information has been authored by an employee or employees of the Los Alamos National Security, LLC. (LANS), operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and distribute this information. The public may copy and use this information without charge, provided that this Notice and any statement of authorship are reproduced on all copies. Neither the Government nor LANS makes any warranty, express or implied, or assumes any liability or responsibility for the use of this information. Bob Tomlinson – Los Alamos National Laboratory John H. Cerutti – Los Alamos National Laboratory Robert A. Ballance – Sandia National Laboratories Karen H. Haskell – Sandia National Laboratories (Editors) Cray, LibSci, and PathScale are federally registered trademarks. Cray Apprentice2, Cray Apprentice2 Desktop, Cray C++ Compiling System, Cray Fortran Compiler, Cray Linux Environment, Cray SHMEM, Cray XE, Cray XE6, Cray XT, Cray XTm, Cray XT3, Cray XT4, Cray XT5, Cray XT5h, Cray XT5m, Cray XT6, Cray XT6m, CrayDoc, CrayPort, CRInform, Gemini, Libsci and UNICOS/lc are trademarks of Cray Inc.
    [Show full text]
  • Proceedings of the Linux Symposium Volume
    Proceedings of the Linux Symposium Volume Two July 19th–22nd, 2006 Ottawa, Ontario Canada Contents Evolution in Kernel Debugging using Hardware Virtualization With Xen 1 Nitin A. Kamble Improving Linux Startup Time Using Software Resume (and other techniques) 17 Hiroki Kaminaga Automated Regression Hunting 27 A. Bowen, P. Fox, J. Kenefick, A. Romney, J. Ruesch, J. Wilde, & J. Wilson Hacking the Linux Automounter—Current Limitations and Future Directions 37 Ian Maxwell Kent & Jeff Moyer Why NFS Sucks 51 Olaf Kirch Efficient Use of the Page Cache with 64 KB Pages 65 Dave Kleikamp and Badari Pulavarty Startup Time in the 21st Century: Filesystem Hacks and Assorted Tweaks 71 Benjamin C.R. LaHaise Using Hugetlbfs for Mapping Application Text Regions 75 H.J. Lu, K. Doshi, R. Seth, & J. Tran Towards a Better SCM: Revlog and Mercurial 83 Matt Mackall Roadmap to a GL-based composited desktop for Linux 91 K.E. Martin and K. Packard Probing the Guts of Kprobes 101 A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Keshavamurthy, & M. Hiramatsu Shared Page Tables Redux 117 Dave McCracken Extending RCU for Realtime and Embedded Workloads 123 Paul E. McKenney OSTRA: Experiments With on-the-fly Source Patching 139 Arnaldo Carvalho de Melo Design and Implementation to Support Multiple Key Exchange Protocols for IPsec 143 K. Miyazawa, S. Sakane, K. Kamada, M. Kanda, & A. Fukumoto The State of Linux Power Management 2006 151 Patrick Mochel I/O Workload Fingerprinting in the Genetic-Library 165 Jake Moilanen X86-64 XenLinux: Architecture, Implementation, and Optimizations 173 Jun Nakajima, Asit Mallick GCC—An Architectural Overview, Current Status, and Future Directions 185 Diego Novillo Shared-Subtree Concept, Implementation, and Applications in Linux 201 Al Viro & Ram Pai The Ondemand Governor 215 Venkatesh Pallipadi & Alexey Starikovskiy Linux Bootup Time Reduction for Digital Still Camera 231 Chan-Ju Park A Lockless Pagecache in Linux—Introduction, Progress, Performance 241 Nick Piggin The Ongoing Evolution of Xen 255 I.
    [Show full text]
  • Stepping Towards a Noiseless Linux Environment
    ROSS 2012 | June 29 2012 | Venice, Italy STEPPING TOWARDS A NOISELESS LINUX ENVIRONMENT Hakan Akkan*, Michael Lang¶, Lorie Liebrock* Presented by: Abhishek Kulkarni¶ * New Mexico Tech ¶ Ultrascale Systems Research Center New Mexico Consortium Los Alamos National Laboratory 29 June 2012 Stepping Towards A Noiseless Linux Environment 2 Motivation • HPC applications are unnecessarily interrupted by the OS far too often • OS noise (or jitter) includes interruptions that increase an application’s time to solution • Asymmetric CPU roles (OS cores vs Application cores) • Spatio-temporal partitioning of resources (Tessellation) • LWK and HPC Oses improve performance at scale 29 June 2012 Stepping Towards A Noiseless Linux Environment 3 OS noise exacerbates at scale • OS noise can cause a significant slowdown of the app • Delays the superstep since synchronization must wait for the slowest process: max(wi) Image: The Case of the Missing Supercomputer Performance, Petrini et. Al, 2003 29 June 2012 Stepping Towards A Noiseless Linux Environment 4 Noise co-scheduling • Co-scheduling the noise across the machine so all processes pay the price at the same time Image: The Case of the Missing Supercomputer Performance, Petrini et. Al, 2003 29 June 2012 Stepping Towards A Noiseless Linux Environment 5 Noise Resonance • Low frequency, Long duration noise • System services, daemons • Can be moved to separate cores • High frequency, Short duration noise • OS clock ticks • Not as easy to synchronize - usually much more frequent and shorter than the computation granularity of the application • Previous research • Tsafrir, Brightwell, Ferreira, Beckman, Hoefler • Indirect overhead is generally not acknowledged • Cache and TLB pollution • Other scalability issues: locking during ticks 29 June 2012 Stepping Towards A Noiseless Linux Environment 6 Some applications are memory and network bandwidth limited! *Sancho, et.
    [Show full text]
  • Considerations for the SDP Operating System
    DocuSign Envelope ID: E376CF60-053D-4FF0-8629-99235147B54B Considerations for the SDP Operating System Document Number .......SDP Memo 063 ………………………………………………………………… Document Type .. MEMO ……………………………………………………………………… ………… Revision . 01 ………………………………………………………………………… ………… ………… Author . N. Erdödy, R. O’Keefe ………………………………………………………………………… … Release Date ... .2018-08-31 …………………………………………………………………………… … Document Classification ... Unrestricted ………………………………………………………………… Status ... Draft ………………………………………………………………………………………… … Document No: 063 Unrestricted Revision: 01 Author: N. Erdödy ​ Release Date: 2018-08-31 Page 1 of 56 DocuSign Envelope ID: E376CF60-053D-4FF0-8629-99235147B54B Lead Author Designation Affiliation Nicolás Erdödy SDP Team Open Parallel Ltd. NZ SKA Alliance (NZA). Signature & Date: 10/21/2018 8:19:36 PM PDT With contributions and reviews Affiliation greatly appreciated from Dr. Richard O’Keefe SDP Team, NZA University of Otago - Open Parallel (NZA) Dr. Andrew Ensor Director, NZA AUT University (NZA) Piers Harding SDP Team, NZA Catalyst IT (NZA) Robert O’Brien Systems Engineer / Security Independent Anonymous Reviewer CEng (UK), CPEng (NZ) Manager, NZ Govt ORGANISATION DETAILS Name Science Data Processor Consortium Address Astrophysics Cavendish Laboratory JJ Thomson Avenue Cambridge CB3 0HE Website http://ska-sdp.org Email [email protected] Document No: 063 Unrestricted Revision: 01 Author: N. Erdödy ​ Release Date: 2018-08-31 Page 2 of 56 DocuSign Envelope ID: E376CF60-053D-4FF0-8629-99235147B54B 1. SDP Memo Disclaimer The SDP memos are designed to allow the quick recording of investigations and research done by members of the SDP. They are also designed to raise questions about parts of the SDP design or SDP process. The contents of a memo may be the opinion of the author, not the whole of the SDP. Acknowledgement: The authors wish to acknowledge the inputs, corrections and continuous support from the NZA Team Members Dr.
    [Show full text]